
JSS Journal of Statistical Software
February 2008, Volume 24, Issue 6. http://www.jstatsoft.org/

Social Network Analysis with sna

Carter T. Butts
University of California, Irvine

Abstract

Modern social network analysis—the analysis of relational data arising from social
systems—is a computationally intensive area of research. Here, we provide an overview of
a software package which provides support for a range of network analytic functionality
within the R statistical computing environment. General categories of currently supported
functionality are described, and brief examples of package syntax and usage are shown.

Keywords: social network analysis, graphs, sna, statnet, R.

1. Introduction and overview

Far more so than many other domains of social science, modern social network analysis (SNA)
is a computationally intensive affair. Techniques based on eigensolutions (e.g., eigenvector and
Bonacich centrality, multidimensional scaling), combinatorial optimization (e.g., permutation
search in equivalence analysis, structural distance/covariance calculation), shortest-path com-
putation (e.g., betweenness centrality, network diameter), and Monte Carlo integration (e.g.,
QAP and CUG tests) are central to the practice of SNA, and, indeed, the overwhelming ma-
jority of current research in this area could not be performed without access to inexpensive
computational tools.

This dependence on computation for research in social network analysis has helped to spawn a
wide array of software packages to perform network analytic tasks. From generalist tools such
as UCINET (Borgatti et al. 1999), Pajek (Batagelj and Mrvar 2007), STRUCTURE (Burt
1991), StOCNET (Huisman and van Duijn 2003) , MultiNet (Richards and Seary 2006), and
GRADAP (Stokman and Van Veen 1981) to more specialized applications such as netdraw
(Borgatti 2007), SIENA (Snijders 2001), and KrackPlot (Krackhardt et al. 1994) (to name a
few), a variety of software solutions are available for the network analyst. While each of these
packages has its own assets, there continues to be a need for network analysis software which
is simultaneously:

http://www.jstatsoft.org/

2 Social Network Analysis with sna

1. General in coverage, incorporating a range of different network analytic techniques;

2. Easily extensible, to allow for the timely incorporation of new methods and/or refine-
ments;

3. Well-integrated with general purpose statistical, computational, and visualization tools,
so as to facilitate the use of network analysis in conjunction with both end-user exten-
sions and broader social science methodology;

4. Based on an open codebase which is available for inspection (and hence emulation,
correction, and improvement) by the network community;

5. Portable, to allow use by researchers on a variety of computing platforms; and

6. Freely available to network researchers, so as to encourage its use among the widest
possible range of scientists, practitioners, and students.

This “wish list” of attributes would seem to be a great deal to ask of any single, standalone
program; the emergence of open statistical computing platforms such as R (R Development
Core Team 2007), however, has provided a feasible means of realizing such objectives. Using
R (which is itself free software in the Stallmanian sense, see Stallman 2002), researchers
can easily produce and share packages which supply specialized functionality, but which are
interoperable with other statistical computing tools. In this vein, the sna package was created
as a mechanism for fulfilling the above objectives within the R environment. Additional
motivations for the introduction of sna were to encourage the migration of the social network
community to open source and/or free software solutions; to facilitate the creation of a shared
framework for dissemination of new methodological developments; to further the development
of statistical network analysis methods by network analysts; and to ease the integration of
network methods with those of “standard” statistical analysis.

1.1. Package history

sna began life as a loose collection of S routines (called “Various Useful Tools for Network
Analysis in S,” or network.S.tools), written by the author, which were disseminated locally
to social network researchers in and around the research community at Carnegie Mellon
University and the University of Pittsburgh. The first external use of the toolkit of which the
author is aware was the netlogit analysis employed by Ingram and Roberts (2000). The first
version of the collection to be generally disseminated (version 0.1) was released in August of
2000, with the first R package version (sna, version 0.3) appearing in May of 2001. Multiple
releases followed over subsequent years, with the package reaching the “1.0” landmark in
August of 2005. Development has been ongoing; as of the time of this writing, the package is
on version 1.5.

1.2. sna and statnet

As noted above, a major goal in introducing sna was the creation of a foundation for ongoing
development of tools within the network analysis community. The statnet project (Handcock
et al. 2003) represents the latest incarnation of that objective (much as BioConductor Gentle-
man et al. 2004, serves as a site for tool development within the bioinformatics community);

Journal of Statistical Software 3

in some sense, then, statnet is the natural “successor” to sna. Reflecting this relationship,
sna is now considered to be part of the statnet project, and is fully interoperable with other
statnet packages (including network). sna may still be employed as a stand-alone package,
however, for users who do not require the full range of functionality provided by statnet.

1.3. Functionality

At present, the sna package includes over 125 functions for the manipulation and analysis of
network data. Supported functionality includes:

� Functions to compute descriptive indices at the graph or node level. This includes
centrality and centralization indices, measures of hierarchy and prestige, brokerage,
density, reciprocity, transitivity, connectedness, and the like, as well as dyad, triad,
path, and cycle census statistics. Stand-alone routines to facilitate the comparison of
index values across graphs via conditional uniform graph (CUG) tests are included.

� Functions to compute geodesic distances, component structure and distribution, and
structure statistics (in the sense of Fararo and Sunshine 1964), and to identify isolates.

� Functions for positional and role analysis, including structural equivalence and block-
modeling.

� Functions for exploratory edge set comparison, in the paradigm of Butts and Carley
(2005). This includes structural covariance/correlation and distance routines, as well as
tools for scaling and visualization of graph sets. Network regression (Krackhardt 1988),
canonical correlation analysis, and logistic network regression are also supported; QAP
(Hubert 1987; Krackhardt 1987b) and CUG tests are currently implemented for all three
approaches.

� Functions to generate graph-valued deviates from various stochastic processes. So-called
Erdös-Rényi graphs, inhomogeneous Bernoulli graphs, and dyad census conditioned
graphs are supported, as are graphs produced by Watts-Strogatz rewiring processes
(Watts and Strogatz 1998) and the biased net models of Skvoretz et al. (2004); Rapoport
(1957).

� Functions to fit network autocorrelation (also known as spatial autocorrelation, see
Anselin 1988) and biased net models.

� Functions for network inference (i.e., inferring networks from multiple reports containing
missing and/or error-prone data). This includes heuristic estimators such as Krack-
hardt’s (Krackhardt 1987a) locally aggregated structure estimators and the central
graph (Banks and Carley 1994), as well as model-based methods such as the Romney-
Batchelder consensus model (Romney et al. 1986) and the error-rate models of (Butts
2003).

� Functions for visualization and manipulation of network data (in adjacency matrix
form). Standard graph layout methods such as those of Fruchterman and Reingold
(1991) and Kamada and Kawai (1989), general multidimensional scaling/eigenstructure
methods, and “target” diagrams (Brandes et al. 2003) are included by default, and

4 Social Network Analysis with sna

custom layout routines are also supported. Functions are included to facilitate com-
mon tasks such as extracting neighborhoods and egocentric networks, symmetrization,
application of functions to attribute information on neighborhoods (e.g., computing
neighbors’ mean attributes), dichotomization, permutation/relabeling, and the creation
of interval graphs from spell data. Data import/export is supported for several basic
file formats.

The above includes many of the methods of what is sometimes called“classical” social network
analysis (exemplified by Wasserman and Faust (1994), whose presentation is now canonical),
as well as some more recent contributions to the literature. Although the focus of the package
has been on social scientific applications, many of the included tools may also be useful for
analyzing networks arising from other sources.

1.4. Terminology and data representation

As a special-purpose toolkit dedicated to social network analysis, describing sna’s functionality
requires us to refer to standard SNA concepts and methods; readers unfamiliar with network
analysis may wish to consult the cited references (particularly Wasserman and Faust 1994) for
additional details. Some specific terminology and notation is described below. Throughout
this paper, we will be concerned with relational data consisting of a fixed set of entities (called
vertices) and a multiset of relationships among those entities (called edges). Our particular
focus is on dyadic relationships, in which edges consist of (possibly ordered) two-element
multisets on the set of vertices. The elements of an edge are referred to as its endpoints, with
the first element known as the tail (or sender) and the second known as the head (or receiver)
in the ordered case. An edge whose endpoints are identical is called a loop. The combination
of an edge set, E, with vertex set V is said to be a graph (denoted G = (V,E)). The size,
or order of a graph is the number of elements in its vertex set (denoted |V |, where | · | is the
cardinality operator). Specific types of graphs may be identified via the constraints satisfied
by E. If the elements of E are unordered multisets, G is said to be an undirected graph; if
edges are ordered multisets, by contrast, G is said to be a directed graph (or digraph). For an
undirected graph, the set of vertices tied (or adjacent) to vertex v is called the neighborhood
of v (denoted N(v)). In the directed case, we distinguish between the set of vertices sending
edges to v (the in-neighborhood or N−(v)) and the set of vertices receiving edge from v (the
out-neighborhood, or N+(v)). A graph (directed or otherwise) is simple if it has no loops and
if there exists no edge having multiplicity greater than one. Finally, a graph’s edge set may
be associated with a set of variables, such that each edge carries some value. A graph of this
kind is said to be valued, as opposed to the contrary, unvalued case.

It is worth noting that use of terminology varies somewhat across the social network field—a
perhaps unfortunate legacy of the field’s strongly interdisciplinary nature (Freeman 2004).
Thus, vertices may also be called “points” or “nodes” (or, in social contexts, “actors” or
“agents”). Likewise, edges may be called “lines,” “ties,” or (if directed) “arcs.” The term
“network” is often used generically to refer to any relational structure; in other cases, it may
be reserved to refer to the actually existing relational structure, with “graph” being employed
for that structure’s formal representation. In the latter instance, “tie” is frequently used as
the corresponding term for an actually existing relationship, with “edge” denoting the formal
representation of that relationship. While such terminological subtleties are not required to
use sna, an awareness of them may reduce confusion among users seeking to make use of the

Journal of Statistical Software 5

literature cited within the package manual.

With rare exceptions, sna routines can be used with directed or undirected graphs with or
without loops. Edge values and missing data (i.e., edges whose states are unknown) are
supported in many applications, as well. Note, however, that many graph theoretic concepts
(e.g., connectedness) admit somewhat different definitions in the directed and undirected
cases—it is thus important to verify that one is using the settings which are appropriate to
the data at hand. Except for functions whose behavior is undefined in the directed case, sna’s
functions typically default to the assumption that one’s data consists of one or more simple,
unvalued digraphs.

Relational data can be represented in a number of ways, several of which are currently sup-
ported by the sna package. The most basic of these is the adjacency matrix ; i.e., a square
matrix, A, whose elements are defined such that Aij is the value of the (i, j) edge (or {i, j}
edge, in the undirected case) in the corresponding graph. By convention, Aij is a dichotomous
indicator variable where the corresponding graph is unvalued. Such matrices may be passed
as matrix objects, or as two-dimensional arrays. While adjacency matrices are convenient
to work with, they are inefficient for large, sparse graphs. When working with such data, the
use of network (Butts et al. 2007) or sparse matrix (Koenker and Ng 2007, SparseM[) objects
may be preferred. sna accepts all three such data types interchangeably.

In many instances, one may need to perform operations on multiple graphs at once. Where
such graphs are of the same order (i.e., number of vertices), they may be conveniently repre-
sented by a three-dimensional array whose first dimension indexes the component adjacency
matrices. Alternately, it is also possible to specify multiple graphs by means of a list. This
allows for the user to pass graph sets of varying orders, where required. Within a graph
list, single adjacency matrices, adjacency arrays, network, and sparse matrix objects may
be mixed as desired; individual graphs are unpacked sequentially in ascending list and array
index order prior to computation.

Importing relational data into R

Another preliminary issue of obvious concern is the importation of relational data into R.
Where such data is stored in matrix or array form, conventional R routines such as read.table
and scan may be employed in the usual manner. Similarly, natively saved network objects
may be loaded directly into memory without external representation. In addition to these
methods, sna includes custom routines for importing relational data in OrgStat NOS and
GraphViz DOT formats. Processed relational data can be saved via the above methods, or
in the DL format widely used by packages such as Pajek and UCINET. (See also the Pajek
import function in network.)

Beyond these network-specific approaches, sna also has facilities for converting spell data (i.e.,
data consisting of intervals in time or other quantities) into interval graphs (West 1996). The
eponymously named interval.graph function serves in this capacity, converting an array of
spell information into one or more interval graphs; spell-level categorical covariate information
may also be included. In addition to simple interval graphs, interval.graph will compute
the valued overlap graphs proposed by Butts and Pixley (2004) for use with life history data.
In this case, the overlap quantities are stored as edge values in the output adjacency matrix
(or matrices, if multiple spell sets were given).

6 Social Network Analysis with sna

2. Package highlights

Given the wide scope of the methods implemented within the sna package, we cannot review
them all in detail. In this section, however, we attempt to summarize the functionality of sna
within a number of domains, highlighting specific functions and applications which are likely
to be of general interest. Brief examples are also provided within each section, to illustrate
basic syntax and usage. Additional background and usage details are contained within the
package manual, which is distributed with the package itself.

2.1. Random graph generation

sna has a range of tools for random graph generation. Chief among these is rgraph, a
“workhorse” function for simulating deviates from both homogeneous and inhomogeneous
Bernoulli graph distributions (Wasserman and Faust 1994). Given a set of tie probabilities
(which may be specified by graph or by edge), it generates one or more graphs whose edge
states are independent Bernoulli trials conditional on the specified parameters.1

In addition to rgraph, sna has several other tools for random graph generation. These cur-
rently include rgnm (which draws uniform graphs and digraphs conditional on edge count),
rguman (which draws uniform digraphs conditional on expected or realized dyad census statis-
tics), rgws (which draws from a Watts-Strogatz graph process Watts and Strogatz 1998), and
rgbn (which simulates a Skvoretz-Fararo biased net process (Skvoretz et al. 2004)—see also
Section 2.7). Also useful are tools such as rmperm and the rewire functions, which alter
an input graph by random row/column, edgewise, or dyadic permutations. Functions which
condition on degree distribution and the triad census are anticipated in future versions of sna.

Example

To provide a sense for the syntax involved (and options available) when generating random
graphs in sna, we here provide a brief example of R code which draws graphs from a number
of models. Note that the output type in each case is an adjacency matrix; although sna
routines accept network and related objects as input (per Section 1.4), the package’s current
random graph generators produce output in adjacency matrix or array form. The range of
output types may be expanded in future package versions. To begin, we first load the sna
library and fix the random seed (for reproducibility).

R> library("sna")

R> set.seed(1913)

As noted above, rgraph can be used in various ways to obtain graphs (directed or other-
wise) with different expected densities. For instance, three digraphs with respective expected
densities 0.1, 0.9, and 0.5 can be drawn as follows:

R> g <- rgraph(10, 3, tprob=c(0.1, 0.9, 0.5))

R> gden(g)

[1] 0.1000000 0.8666667 0.5333333

1rgraph can also be employed to simulate valued graphs via a resampling procedure.

Journal of Statistical Software 7

gden, which we shall encounter again later, is an sna function which returns the density
of one or more input graphs; as expected, the observed densities here closely match their
expectations. The tprob parameter, used above to set the probability of each edge on a
per-graph basis, can also be used in other ways. For instance, passing a matrix of Bernoulli
parameters to tprob will cause rgraph to sample from the corresponding inhomogeneous
Bernoulli graph model (in which the probability of an (i, j) edge is equal to tprob[i,j]. For
example, consider a simple model for a digraph of order 10, in which the probability of an
(i, j) edge is equal to j/10. Such a graph can be drawn easily as follows:

R> g.p <- sapply((1:10) / 10, rep, 10)

R> g <- rgraph(10, tprob = g.p)

R> g

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 0 0 1 1 1
[2,] 0 0 0 1 0 1 0 0 1 1
[3,] 0 0 0 0 0 1 0 1 0 1
[4,] 0 0 0 0 1 1 1 1 1 1
[5,] 0 1 0 0 0 0 1 1 1 1
[6,] 0 0 1 0 1 0 1 0 1 1
[7,] 0 1 1 0 1 0 0 1 1 1
[8,] 0 0 1 1 1 0 1 0 1 1
[9,] 0 0 0 1 1 0 1 1 0 1
[10,] 0 0 0 0 0 0 1 1 1 0

R> apply(g, 2, mean)

[1] 0.0 0.2 0.3 0.3 0.6 0.3 0.6 0.7 0.8 0.9

Since rgraph disallows loops by default, diagonal entries are ignored in the above cases; thus,
the column means here have expectation 0.9(j/10). The observed means are quite close to
this, but obviously vary due to the underlying Bernoulli process. For random graphs with
exact constraints on edge count, we must use rgnm. For instance, to take 5 draws from the
uniform distribution on the order 10 graphs having 12 edges we would proceed as follows:

R> g <- rgnm(5, 10, 12)

R> apply(g, 1, sum)

[1] 12 12 12 12 12

As the dyadic counterpart to both rgraph and rgnm, rguman models digraphs whose distribu-
tions are parameterized by dyad states. As each dyad corresponds to a pair of edge variables,
it can be readily classified into the three isomorphism classes of mutual (both edges present),
asymmetric (one edge present), or null (no edges present). The number of dyads in each class
within a graph is known as its dyad census, and has been used as a simple basis for modeling
network structure at least since the work of Holland and Leinhardt (1970). rguman can be
employed either to generate uniform digraphs conditional on an exact dyad census constraint,

8 Social Network Analysis with sna

or to draw from a multinomial graph model of independent dyads with fixed expected counts.
The former case can be used to generate graphs of particular types. For instance, the trivial
cases of complete, complete tournament, and null graphs can be generated by placing all
dyads within the appropriate isomorphism class:

R> k10 <- rguman(1, 10, mut = 45, asym = 0, null = 0, method = "exact")

R> t10 <- rguman(1, 10, mut = 0, asym = 45, null = 0, method = "exact")

R> n10 <- rguman(1, 10, mut = 0, asym = 0, null = 45, method = "exact")

R> k10

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 1 1 1 1 1 1 1 1
[2,] 1 0 1 1 1 1 1 1 1 1
[3,] 1 1 0 1 1 1 1 1 1 1
[4,] 1 1 1 0 1 1 1 1 1 1
[5,] 1 1 1 1 0 1 1 1 1 1
[6,] 1 1 1 1 1 0 1 1 1 1
[7,] 1 1 1 1 1 1 0 1 1 1
[8,] 1 1 1 1 1 1 1 0 1 1
[9,] 1 1 1 1 1 1 1 1 0 1
[10,] 1 1 1 1 1 1 1 1 1 0

R> t10

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 1 0 0 0
[2,] 1 0 1 0 1 1 0 0 0 1
[3,] 1 0 0 1 1 0 0 1 0 0
[4,] 1 1 0 0 0 1 0 1 0 1
[5,] 1 0 0 1 0 1 1 1 1 0
[6,] 1 0 1 0 0 0 1 1 1 0
[7,] 0 1 1 1 0 0 0 1 1 0
[8,] 1 1 0 0 0 0 0 0 1 1
[9,] 1 1 1 1 0 0 0 0 0 0
[10,] 1 0 1 0 1 1 1 0 1 0

R> n10

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 0 0 0

Journal of Statistical Software 9

[9,] 0 0 0 0 0 0 0 0 0 0
[10,] 0 0 0 0 0 0 0 0 0 0

When not in“exact”mode, rguman draws dyads as independent multinomial random variables
with specified type probabilities. This can be used to obtain random structures with varying
degrees of bias toward or away from mutuality. Thus, to obtain a random graph in which
reciprocated ties are overrepresented, one might use a model like the following:

R> g <- rguman(1, 100, mut = 0.15, asym = 0.05, null = 0.8)

R> mean(g[upper.tri(g)] * t(g)[upper.tri(g)])

[1] 0.1482828

R> mean(g[upper.tri(g)] != t(g)[upper.tri(g)])

[1] 0.04646465

R> mean((!g)[upper.tri(g)] * t(!g)[upper.tri(g)])

[1] 0.8052525

By contrast with the expectation under the above model, a Bernoulli graph with the same
expected density would have a mean mutuality rate of approximately 0.03 (with asymmetric
dyads outnumbering mutual dyads by a factor of approximately 9.4). Thus, the behavior of
the multinomial dyad model can deviate substantially from that of the Bernoulli graph family,
despite their underlying similarity.

More extensive departures from independence require alternatives to the simple independent
edge/dyad paradigm. One such alternative is the Skvoretz-Fararo family of biased net pro-
cesses, which are discussed in more detail in Section 2.7. As we will see, these processes are
specified in terms of the conditional probability of an edge given other edges within the graph;
this immediately suggests the use of a Gibbs sampler (see, e.g. (Gilks et al. 1996)) to draw
realizations of the graph process. Such a sampler is implemented via the rgbn function, which
uses an iterative edge updating scheme to form a Markov chain whose equilibrium distribu-
tion corresponds to the distribution of (directed) graphs resulting from the Skvoretz-Fararo
process. Thinning and burn-in parameters may be specified by the user, along with model
parameters (which, by default, correspond to the uniform random digraph model). Parame-
ters may be adjusted to produce “parent” or reciprocity biases (π), “sibling” or shared partner
biases (σ), and “double role” biases or parent/sibling interaction effects (ρ), as well as baseline
density effects (d); parameters vary from 0 to 1, with 0 indicating no bias. The command to
draw a sample of 5 order 10 networks with both reciprocity and triangle formation biases will
then look something like the following:

R> g <- rgbn(5, 10, param = list(pi = 0.05, sigma = 0.1, rho = 0.05,

+ d = 0.15))

10 Social Network Analysis with sna

with the magnitude of the specified effects depending on the exact choice of parameters.

Finally, we note that random graphs can also be produced by modifying existing networks.
For instance, the Watts and Strogatz (1998) “rewiring” process takes an input network and
(with specified probability) exchanges each non-null dyad with a randomly chosen null dyad
sharing exactly one endpoint with the original dyad. Such a process obviously conserves
edges, e.g.:

R> g <- matrix(0, 10, 10)

R> g[1,] <- 1

R> g2 <- rewire.ws(g, 0.5)[1,,]

R> g2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 0 1 1 1 1 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 1
[3,] 0 1 0 0 0 0 0 0 0 0
[4,] 0 0 1 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 0 0 0
[9,] 0 0 0 0 0 0 0 0 0 0
[10,] 0 0 0 0 0 0 0 0 1 0

R> sum(g - g2) == 0

[1] TRUE

Another example of an edge-preserving random transformation is the random permutation
of vertex order. rmperm can be employed for this purpose, as for example in the following
permutation of the graph g2 above:

R> g3 <- rmperm(g2)

R> all(sort(apply(g2, 2, sum)) == sort(apply(g3, 2, sum)))

[1] TRUE

Row/column permutation preserves the“unlabeled”structure of the input graph (i.e., it draws
from the graph’s isomorphism class), and plays an important role in certain test procedures
for matrix comparison (Hubert 1987; Krackhardt 1987b).

2.2. Visualization and data manipulation

Visualization and manipulation of relational data is a central task of relational analysis, and
sna has a number of functions which are intended to facilitate this process. Some of these func-
tions are quite basic: for instance, diag.remove, lower.tri.remove, and upper.tri.remove

Journal of Statistical Software 11

extend the assignment behavior of R’s diag, lower.tri, and upper.tri functions to ar-
rays; gvectorize and sr2css, convert network data from one form to another; symmetrize,
make.stochastic, and event2dichot perform basic data-normalizing operations on graphs
or graph sets; add.isolates adds isolates to one or more input graphs; stackcount de-
termines the number of graphs in an input stack, etc. Several other functions bear further
explanation. For instance, eval.edgeperturbation is a wrapper function which computes
the difference in the value of a graph statistic resulting from forcing the selected edge or
edges to be present, versus forcing them to be absent (holding all other edges constant). Such
differences are used extensively in computation for simulation and inference from exponential
random graph processes (see, e.g., Snijders 2002), and have also been used to assess structural
robustness (Dodds et al. 2003; Borgatti et al. 2006). eval.edgeperturbation is flexible, and
can be used with any graph-level index function. Its use is straightforward, i.e.:

R> g <- rgraph(5)

R> eval.edgeperturbation(g, 1, 2, centralization, betweenness)

[1] 0.07291667

Unfortunately, the drawback to the flexibility of this routine is its inefficiency;
eval.edgeperturbation cannot take advantage of any special properties of the change-score
being calculated, and hence is inefficient for properties such as triad counts whose changes can
be calculated much more quickly than the base statistic. This function is hence a useful utility
for simple, exploratory applications, and does not replace the specialized (but less flexible)
change-score functions used within packages such as ergm.

Another pair of useful, but idiosyncratic, utility functions are rperm and numperm, which
produce permutation vectors with specified characteristics. (Recall that permuting a graph’s
adjacency matrix is equivalent to altering the “identities” of its vertices while leaving the
underlying, “unlabeled” structure unchanged.) Although not graph manipulation functions
per se, these routines are of importance for generating restricted permutations for use in
QAP tests (Hubert 1987) and comparison of partially labeled graphs (Butts and Carley 2005).
rperm draws a (uniform) random permutation vector such that vertices may only be exchanged
if they belong to the same (user-supplied) equivalence class. numperm is a deterministic
function, which returns the nth (unconstrained) permutation in lexical sort order; this is
useful for exhaustive search through a (hopefully small) permutation set, or when sampling
permutations without replacement.

In addition to the above, two families of graph manipulation functions bear discussing in more
detail. These are functions to compute properties of neighborhoods, and functions for graph
visualization. Here, we briefly discuss each family in turn, before proceeding to a review of
sna’s descriptive index routines.

Neighborhood and ego net functions

The egocentric network (or “ego net”) of vertex v in graph G is defined as G[v ∪N(v)] (i.e.,
the subgraph of G induced by v and its neighborhood). ego.extract is a utility function
which, for a given input graph (or set thereof) extracts the egocentric networks for one or
more vertices. This can be a useful shortcut for computing local structural properties, or
for simulating the effects of ego net sampling (see Marsden 2005). For directed graphs, it

12 Social Network Analysis with sna

is further possible to specify the use of incoming, outgoing, or combined neighborhoods for
generating the induced subgraphs.

While ego.extract is useful for assessing local structural properties, it does not provide for
computation on attributes (i.e., exogenous covariates) of vertex neighbors. This functionality
is supplied by gapply. For each vertex in its input set, gapply first identifies all members of its
neighborhood; neighborhoods may be in, out, or combined, and higher-order neighborhoods
may be selected (as discussed below). Once each neighborhood has been identified, gapply
applies a user-specified function to the neighbors’ covariates (which may be supplied as a
numeric vector). This provides a very quick and easy way to calculate properties such as
the size of a given vertex’s 3rd-order neighborhood, the fraction of its alters with a given
characteristic, the average value of its alters on a specified covariate, etc.

In addition to the above, it is sometimes useful to be able to examine more complex neigh-
borhood structures in their own right (e.g., as hypothetical influence matrices for network
autocorrelation modeling). neighborhood provides for such computations, returning for a
given graph the adjacency matrix whose i, j cell is an indicator for the membership of vertex
j in vertex i’s selected neighborhood. Specifically, the adjacency matrix associated with the
0th order neighborhood is defined as the identity matrix for order, and for orders k > 0
depends on the type of adjacency involved. For input graph G = (V,E), let the base relation,
R, be given by the underlying graph of G (i.e., G ∪ GT) if total neighborhoods are sought,
the transpose of G if incoming neighborhoods are sought, or G otherwise. The partial neigh-
borhood structure of order k > 0 on R is then defined to be the digraph on V whose edge
set consists of the ordered pairs (i, j) having geodesic distance k in R. The corresponding
cumulative neighborhood is formed by the ordered pairs having geodesic distance less than
or equal to k in R. neighborhood computes either partial or cumulative neighborhoods of
arbitrary order, and with arbitrary choice of edge direction.

To illustrate sna’s egocentric network tools, we begin by generating a sample network and
extracting ego nets based on in, out, and combined neighborhoods. The resulting lists of ego
nets are then easily subjected to other analyses, as seen below:

R> g <- rgraph(10, tp = 1.5 / 9)

R> g.in <- ego.extract(g, neighborhood = "in")

R> g.out <- ego.extract(g, neighborhood = "out")

R> g.comb <- ego.extract(g, neighborhood = "combined")

R> g.comb[1:3]

$`1`
[,1] [,2] [,3] [,4]

[1,] 0 1 1 0
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 1 0 0 0

$`2`
[,1] [,2] [,3] [,4]

[1,] 0 1 0 0
[2,] 1 0 0 0

Journal of Statistical Software 13

[3,] 1 0 0 0
[4,] 1 0 1 0

$`3`
[,1] [,2] [,3] [,4]

[1,] 0 1 1 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 1 1 0 0

R> all(sapply(g.in, NROW) == degree(g, cmode = "indegree") + 1)

[1] TRUE

R> all(sapply(g.out, NROW) == degree(g, cmode = "outdegree") + 1)

[1] TRUE

R> all(sapply(g.comb, NROW) <= degree(g) + 1)

[1] TRUE

R> ego.size <- sapply(g.comb, NROW)

R> if(any(ego.size > 2))

+ sapply(g.comb[ego.size > 2], function(x){gden(x[-1,-1])})

1 2 3 4 5 6 7
0.00000000 0.16666667 0.16666667 0.00000000 0.00000000 0.00000000 0.00000000

8 9 10
0.00000000 0.08333333 0.00000000

Note that egocentric network density is often calculated as the density of ties among alters, i.e.
neglecting ego’s contribution (since ego must be tied to all alters by design). This is the form of
density calculated above. In doing so, we have made use of the fact that ego.extract always
places ego in the first row/column of each extracted adjacency matrix, thereby facilitating its
removal where required. This example also makes use of degree and gden to calculate degree
and graph density, respectively; these are discussed in more detail below.

Where computation on attributes of neighboring vertices is required (as opposed to the ego
nets themselves), we turn to gapply. As the following example illustrates, gapply can be
used to count features of vertex neighborhoods (degree being the most trivial example); other
statistics (e.g., means, quantiles, etc.) can be used as well.

R> g <- rgraph(6)

R> all(gapply(g, 1, rep(1, 6), sum) == degree(g, cmode = "outdegree"))

[1] TRUE

14 Social Network Analysis with sna

R> all(gapply(g, 2, rep(1, 6), sum) == degree(g, cmode = "degree"))

[1] TRUE

R> all(gapply(g, c(1, 2), rep(1, 6), sum) == degree(symmetrize(g),

+ cmode = "freeman") / 2)

[1] TRUE

R> gapply(g, c(1, 2), 1:6, mean)

[1] 4.00 3.00 3.00 5.50 3.25 3.25

R> gapply(g, c(1, 2), 1:6, mean, distance = 2)

[1] 4.0 3.8 3.6 3.4 3.2 3.0

To obtain adjacency matrices for neighborhoods themselves, we employ the neighborhood
function:

R> g <- rgraph(10, tp = 2/9)

R> neigh <- neighborhood(g, 9, neighborhood.type = "out", return.all = TRUE)

R> par(mfrow=c(3,3))

R> for(i in 1:9)

+ gplot(neigh[i,,],main = paste("Partial Neighborhood of Order", i))

R> neigh <- neighborhood(g, 9, neighborhood.type="out", return.all = TRUE,

+ partial = FALSE)

R> par(mfrow = c(3, 3))

R> for(i in 1:9)

+ gplot(neigh[i,,], main = paste("Cumulative Neighborhood of Order", i))

Typical output for the above is shown in Figures 1 (partial neighborhoods) and 2 (cumula-
tive neighborhoods). These displays highlight the difference between partial and cumulative
neighborhoods, illustrating each at all orders of depth. The rapidity with which such neigh-
borhoods “fill out” the network is instructive of properties such as local clustering; we will
revisit this issue when we discuss the structure.statistics function below.

Visualization

Network visualization has been a fundamental aspect of social network analysis since its in-
ception (Freeman 2004), and this functionality is an important feature of sna. The primary
“workhorse” routine for graph visualization within sna is gplot, which displays an input net-
work using a two-dimensional layout. Many options are available to gplot, including the
ability to specify characteristics such as size, color, and shape for individual vertices, edges,
and edge labels. Vertex layout is controlled via a modular collection of layout functions
(gplot.layout.*) which are called transparently by gplot itself. Built-in functions include
the well-known algorithms of Fruchterman and Reingold (1991), Kamada and Kawai (1989),

Journal of Statistical Software 15

Partial Neighborhood of Order 1 Partial Neighborhood of Order 2 Partial Neighborhood of Order 3

Partial Neighborhood of Order 4 Partial Neighborhood of Order 5 Partial Neighborhood of Order 6

Partial Neighborhood of Order 7 Partial Neighborhood of Order 8 Partial Neighborhood of Order 9

Figure 1: Sample partial neighborhoods of increasing order; vertex v is adjacent to vertex v′

in the ith panel iff v′ belongs to the ith order partial neighborhood of v.

and Hall (1970), as well as layouts based on general multidimensional scaling and eigenstruc-
ture procedures, circular layouts, and random placement. User-supplied functions can also be
employed by creating an appropriate gplot.layout routine; required arguments are described
in the gplot.layout manual page. For “target diagrams,” in which graphs are plotted along
concentric circles based on the magnitude of a specified covariate, gplot.target supplies a
useful front-end to gplot. The layout method used in this case is that of Brandes et al.
(2003), which may also be employed directly within gplot. Should no available layout suffice,
coordinates may be set manually—interactive vertex placement is also supported.

While two-dimensional visualization is favored in most settings, it can also be useful to exam-
ine complex networks in three dimensions. Installing R’s optional rgl enables gplot3d, which
allows interactive network visualization in three dimensions. Available settings are similar to
gplot, with layout algorithms analogously controlled by the gplot3d.layout.* functions.
Interface and output methods are as per rgl, and may vary slightly by platform.

Where highly customized displays are desired, it may be useful to have access to the low-level
tools used by gplot and gplot3d to display vertices and edges. gplot.vertex, gplot.arrow,
gplot.loop, gplot3d.arrow, and gplot3d.loop can all be used directly to place gplot

16 Social Network Analysis with sna

Cumulative Neighborhood of Order 1 Cumulative Neighborhood of Order 2 Cumulative Neighborhood of Order 3

Cumulative Neighborhood of Order 4 Cumulative Neighborhood of Order 5 Cumulative Neighborhood of Order 6

Cumulative Neighborhood of Order 7 Cumulative Neighborhood of Order 8 Cumulative Neighborhood of Order 9

Figure 2: Sample cumulative neighborhoods of increasing order; vertex v is adjacent to vertex
v′ in the ith panel iff v′ belongs to the ith order cumulative neighborhood of v.

elements within arbitrary displays. Options for these functions are flexible, and similar in
form to those employed in the gplot front-end routines. It is also possible to change the
behavior of the front-end visualization functions by modifying these functions, should this
become necessary for more exotic applications.

All of the above functions display relational information in sociogram form, i.e., as closed
shapes connected by edges. It is also possible to visualize adjacency matrices directly (i.e.,
as a tabular display) using the plot.sociomatrix function. While this is rarely useful as an
exploratory tool, it can be helpful when visualizing block structure (see Section 2.5 below), or
when examining matrices which are too large to display effectively using the standard print
method.

gplot is a versatile routine with many options, only a few of which can be illustrated here.
Curved edges, variable vertex shapes, labels, etc. are among the currently supported fea-
tures. (Primitive interactive vertex placement is also supported via the interactive option,
which can be useful in refining complex displays.) Some examples of the use of gplot (and
plot.sociomatrix) are shown here:

R> g <- rgraph(5, diag = TRUE)

Journal of Statistical Software 17

Default Curved Edges MDS Layout

Circular Layout Sociomatrix

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Multiple Options

1

2

3

4

5

Figure 3: Sample visualizations using gplot, with multiple layout and display options.

R> par(mfrow = c(2, 3))

R> gplot(g, main = "Default")

R> gplot(g, usecurv = TRUE, main = "Curved Edges")

R> gplot(g, mode = "mds", main = "MDS Layout")

R> gplot(g, mode = "circle", main = "Circular Layout")

R> plot.sociomatrix(g, main = "Sociomatrix")

R> gplot(g, diag = TRUE, vertex.cex = 1:5, vertex.sides = 3:8,

+ vertex.col = 1:5, vertex.border = 2:6, vertex.rot = (0:4) * 72,

+ displaylabels = TRUE, label.bg = "gray90", main = "Multiple Options")

Output from the above is shown in Figure 3.

Three-dimensional display using gplot3d can be especially useful when examining networks
with non-planar structure. In the following example, we see how gplot3d can be used to
visualize the behavior of a three-dimensional Watts-Strogatz rewired lattice process. (This
example requires the rgl package to execute.)

R> gplot3d(rgws(1, 5, 3, 1, 0))

R> gplot3d(rgws(1, 5, 3, 1, 0.05))

18 Social Network Analysis with sna

Figure 4: Three-dimensional visualizations of a Watts-Strogatz process at increasing rewiring
rates.

R> gplot3d(rgws(1, 5, 3, 1, 0.2))

Snapshots of the resulting visualizations are shown in Figure 4. While not evident from
the sampled output, the usual interactive features of rgl (e.g., rotation, zooming, etc.) are
available when using gplot3d – this can in and of itself be useful when examining large,
complex structures.

As noted, the lower-level routines used by gplot to produce vertices and edges can be em-
ployed directly within other displays. For instance, consider the following:

R> par(mfrow = c(1, 3))

R> plot(0, 0, type = "n", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5), asp = 1,

+ xlab = "", ylab = "", main = "gplot.vertex Example")

R> gplot.vertex(cos((1:10) / 10 * 2 * pi), sin((1:10) / 10 * 2 * pi),

+ col = 1:10, sides = 3:12, radius = 0.1)

R> plot(1:2, 1:2, xlab = "", ylab = "", main = "gplot.arrow Example")

R> gplot.arrow(1, 1, 2, 2, width = 0.01, col = "red", border = "black")

R> plot(0, 0, type = "n", xlim = c(-2, 2), ylim = c(-2, 2), asp = 1,

+ xlab = "", ylab = "", main = "gplot.loop Example")

R> gplot.loop(c(0, 0), c(1, -1), col = c(3, 2), width = 0.05, length = 0.4,

+ offset = sqrt(2) / 4, angle = 20, radius = 0.5, edge.steps = 50,

+ arrowhead = TRUE)

R> polygon(c(0.25, -0.25, -0.25, 0.25, NA, 0.25, -0.25, -0.25, 0.25), c(1.25,

+ 1.25, 0.75, 0.75, NA, -1.25, -1.25, -0.75, -0.75), col = c(2, 3))

The corresponding output, shown in Figure 5, suggests some of the flexibility of the gplot
tools. These functions may be used to add elements to existing gplot output, or to create
alternative display mechanisms. They may also be used within non-network contexts, as
polygon-based alternatives to R’s built-in points and arrows commands.

2.3. Descriptive indices

The literature of social network analysis is rich with descriptive indices of various sorts,

gplot3d1.gif
Media File (image/gif)

gplot3d2.gif
Media File (image/gif)

gplot3d3.gif
Media File (image/gif)

Journal of Statistical Software 19

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

gplot.vertex Example

1.0 1.2 1.4 1.6 1.8 2.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

gplot.arrow Example

−2 −1 0 1 2

−2
−1

0
1

2

gplot.loop Example

Figure 5: Examples of the use of gplot supplemental functions.

all of which seek to quantify particular aspects of relational structure. Broadly speaking,
the most commonly used indices may be divided into two classes: node-level indices (NLIs),
which express properties of the positions of particular vertices; and graph-level indices (GLIs),
which express properties of entire graphs. More formally, node-level indices can be thought
of as mappings of the general form f : V × G 7→ R, where G is the set of graphs on which
f is defined (with associated vertex set V). Graph-level indices, by contrast, are of the form
f : G 7→ R. Although this framework is easily extended to incorporate covariates, indices of
this type are uncommon; we will see an important counterexample below, however.

Node-level indices

Of the node-level indices, the most well-developed are the centrality indices. Formal char-
acterization of centrality indices as a distinct class of NLIs has proved elusive (though see
efforts by Sabidussi (1966) and Brandes and Erlebach (2005) chapters 3–5), but all intu-
itively reflect some sense in which a vertex occupies a prominent or “central” position within
a graph. Among the most widely used centrality indices are those of Freeman (1979) which
reflect a standardized “paring down” of a range of similar measures used in earlier work.
These indices—degree, betweenness, and closeness—are implemented in sna via the epony-
mous degree, betweenness, and closeness functions. Degree, a standard graph theo-
retic concept, is given by cd(v,G) ≡ |N(v)| for undirected G. In the directed case, three
notions of degree are generally encountered: outdegree (cd+(v,G) ≡ |N+(v)|); indegree
(cd−(v,G) ≡ |N−(v)|); and total or “Freeman” degree (cdt(v,G) ≡ cd+(v,G) + cd−(v,G)).
All of these are supported via degree. Betweenness measures the extent to which a given
vertex lies on non-redundant geodesics between third parties. The index is formally defined
as cb(v,G) ≡

∑
(v′,v′′)⊂V \v

g′(v′,v,v′′,G)
g(v′,v′′,G) , where g(v, v′, G) is the number of (v, v′) geodesics in

G, g(v, v′, v′′, G) is the number of (v, v′′) geodesics in G containing v′, and g′(v′,v,v′′,G)
g(v′,v′′,G) is taken

equal to 0 where g(v′, v′′, G) = 0. A close variant, stress centrality, is identical save for the
denominator of the geodesic count ratio, which is set to 1 (Shimbel 1953); this is implemented
by stresscent in sna. Finally, closeness is given by cc(v,G) ≡ n−1P

v′∈V d(v,v′) , where d(v, v′)
is the geodesic distance from vertex v to vertex v′. Closeness is ill-defined on graphs which
are not strongly connected, unless distances between disconnected vertices are taken to be
infinite. In this case, cc(v,G) = 0 for any v lacking a path to any vertex, and hence all

20 Social Network Analysis with sna

closeness scores will be 0 for graphs having multiple weak components. Due to this fragility,
closeness is less often deployed than the other two of Freeman’s measures.

Another important family of measures includes the eigenvector and Bonacich power centrali-
ties, both of which are based on spectral properties of the graph adjacency matrix. Eigenvector
centrality (implemented in sna via evcent) is simply the absolute value of the principal eigen-
vector of A (where A is the graph adjacency matrix). This can be interpreted variously as a
measure of “coreness” (or membership in the largest dense cluster), “recursive” or “reflected”
degree (i.e., v is central to the extent to which it has many ties to other central nodes), or of
the ability of v to reach other vertices through a multiplicity of short walks. Bonacich (1987)
extended this notion via a measure equal to cbp(G) = α (I− βA)−1 A1, where a solution
exists. This index approaches the eigenvector centrality as β approaches the reciprocal of the
principal eigenvalue of A, and degree as β approaches 0. Setting β < 0 reverses the sense
of the dependence of centrality scores across vertices: where β is negative, vertices become
more central by being attached to less central alters. This effect was intended to capture
the behavior of equilibrium payoffs in bilateral exchange networks with credible exclusion
threats; as with the positive case, parameter magnitude in this instance reflects the degree of
weight afforded distant edges. The bonpow command in sna implements the Bonacich power
measure, for user-specified values of β. The scaling parameter, α is by convention set so as to
result in a centrality vector of length equal to |V |—in general, it should be remembered that
this measure is uniquely defined only up to a rescaling operation. Closely related to evcent
and bonpow are prestige (which calculates various prestige measures) and infocent (which
calculates the information centrality of Stephenson and Zelen 1989). Although a range of
indices is included within prestige, all measure the extent to which individuals secure the
direct or indirect nomination of others; several variants of eigenvector centrality are included
for this purpose. Information centrality provides an indication of the extent to which each
individual has a large number of short walks to other actors in the network. It is similar to
eigenvector centrality in being walk-based, but weights short walks more heavily (and long
walks less heavily) than the former.

An example of a more specialized family of node-level indices is given by the Gould and
Fernandez (1989) brokerage scores. The total brokerage of a given vertex, v, is defined as
the number of ordered pairs (v′, v′′) such that (v′, v), (v, v′′) ∈ E, and (v′, v′′) 6∈ E—that
is, the number of pairs for which v serves as a local bridge. Now, let us posit a vector
of states, s, with V such that si is the state of vi ∈ V . (“State” in this case can be any
exogenous covariate, although Gould and Fernandez initially intended it to be a categorical
indicator of group membership.) Gould and Fernandez define five specific types of brokerage
(or brokerage roles), based on the states of the three vertices within a locally bridged pair.
For an ordered triad (vi, vj , vk) with brokering vertex vj , the possible brokerage roles are
coordinating (si = sj = sk), itinerant (si = sk, si 6= sj), gatekeeping (sj = sk, si 6= sj),
representative (si = sj , sj 6= sk), and liaison (si 6= sj , sj 6= sk, si 6= sk). The brokerage score
for vertex v with respect to a particular role is defined as the number of ordered triads of the
appropriate type for which v is a broker. The brokerage function computes these (and total)
brokerage scores for all vertices, as well as the total amount of brokerage within each role
performed throughout the network. First and second moments for brokerage scores under
a null hypothesis of random association (holding fixed s and the expected density) are also
provided as well as the z-tests suggested by Gould and Fernandez. It should be cautioned
that the authors did not prove that the statistics in question are asymptotically normal under

Journal of Statistical Software 21

the null model, and hence the statistical foundation for their associated tests is somewhat
dubious; when in doubt, it may be wise to perform a simulation-based conditional uniform
graph or permutation test.

To illustrate the use of node-level index routines within sna, we compute various centrality
indices on a random digraph generated by rgraph. In the case of the Bonacich power measure,
we also illustrate the impact of various decay parameter settings. For comparison, we begin
by showing indegree, outdegree, total degree, closeness, betweenness, stress, Harary’s graph
centrality, eigenvector centrality, and information centrality on the same network:

R> dat <- rgraph(10)

R> degree(dat, cmode = "indegree")

[1] 4 4 8 2 4 5 4 4 3 6

R> degree(dat, cmode = "outdegree")

[1] 6 3 5 2 5 4 4 4 5 6

R> degree(dat)

[1] 10 7 13 4 9 9 8 8 8 12

R> closeness(dat)

[1] 0.7500000 0.5625000 0.6923077 0.5000000 0.6923077 0.6428571 0.6000000
[8] 0.6428571 0.6923077 0.7500000

R> betweenness(dat)

[1] 8.7666667 2.2000000 11.3500000 0.3333333 5.7833333 6.4833333
[7] 2.4500000 2.0333333 2.4166667 8.1833333

R> stresscent(dat)

[1] 21 6 27 1 14 15 6 7 7 21

R> graphcent(dat)

[1] 0.5000000 0.3333333 0.5000000 0.3333333 0.5000000 0.5000000 0.3333333
[8] 0.5000000 0.5000000 0.5000000

R> evcent(dat)

[1] 0.3967806 0.2068905 0.3482775 0.1443617 0.3098004 0.3179091 0.2885521
[8] 0.2734192 0.3642163 0.4121985

22 Social Network Analysis with sna

R> infocent(dat)

[1] 3.712599 3.102093 3.955891 2.695898 3.712425 3.413946 3.094442 3.425508
[9] 3.077481 3.704181

As the above illustrate, the various standard centrality measures differ greatly in scale; they
are, however, generally positively correlated. Other measures, such as the Bonacich power
score (bonpow) have properties which can differ substantially depending on user-specified pa-
rameters. In the case of bonpow, we have already noted that the score’s behavior is controlled
by a decay parameter (set by the exponent argument) which determines the nature and
strength of ego’s dependency upon his or her alters. Simple calculations (shown below) verify
that the bonpow measure is proportional to outdegree when exponent = 0 and is equivalent
to eigenvector centrality when exponent is set to the reciprocal of the first eigenvalue of the
adjacency matrix. bonpow’s most interesting behavior occurs when exponent < 0, expressing
the notion that ego becomes stronger when attached to weak alters (and vice versa). As the
example below illustrates, the behavior of the measure in this case is essentially unrelated
to both eigenvector and degree, reflecting a very different set of assumptions regarding the
underlying social process.

R> bonpow(dat, exponent = 0) / degree(dat, cmode = "outdegree")

[1] 0.2192645 0.2192645 0.2192645 0.2192645 0.2192645 0.2192645 0.2192645
[8] 0.2192645 0.2192645 0.2192645

R> all(abs(bonpow(dat, exponent = 1 / eigen(dat)$values[1], rescale = TRUE) -

+ evcent(dat, rescale = TRUE)) < 1e-10)

[1] TRUE

R> bonpow(dat, exponent = -0.5)

[1] 1.0764391 1.2917269 -0.1230216 0.9534175 0.4613310 0.4920864
[7] 0.4613310 0.9226621 0.3075540 2.1528782

As noted above brokerage requires a vector of group memberships (i.e., vertex states) in
addition to the network itself. Here, we randomly assign vertices to one of three groups, using
the resulting vector to calculate brokerage scores:

R> memb <- sample(1:3, 10, replace = TRUE)

R> summary(brokerage(dat, memb))

Gould-Fernandez Brokerage Analysis

Global Brokerage Properties
t E(t) Sd(t) z Pr(>|z|)

w_I 5.0000 5.8638 2.7314 -0.3162 0.7518

Journal of Statistical Software 23

w_O 25.0000 19.5459 7.0713 0.7713 0.4405
b_IO 18.0000 19.5459 6.2244 -0.2484 0.8039
b_OI 17.0000 19.5459 6.2244 -0.4090 0.6825
b_O 28.0000 23.4551 5.3349 0.8519 0.3943
t 93.0000 87.9565 13.6124 0.3705 0.7110

Individual Properties (by Group)

Group ID: 1
w_I w_O b_IO b_OI b_O t w_I w_O b_IO b_OI

[1,] 3 2 3 5 0 13 2.4874100 0.1931462 0.4058476 1.4190904
[2,] 0 0 1 0 0 1 -0.8042244 -1.1401201 -0.6073953 -1.1140168
[3,] 0 2 4 1 0 7 -0.8042244 0.1931462 0.9124690 -0.6073953
[4,] 0 1 1 3 0 5 -0.8042244 -0.4734869 -0.6073953 0.4058476

b_O t
[1,] -1.186381 0.8682544
[2,] -1.186381 -1.6099084
[3,] -1.186381 -0.3708270
[4,] -1.186381 -0.7838541

Group ID: 2
w_I w_O b_IO b_OI b_O t w_I w_O b_IO b_OI b_O

[1,] 0 3 0 0 2 5 NaN 0.03375725 -0.7426778 -0.7426778 -0.7530719
[2,] 0 6 0 0 10 16 NaN 1.52052825 -0.7426778 -0.7426778 2.4025111

t
[1,] -0.7838541
[2,] 1.4877951

Group ID: 3
w_I w_O b_IO b_OI b_O t w_I w_O b_IO b_OI

[1,] 1 4 6 2 7 20 0.2929871 1.5264125 1.9257119 -0.1007739
[2,] 0 3 2 3 3 11 -0.8042244 0.8597794 -0.1007739 0.4058476
[3,] 1 2 1 2 3 9 0.2929871 0.1931462 -0.6073953 -0.1007739
[4,] 0 2 0 1 3 6 -0.8042244 0.1931462 -1.1140168 -0.6073953

b_O t
[1,] 3.0624213 2.31384939
[2,] 0.6345344 0.45522729
[3,] 0.6345344 0.04220016
[4,] 0.6345344 -0.57734055

Unlike the centrality routines described above, brokerage produces a range of output in
addition to the raw brokerage scores. The first table consists of the observed aggregate
brokerage scores by group for each of the brokerage roles (coordinator (w_I), itinerant broker
(w_O), gatekeeper (b_IO), representative (b_OI), liaison (b_O), and combined (t)), along with
the corresponding expectations, standard deviations, associated z-scores, and p-values under
the Gould-Fernandez random association model (to which the caveats noted earlier apply).
The second set of tables similarly provides the observed brokerage scores and G-F z-scores

24 Social Network Analysis with sna

for each individual, organized by group. It should be noted that very small groups cannot
support certain brokerage roles, and (likewise) certain brokerage roles can only be realized
when a sufficient number of groups are present. z-scores are considered to be undefined when
their associated role preconditions are unmet, and are returned as NaNs.

Graph-level indices

Like node-level indices, graph-level indices are intended to provide succinct numerical sum-
maries of structural properties; in the latter case, however, the properties in question are those
pertaining to global structure. Perhaps the simplest of the GLIs is density, conventionally
defined as the fraction of potentially observable edges which are present within the graph.
Density is computed within sna using the gden function, which returns the density scores for
one or more input graphs (taking into account directedness, loops, and missing data where
applicable). Two more fundamental GLI classes are the reciprocity and transitivity measures,
computed within sna by grecip and gtrans, respectively. By default, grecip returns the
fraction of dyads which are symmetric (i.e., mutual or null) within the input graph(s). It can,
however, be employed to return the fraction of non-null dyads which are symmetric, or the
fraction of reciprocated edges (the “edgewise” reciprocity). All of these correspond to slightly
different notions of reciprocity, and are thus appropriate in somewhat different circumstances.
Likewise, gtrans provides several options for assessing structural transitivity. Of particular
importance is the distinction between transitivity in its strong ((i, j), (j, k) ∈ E ⇔ (i, k) ∈ E,
for (i, j, k) ∈ V) and weak ((i, j), (j, k) ∈ E ⇒ (i, k) ∈ E) forms. Intuitively, weak transitivity
constitutes the notion embodied in the familiar saying that “a friend of a friend is a friend”—
where a two-path exists from i to k, i should also be tied to k directly. Strong transitivity
is akin to a notion of “third party support”: direct ties occur if and only if supported by
an associated two-path. Weak transitivity is preferred for most purposes, although strong
transitivity may be of interest as more strict indicator of local clustering. By default, gtrans
returns the fraction of possible ordered triads which satisfy the appropriate condition (out of
those at risk), although absolute counts of transitive triads can also be obtained.
Another classic family of indices which can be calculated using sna consists of the centralization
scores. Following Freeman (1979), the centralization of graph G with respect to centrality
measure c is given by

C(G) =
|V |∑
i=1

[(
max
v∈V

c (v,G)
)
− c (vi, G)

]
, (1)

i.e. the total deviation from the maximum observed centrality score. This can be usefully
rewritten as

C(G) = |V | [c∗(G)− c̄(G)] , (2)

where c∗(G) = maxv∈V c (v,G) and c̄(G) = 1
|V |
∑|V |

i=1 c (vi, G) are the maximum and mean
centrality scores, respectively. The Freeman centralization index is thus equal to the differ-
ence between the maximum and mean centrality scores, scaled by the number of vertices; its
dimensions are those of the underlying centrality measure. In practice, it is common to work
with the normalized centrality score obtained by dividing C(G) by its maximum across all
graphs of the same order as G. This index is dimensionless, and varies between 0 (for a graph
in which all vertices have the same centrality scores2) and 1 (for a graph of maximum con-

2For instance, when all vertices are automorphically equivalent.

Journal of Statistical Software 25

centration). Generally, maximum centralization scores occur on the star graphs (i.e., K1,n),3

although this is not always the case—eigenvector centralization, for instance, is maximized
for the family K2 ∪ Nn. Within sna, both normalized and raw centralization scores may be
obtained via the centralization function. Arbitrary centrality functions may be passed to
centralization, which are used to generate the underlying score vector; in the normalized
case, the centrality function is asked to return the theoretical maximum deviation, as well.
This is handled transparently for all included centrality functions within sna; the mechanism
may also be employed with user-supplied functions, provided that they supply the required
arguments. Examples are supplied in the sna manual.

In addition to the above, sna includes functions for GLIs such as Krackhardt’s (1994) mea-
sures of informal organization. These indices—supplied respectively by connectedness,
efficiency, hierarchy, and lubness—describe the extent to which the structure of an
input graph approaches that of an outtree. hierarchy can also be used to calculate hierarchy
based on simple reciprocity, as with grecip.

The use of sna’s GLI routines is straightforward; calling with a graph or set thereof generally
results in a vector of GLI scores (as in the following example). Note below the difference
between the default (dyadic) and edgewise reciprocity, the standard and “census” variants of
gtrans, and the various Krackhardt indices. hierarchy defaults to one minus the dyadic
reciprocity (as shown), but other options are available. Similar selective behavior is employed
elsewhere within sna (e.g., prestige).

R> g <- rgraph(10, 5, tprob = c(0.1, 0.25, 0.5, 0.75, 0.9))

R> gden(g)

[1] 0.06666667 0.31111111 0.54444444 0.72222222 0.93333333

R> grecip(g)

[1] 0.8666667 0.3777778 0.4888889 0.6666667 0.8666667

R> grecip(g, measure = "edgewise")

[1] 0.0000000 0.0000000 0.5306122 0.7692308 0.9285714

R> grecip(g) == 1 - hierarchy(g)

[1] TRUE TRUE TRUE TRUE TRUE

R> gtrans(g)

[1] 1.0000000 0.2957746 0.5047619 0.6809651 0.9326923

R> gtrans(g, measure = "weakcensus")

3Kn is the complete graph on n vertices, with Kn,m denoting the complete bipartite graph on n and m
vertices and Nn the null or empty graph on n vertices.

26 Social Network Analysis with sna

[1] 0 21 106 254 582

R> connectedness(g)

[1] 0.4666667 1.0000000 1.0000000 1.0000000 1.0000000

R> efficiency(g)

[1] 1.00000000 0.76543210 0.50617284 0.30864198 0.07407407

R> hierarchy(g, measure = "krackhardt")

[1] 1.0 0.2 0.0 0.0 0.0

R> lubness(g)

[1] 0.2 1.0 1.0 1.0 1.0

centralization’s usage differs somewhat from the above, as it acts as a wrapper for cen-
trality routines (which must be specified, along with any additional arguments). By default,
centralization scores are computed only for a single graph; R’s apply (for arrays) or sapply
(for lists) may be used to calculate scores for multiple graphs at once. Both forms are illus-
trated in the following example:

R> centralization(g, degree, cmode = "outdegree")

[1] 0.1728395

R> centralization(g, betweenness)

[1] 0

R> apply(g, 1, centralization, degree, cmode = "outdegree")

[1] 0.17283951 0.27160494 0.38271605 0.06172840 0.07407407

R> apply(g, 1, centralization, betweenness)

[1] 0.000000000 0.135802469 0.043467078 0.021237507 0.004151969

As noted above, centralization is compatible with any node-level index function which
returns its theoretical maximum deviation when called with tmaxdev = TRUE. Consider, for
instance, the following:

Journal of Statistical Software 27

R> o2scent <- function(dat, tmaxdev = FALSE, ...){

+ n <- NROW(dat)

+ if(tmaxdev)

+ return((n-1) * choose(n-1, 2))

+ odeg <- degree(dat, cmode = "outdegree")

+ choose(odeg, 2)

+ }

R> apply(g, 1, centralization, o2scent)

[1] 0.02160494 0.20370370 0.54012346 0.08950617 0.14506173

Thus, users can employ centralization “for free” when working with their own centrality
routines, so long as they support the required calling argument.

2.4. Connectivity and subgraph statistics

Connectivity, in its most general sense, refers to a range of properties relating to the abil-
ity of one vertex to reach another via traversal of edges. sna has a number of functions
to compute connectivity-related statistics, and to identify associated graph features. Of
these, component.dist is likely the most fundamental. Given one or more input graphs,
component.dist identifies all (maximal) components, and provides associated information
on membership and size distributions. Components may be selected based on standard no-
tions of strong, weak, unilateral, or recursive connectedness (although it should be noted
that unilaterally connected components may not be uniquely defined). The convenience
functions is.connected, components, and component.largest can be used as front-ends
to component.dist, returning (respectively) the connectedness of the graph as a whole, the
number of observed components, and the largest component in the graph. The graph of
pairwise connected vertices (or reachability graph) is returned by reachability, and pro-
vides another means of assessing connectivity. More precise information is contained in the
geodesic distances between vertices, which can be computed (along with numbers of geodesics
between pairs) by geodist. An example of how these concepts may be combined is provided
by Fararo and Sunshine’s (1964) structure statistics. Let G = (V,E) be a (possibly di-
rected) graph of order N , and let d(i, j) be the geodesic distance from vertex i to vertex
j in G. The “structure statistics” of G are then given by the series s0, . . . , sN−1, where
si = N−2

∑N
j=1

∑N
k=1 I(d(j, k) ≤ i) and I is the standard indicator function. Intuitively, si

is the expected fraction of G which lies within distance i of a randomly chosen vertex. As
such, the structure statistics provide a parsimonious description of global connectivity. (They
are also of importance within biased net theory, since analytical results for the expectation
of these statistics exist for certain models. See Fararo (1981, 1983); Skvoretz et al. (2004) for
related results.)

At least since Davis and Leinhardt (1972), social network analysts have recognized the im-
portance of subgraph frequencies as an indicator of underlying structural tendencies. This
theory has been considerably enriched in recent decades (see, e.g., Frank and Strauss 1986;
Pattison and Robins 2002), particularly with respect to the connection between edgewise
dependence conditions and structural biases (see Wasserman and Robins (2005) for an ap-
proachable introduction). It has also been recognized that constraints on properties of small

28 Social Network Analysis with sna

subgraphs have substantial implications for global structure (see, e.g., Faust (2007) and refer-
ences), a connection which also motivates the use of such measures. Most fundamental of the
subgraph statistics are those of the dyad census, i.e., the respective counts of mutual, asym-
metric, and null dyads. The eponymous dyad.census function returns these quantities (with
mutuality returning only the number of mutual dyads). The triad census, or frequencies of
each triadic isomorphism class observed as induced subgraphs of G, is similarly computed by
triad.census. In the undirected case, there are four such classes, versus 16 for the directed
case; it is thus important to specify the directedness of one’s data when employing this routine
(or triad.classify, which can be used to classify specific triads). Similar counts of paths
and cycles may be obtained using kpath.census and kcycle.census. In addition to raw
counts, co-membership and incidence statistics are given by vertex (where requested). Users
should be aware that path and cycle census enumeration are NP-complete problems in the
general case, and hence counts of longer paths or cycles are often impractical. Short (or even
mid-length) cases can usually be calculated for sufficiently sparse graphs, however.
Interpretation of subgraph census statistics is often aided by comparison with baseline models
(Mayhew 1984), as in the case of conditional uniform graph (CUG) tests. The p-value for a
one-tailed CUG test of statistic t for graph G is given by Pr(t(H) ≥ t(G)) or Pr(t(H) ≤ t(G))
(for the upper and lower tests, respectively), where H is a random graph drawn uniformly
given conditioning statistics s(H) = s(G), s′(H) = s′(G), Conditioning on the order
of G is routine; the number of edges, dyad census, and degree distribution are also widely
used. A somewhat weaker family of null distributions are those which satisfy the conditions
Es(H) = s(G),Es′(H) = s′(G), . . . for some s, s′, These are equivalent to the graph distri-
butions arising from the MLE for an exponential random graph model with sufficient statistics
s, s′, . . .—the homogeneous Bernoulli graph with parameter p equal to the density of G is a
trivial example, but more complex families are possible. Within sna, the cugtest wrapper
function can be used to facilitate such comparisons. Using the gliop routine, cugtest can
be used to compare functions of statistics on graph pairs (e.g., difference in triangle counts)
to those expected based on one or more simple null models. (Compare to qaptest, discussed
in Section 2.6.)

Example

To illustrate the use of the above measures, we apply them to draws from a series of biased
net processes. (See Section 2.7 for a discussion of the biased net model.) We begin with a
low-density Bernoulli graph model, adding first reciprocity and then triad formation biases.
As can be seen, varying the types of biases specified within the model alters the nature of the
resulting structures, and hence their subgraph and connectivity properties.

R> g1 <- rgbn(50, 10, param = list(pi = 0, sigma = 0, rho = 0, d = 0.17))

R> apply(dyad.census(g1), 2, mean)

Mut Asym Null
1.00 12.84 31.16

R> apply(triad.census(g1), 2, mean)

003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U
40.16 48.48 3.50 5.52 5.80 9.60 1.94 1.86 1.84 0.72 0.12 0.08 0.08

Journal of Statistical Software 29

120C 210 300
0.30 0.00 0.00

R> g2 <- rgbn(50, 10, param = list(pi = 0.5, sigma = 0, rho = 0, d = 0.17))

R> apply(dyad.census(g2), 2, mean)

Mut Asym Null
8.84 9.26 26.90

R> apply(triad.census(g2), 2, mean)

003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U
25.46 27.28 23.36 1.86 2.40 4.22 8.26 11.46 0.66 0.22 9.34 0.52 0.74
120C 210 300
1.34 2.28 0.60

R> g3 <- rgbn(50, 10, param = list(pi = 0.0, sigma = 0.25, rho = 0, d = 0.17))

R> apply(dyad.census(g3), 2, mean)

Mut Asym Null
8.94 20.44 15.62

R> apply(triad.census(g3), 2, mean)

003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U
4.66 22.62 10.06 4.82 5.00 12.74 10.78 9.02 9.72 2.56 3.26 3.88 3.60
120C 210 300
8.40 7.38 1.50

R> kpath.census(g3[1,,], maxlen = 5, path.comembership = "bylength",

+ dyadic.tabulation = "bylength")$path.count

Agg v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1 35 8 3 9 2 10 9 3 10 8 8
2 119 40 10 47 8 59 47 13 56 39 38
3 346 155 41 180 35 223 185 52 211 149 153
4 791 457 130 504 114 601 527 163 572 425 462
5 1351 964 303 1000 282 1143 1061 375 1104 884 990

R> kcycle.census(g3[1,,], maxlen = 5,

+ cycle.comembership = "bylength")$cycle.count

Agg v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
2 9 2 1 2 0 3 2 0 4 3 1
3 24 7 1 11 0 15 9 2 12 8 7
4 42 16 1 23 2 32 26 3 30 19 16
5 72 39 5 48 8 60 54 10 57 36 43

30 Social Network Analysis with sna

R> component.dist(g3[1,,])

$membership
[1] 1 1 1 1 1 1 1 1 1 1

$csize
[1] 10

$cdist
[1] 0 0 0 0 0 0 0 0 0 1

R> structure.statistics(g3[1,,])

0 1 2 3 4 5 6 7 8 9
0.10 0.45 0.83 0.99 1.00 1.00 1.00 1.00 1.00 1.00

In addition to inspecting graph statistics directly, we can also compare them using conditional
uniform graph tests. Here, for example, we employ the absolute difference in reciprocities as
a test statistic, first testing against a CUG hypothesis conditioning only on order and second
testing against a CUG hypothesis conditioning on both order and density.

R> g4 <- g1[1:2,,]

R> g4[2,,] <- g2[1,,]

R> cug <- cugtest(g4, gliop, cmode = "order", GFUN = grecip, OP = "-",

+ g1 = 1, g2 = 2)

R> summary(cug)

CUG Test Results

Estimated p-values:
p(f(rnd) >= f(d)): 0.299
p(f(rnd) <= f(d)): 0.708

Test Diagnostics:
Test Value (f(d)): 0.04444444
Replications: 1000
Distribution Summary:

Min: -0.3333333
1stQ: -0.06666667
Med: 0
Mean: -0.001288889
3rdQ: 0.06666667
Max: 0.3555556

R> cug <- cugtest(g4, gliop, GFUN = grecip, OP = "-", g1 = 1, g2 = 2)

R> summary(cug)

Journal of Statistical Software 31

CUG Test Results

Estimated p-values:
p(f(rnd) >= f(d)): 0.967
p(f(rnd) <= f(d)): 0.039

Test Diagnostics:
Test Value (f(d)): 0.04444444
Replications: 1000
Distribution Summary:

Min: -0.06666667
1stQ: 0.1555556
Med: 0.2222222
Mean: 0.2215333
3rdQ: 0.2888889
Max: 0.5333333

A broader range of similar Monte Carlo tests can be employed by comparing observed statistics
against those arising from rgbn, rguman, or other included models.

2.5. Position and role analysis

The study of roles and positions is a strong tradition within social network analysis (see, e.g.,
Breiger et al. 1975; Burt 1976; Wasserman and Faust 1994; Doreian et al. 2005), and remains a
popular means of reducing the complexity of large structures. Although many notions of“role”
and “position” have been proposed (see Doreian et al. (2005) for an extensive treatment), the
most widely used is without question structural equivalence. For a simple graph, G, vertex
v is said to be structurally equivalent to vertex v′ iff N(v) \ v′ = N(v′) \ v (i.e., when v
and v′ have the same alters). In the directed case, this same general property (mutatis
mutandis) is required to hold for both in and outneighborhoods. Structurally equivalent
vertices are copies in a graph theoretic sense, and are necessarily identical with respect to all
structural properties; graph permutations which exchange only structural equivalent vertices
are necessarily automorphisms. As a true equivalence relation, structural equivalence divides
a given graph into equivalence classes, which are termed positions. Since all vertices occupying
a given position connect to other positions in precisely the same way, analyses of relations
among positions (via their reduced form blockmodel—see below) can often be used in place
of analyses of relations among vertices. Where non-trivial structural equivalence is present,
this may result in an appreciable reduction in the size of the vertex set.

In practice, exact structural equivalence is fairly rare (isolates and pendants being two im-
portant counterexamples). Nevertheless, one may identify vertices which are approximately
structurally equivalent, in that their neighborhoods are “similar” in some well-defined sense.
Common means of assessing similarity between two vertices are product-moment correlations,
Euclidean distances, Hamming distances, or gamma coefficients applied to their respective
rows and columns within the graph adjacency matrix. Within sna, sedist computes such
indices for all pairs of vertices on one or more input graphs. Once these similarities/differences
are calculated, conventional multivariate data analysis procedures (e.g., hierarchical clustering
or multidimensional scaling) can be used to evaluate the extent of reduction which is possible.

32 Social Network Analysis with sna

This process is facilitated by the function equiv.clust, which is essentially a joint front-end
to R’s built-in hierarchical clustering function (hclust) and various positional distance func-
tions, though it defaults to structural equivalence in particular. Taking a set of user-specified
graphs as input, equiv.clust computes the distances between all pairs of positions using
the selected distance function, and then performs a cluster analysis of the result. The return
value is an object of class equiv.clust, for which various secondary analysis methods exist.

After clustering, the next phase of a positional analysis is frequently blockmodeling. Given a
set of equivalence classes (in the form of an equiv.clust or hclust object, or membership
vector) and one or more graphs, blockmodel will form a blockmodel of the input graph(s)
based on the classes in question, using the specified block content type. A blockmodel can be
thought of as a generalized relational structure on a set of vertex classes. The relationship
between the ith and jth class is said to be the i, jth block, whose content is referred to as its
corresponding block type. (This terminology originates from the observation that permuting
the rows and columns of an adjacency matrix by vertex class can lead to“blocks”of discernible
structure in the permuted matrix. For instance, blocks among structural equivalence classes
are comprised entirely of 1s or 0s, neglecting the diagonal.) Unless a vector of classes is
specified, blockmodel forms its eponymous models by using R’s cutree function to cut an
equivalence by height or number of clusters (as specified). After forming clusters (classes),
the input graphs are reordered by class and blockmodel reduction is applied. Block types
currently supported include quantitative forms such as density (mean value of the cells in the
associated adjacency matrix), row or column sums, cell value descriptives, and categorical
types (e.g., null, 1-covered, etc.). Once a given reduction is performed, the block structure
itself can be analyzed and/or expansion can be used to generate new graphs based on the
image structure.

The primary use of blockmodel expansion (performed using blockmodel.expand) is in gener-
ating simulated draws from a hypothesized blockmodel. Expansion involves generating a new
network from a block image, and thus depends on the block types from which the blockmodel
is composed; at present, only density is supported. For the density block type, expansion
is performed by interpreting the interclass density as an edge probability, and by drawing
random graphs from the Bernoulli parameter matrix formed by expanding the density model.
Thus, repeated calls to blockmodel.expand can be used to generate a sample for Monte Carlo
null hypothesis tests under an inhomogeneous Bernoulli graph model.

Finally, we note that positional analyses have traditionally been closely associated with role
algebras (White 1963; Boyd 1969; Boorman and White 1976), which seek to model empirical
graph structure via the composition of multiple, simpler graphs. Although sna’s support for
such analyses is currently limited, a composition operator, %c%, is available. The composition
G′′ of graphs G and G′ on vertex set V is the graph on V such that (v, v′) ∈ E(G′′) iff
there exists a vertex v′′ such that (v, v′′) ∈ G and (v′′, v′) ∈ G′. (This is equivalent to the
graph formed by the boolean inner product of the graphs’ respective adjacency matrices.) It
should be noted that the composition of two graphs may have loops, even where the original
graphs do not; thus, diagonals should not be neglected when analyzing the results of graph
compositions.

Example

To demonstrate the above routines, we begin by creating an inhomogeneous Bernoulli digraph

Journal of Statistical Software 33

with edge probabilities which are constant by sending vertex. (This is equivalent to drawing
from a p1 model containing only expansiveness and density effects.) We then produce an
equivalence clustering and associated blockmodel, ultimately using the blockmodel to produce
a new graph. As demonstrated, new graphs produced in this way need not be of the same
order as the original; this is useful when simulating a hypothetical case in which individual
actors may have entered or left a network without changing the underlying group structure.

R> g.p <- sapply(runif(20, 0, 1), rep, 20)

R> g <- rgraph(20, tprob = g.p)

R> eq <- equiv.clust(g)

R> b <- blockmodel(g, eq, h = 15)

R> g.e <- blockmodel.expand(b, rep(2, length(b$rlabels)))

R> g.e

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 1 1 0 0 1 0 0 1 1 1
[2,] 0 0 1 1 0 0 1 1 0 1 1 1
[3,] 0 0 0 0 1 1 1 1 0 0 0 0
[4,] 0 0 1 0 1 1 1 1 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 1 1 0 0
[6,] 0 1 1 0 0 0 1 0 1 1 0 0
[7,] 0 0 1 1 0 1 0 1 1 1 0 1
[8,] 0 0 1 1 0 0 1 0 0 1 0 1
[9,] 0 0 0 1 1 1 0 1 0 0 0 0
[10,] 0 0 1 1 0 1 1 1 1 0 1 1
[11,] 0 0 0 0 0 0 1 1 0 0 0 1
[12,] 0 1 1 1 0 0 0 1 0 0 1 0

2.6. Exploratory edge set comparison

One important alternative to graph comparison using structural indices or subgraph statistics
is direct comparison of edge sets. Within this general paradigm (see Hubert (1987); Krack-
hardt (1987a, 1988); Banks and Carley (1994); Butts and Carley (2005); Butts (2007) for
examples), comparison is based on establishing a matching between the edges of one graph
and the edges of another, leading to a measure of correspondence between the two. In the
simplest case of multiple graphs on the same vertex set, the matching in question may be be-
tween those edges having the same (ordered) endpoints. One natural correspondence measure
is then the Hamming distance, i.e., the number of edge changes needed to take one graph into
the other. Another useful measure is Hubert’s Γ, or the uncentered product-moment between
the two sets of edge variables. For appropriate transformations of the original data, Γ can
be interpreted as the correlation or covariance between the edge variable sets; when entire
adjacency matrices are compared in this way, the result is known as the graph correlation or
graph covariance (respectively). For a directed graph pair G,H, for instance, the latter is
given by

cov(G,H) =

∑
(i,j)

(
AG

ij − µG

)(
AH

ij − µH

)
|V | (|V | − 1)

(3)

34 Social Network Analysis with sna

where AG,AH are the respective adjacency matrices of G and H, and
µX = (|V | (|V | − 1))−1∑

(i,j)A
X
ij is the graph mean. The graph variance is then cov(G,G),

and the graph correlation ρ(G,H) = cov(G,H)/
√

cov(G,G)cov(H,H). Within sna, graph
correlations and covariances can be obtained by using gcor and gcov, respectively. Hamming
distances for graph sets can be similarly obtained using hdist.

The above situation becomes more complex when there is not a unique matching between
edge sets. (Butts and Carley 2005) provide a family of generalizations for these cases, which
they term structural distances/covariances. These measures are based on maximizing the
correspondence between edge sets, under a set of permissible matchings; this results in a
decomposition of the total distance/covariance into that which is attributable to fixed aspects
of the structure (the structural component), versus that which depends on the (potentially
variable) matching (the “labeling” component). sna provides tools to obtain approximate
structural comparison measures, using heuristic optimization methods to seek an optimal
matching. The analogs to hdist in this regard are structdist and sdmat, and those to gcor
and gcov are gscor and gscov. For optimal matching for arbitrary bivariate statistics on
graphs of identical order, the lab.optimize routines can also be employed. Several methods
are supported, of which the default (simulated annealing) seems to be the most effective in
practice.

Given a set of distances among graphs, analysis can then proceed using standard R tools
for exploratory multivariate analysis such as cmdscale and hclust. Functionality specific to
sna includes centralgraph (which returns the graph minimizing the Hamming distance to
all graphs in the input set), gclust.boxstats (which shows distributions of graph statistics
based on a hierarchical clustering of networks), gclust.centralgraph (which returns the cen-
tral graphs for each element of a network clustering solution), gdist.plotdiff (which plots
distances between networks against differences in their properties), and gdist.plotstats
(which displays a metric MDS of networks, with star-like figures showing graph-level covari-
ates for each structure). Similarly, network principal component analysis (Butts and Carley
2001) can be trivially implemented by the application of eigen to a graph covariance or corre-
lation matrix. The ability to make use of standard tools for exploratory multivariate analysis
is thus a salutary aspect of this approach.

In addition to these general tools, specific functions are available for OLS network regression
(netlm), logistic network regression (netlogit), and network canonical correlation analysis
(netcancor). These models assume multiple edge sets taken from the same set of vertices, so
that there is a 1:1 mapping between edge variables across networks. In this case, the models in
question are exactly analogous to their conventional (non-network) equivalents, applied to the
set of vectorized adjacency matrices (as with gvectorize). The primary difference between
the net* versions of these analyses and standard routines is the availability of more specialized
diagnostic and testing mechanisms. Of particular note is support for various QAP (Hubert
1987) null hypotheses, which test the observed correspondence between graphs against the
distribution of statistics arising from random reallocation of individuals to structural positions
(i.e., permutation or relabeling). Simple QAP tests for bivariate network statistics (e.g.,
graph correlation) can also be performed using the stand-alone qaptest function. Some
CUG null hypotheses are also available, where conditioning on the entire observed structure
is inappropriate.

Journal of Statistical Software 35

Example

We begin our demonstration of the sna edge set comparison routines with the simple case
of graph correlation. The following illustrates the use of both simple graph correlations and
structural correlations. Note that the unlabeled correlation between g.2 and g.3 here is
1 (since the graphs are isomorphic), but the value returned by gscor may sometimes be
less than 1. This is because gscor defaults to its heuristic annealing method when seeking
the structural correlation, and this method does not always identify the global maximum.
Exact results can be guaranteed using exhaustive search (method="exhaustive"), but the
computational expense of this method is prohibitive for graphs of moderate to large size; see
the sna manual for additional options and details.

R> g.1 <- rgraph(5)

R> g.2 < -rgraph(5)

R> g.3 <- rmperm(g.2)

R> gcor(g.1, g.2)

[1] -0.1336306

R> gcor(g.1, g.3)

[1] 0.08908708

R> gcor(g.2, g.3)

[1] -0.4583333

R> gscor(g.1, g.2, reps = 1e5)

[1] 0.5345225

R> gscor(g.1, g.3, reps = 1e5)

[1] 0.5345225

R> gscor(g.2, g.3, reps = 1e5)

[1] 1

Going beyond graph correlations, netlm allows us to relate multiple networks in an intuitive
manner:

R> x <- rgraph(20, 4)

R> y <- x[1,,] + 4 * x[2,,] + 2 * x[3,,]

R> nl <- netlm(y, x)

R> summary(nl)

36 Social Network Analysis with sna

OLS Network Model

Residuals:
0% 25% 50% 75% 100%

-2.136676e-13 -6.547650e-16 5.123264e-16 1.345843e-15 7.075165e-14

Coefficients:
Estimate Pr(<=b) Pr(>=b) Pr(>=|b|)

(intercept) -1.467115e-14 0.000 1.000 0.000
x1 1.000000e+00 1.000 0.000 0.000
x2 4.000000e+00 1.000 0.000 0.000
x3 2.000000e+00 1.000 0.000 0.000
x4 -7.553990e-16 0.369 0.631 0.756

Residual standard error: 1.169e-14 on 375 degrees of freedom
Multiple R-squared: 1 Adjusted R-squared: 1
F-statistic: 3.65e+30 on 4 and 375 degrees of freedom, p-value: 0

Test Diagnostics:

Null Hypothesis: qap
Replications: 1000
Coefficient Distribution Summary:

(intercept) x1 x2 x3 x4
Min -2.6048970 -2.9689678 -3.5940257 -2.9888472 -1.5687343
1stQ -0.6779707 -0.6739579 -0.6980733 -0.7469624 -0.9732831
Median -0.0841683 -0.0090468 0.0003289 -0.0116757 -0.4346029
Mean -0.0256936 -0.0249585 -0.0161372 -0.0055288 -0.0080178
3rdQ 0.6930508 0.6393521 0.6352920 0.7064120 0.8601390
Max 2.5434373 2.7231537 3.0464596 3.6938260 1.6294713

As noted earlier, OLS network regression is problematic when the dependent graph is un-
valued. In this case, netlogit may be preferred. Its usage is directly analogous, as in the
following example.

R> x <- rgraph(20, 4)

R> y.l <- x[1,,] + 4 * x[2,,] + 2 * x[3,,]

R> y.p <- apply(y.l, c(1, 2), function(a){1 / (1 + exp(-a))})

R> y <- rgraph(20, tprob = y.p)

R> nl <- netlogit(y, x)

R> summary(nl)

Network Logit Model

Coefficients:

Journal of Statistical Software 37

Estimate Exp(b) Pr(<=b) Pr(>=b) Pr(>=|b|)
(intercept) 0.3077180 1.3603173 0.680 0.320 0.503
x1 0.9411361 2.5628914 0.985 0.015 0.019
x2 4.1473292 63.2648084 1.000 0.000 0.000
x3 1.8630911 6.4436238 1.000 0.000 0.000
x4 -0.1757242 0.8388493 0.318 0.682 0.642

Goodness of Fit Statistics:

Null deviance: 526.7919 on 380 degrees of freedom
Residual deviance: 174.1572 on 375 degrees of freedom
Chi-Squared test of fit improvement:

352.6347 on 5 degrees of freedom, p-value 0
AIC: 184.1572 BIC: 203.8580
Pseudo-R^2 Measures:

(Dn-Dr)/(Dn-Dr+dfn): 0.481324
(Dn-Dr)/Dn: 0.6694004

Contingency Table (predicted (rows) x actual (cols)):

0 1
0 0 0
1 39 341

Total Fraction Correct: 0.8973684
Fraction Predicted 1s Correct: 0.8973684
Fraction Predicted 0s Correct: NaN
False Negative Rate: 0
False Positive Rate: 1

Test Diagnostics:

Null Hypothesis: qap
Replications: 1000
Distribution Summary:

(intercept) x1 x2 x3 x4
Min -1.253710 -1.160806 -1.270806 -1.295749 -1.252300
1stQ -0.215404 -0.236393 -0.229377 -0.278976 -0.250322
Median 0.078514 0.022337 -0.001591 -0.020205 0.001053
Mean 0.093105 0.025854 0.004520 -0.017570 -0.002262
3rdQ 0.408121 0.269836 0.239821 0.236166 0.252251
Max 1.704128 1.408468 1.214650 1.100783 1.533500

It may be noted that, in this case, the model diagnostics indicate that the model is not terribly
effective at predicting the absence of ties – this is largely a consequence of the high density
in the dependent graph (approximately 0.90), and is analogous to the usual challenge of
predicting rare events with a logistic regression model. Nevertheless, we see that the model’s

38 Social Network Analysis with sna

parameter estimates are quite close to the true values, and that the QAP test correctly
identifies the irrelevant predictors.

2.7. Network inference and process models

A final category of functions supplied by sna are those implementing various network infer-
ence and process models. Although the package still contains a legacy function for fitting
simple exponential random graph models via maximum pseudo-likelihood methods (pstar),
it is strongly recommended that users employ the more modern tools of the ergm package
for this purpose; there are several other models, however, for which sna provides functional-
ity not found elsewhere in statnet. Perhaps foremost among these are tools for conducting
network inference, i.e., estimation of the structure of an unknown network from noisy and/or
incomplete data (Butts 2003). Several classical methods of this type are implemented by
the consensus function, which returns the estimate of an unknown graph from a series of
observed graphs. Methods supported include data analytic tools such as locally-aggregated
structure (Krackhardt 1987a) and central graph (Banks and Carley 1994) estimators, as well
as model-based approaches such as the consensus model of Batchelder and Romney (1988).
The latter is based on the assumption that each data source has a base chance to “know”
and correctly generate the true value of an edge on which they report, otherwise producing a
“guess” based on a (possibly biased) Bernoulli trial. These competency and bias parameters
are treated as source-level fixed effects, and the latter may be omitted if desired; estimation
is by maximum likelihood. A related class of models is supported by the bbnam family of
routines, which implements the methods of Butts (2003). The edge reporting process is in
this case parameterized in terms of false positive and false negative error rates, which may
be fixed at the source level, pooled, or given as known. Estimation is fully Bayesian, with
error rate priors (where applicable) specified as beta distributions, and graph priors specified
in inhomogeneous Bernoulli form. It should be noted that the likelihood of the reporting
process assumed by the (Butts 2003) model can be reparameterized to match that of the
(Batchelder and Romney 1988) model for cases in which the sum of false positive and false
negative rates is less than 1; the two approaches differ primarily in their prior structure, and in
the former’s allowance for negatively informative reports (e.g., due to systematic deception).
bbnam returns draws from the joint posterior distribution of the true graph and error param-
eters (where applicable) using a multiple-chain Gibbs sampler. The potential scale reduction
measure of Gelman and Rubin (1992) (in the simplified form of Gelman et al. 1995) can be
applied via potscalered.mcmc to assess convergence, and bbnam.bf supports basic model
comparison using approximate Bayes factors. Draws from the model can be used directly, or
used to construct point estimates; the helper function npostpred can be employed to easily
obtain posterior predictive graph properties from a set of posterior draws.

Also supported by sna are the methods for estimating biased net parameters shown by
Skvoretz et al. (2004). The biased net model stems from early work by Rapoport, who
sought to model network structure via a hypothetical “tracing” process. This process may be
described loosely as follows. One begins with a small “seed” set of vertices, each member of
which is assumed to nominate (generate ties to) other members of the population with some
fixed probability. These members, in turn, may nominate new members of the population, as
well as members who have already been reached. Such nominations may be “biased” in one
fashion or another, leading to a non-uniform growth process. Specifically, let eij be the ran-
dom event that vertex i nominates vertex j when reached. Then the conditional probability

Journal of Statistical Software 39

of eij is given by Pr(eij |T) = 1−
(
1−Pr(Be)

)∏
k

(
1−Pr(Bk)

)sk(i,j,T) where T is the current
state of the trace, Be is the Bernoulli event corresponding to the baseline probability of eij ,
and the Bk are “bias events” (of which sk have potentially occurred for the (i, j) directed
dyad). Bias events are taken to be independent Bernoulli trials, given T , such that eij is
observed with certainty if any bias event occurs. The specification of a biased net model,
then, involves defining the various bias events (which, in turn, influence the structure of the
network). The joint graph distribution under such a model is not in general known; as such,
estimation for model parameters (bias event probabilities) is currently heuristic. bn currently
implements the maximum pseudo-likelihood estimators of Skvoretz et al. (2004), as well as a
method of moments estimator based on the expected triad census (also proposed by Skvoretz
et al.). Heuristic goodness-of-fit statistics are provided, as well as asymptotic goodness-of-fit
tests for dyad and triad statistics.

While much attention in social network analysis is directed to structural properties per se,
we may also consider models for the effect of structure on individual attributes. The linear
network autocorrelation models (see Doreian (1990), and Cliff and Ord (1973); Anselin (1988)
for the equivalent class of spatial autocorrelation models) constitute one important family of
processes which are often used for this purpose. These models are of the form

y =

(
w∑

i=1

θiWi

)
y + Xβ + ε, (4)

ε =

(
z∑

i=1

ψiZi

)
ε+ ν, (5)

where y ∈ Rn is a vector of responses, X ∈ Rn×x is a covariate matrix, W ∈ Rw×n×n and
Z ∈ Rz×n×n are interaction arrays, β ∈ Rx, θ ∈ Rw, and ψ ∈ Rz are free parameters, and
ν ∼ Norm(0, σ2) is a vector of iid disturbances. Z and ψ combine to form a network moving
average (MA) term, which expresses the extent to which disturbances diffuse through the
network. Analogously, W and θ describe autocorrelation structure in the responses (net-
work AR effects). Pragmatically, the distinction between the two effect types is the latter’s
inclusion of impact from neighbors’ covariate scores—an AR term implies that each individ-
ual’s response depends on that of their neighbors (including all covariate, disturbance, and
higher-order neighborhood effects), while an MA term implies that conditional dependence
between responses is limited to deviations from the expectation. It is thus possible to specify
AR and MA effects in isolation, as well as jointly. Within sna, the lnam function performs
maximum likelihood estimation for network autocorrelation models. To aid in identifying
appropriate weight matrices for use with lnam, sna also supplies a function (nacf) for com-
putation of sample network autocorrelation and autocovariance functions. nacf can compute
correlations/covariances for partial and complete in-, out-, and combined neighborhoods of
various orders, as well as autocorrelation indices such as Moran’s I (Moran 1950) and Geary’s
C (Geary 1954). Prior inspection of network autocorrelation functions can aid in proposing
weight matrices for subsequent evaluation (in analogy to similar heuristics within the time
series literature; see, e.g. Brockwell and Davis 1991). Functions such as sedist can also be
used to construct matrices based on other structural properties (e.g., structural equivalence);
see Leenders (2002) for a useful discussion.

40 Social Network Analysis with sna

Example

To demonstrate the use of sna’s network inference procedures, we begin by creating a fictitious
data set in which we are given reports regarding the state of the network (g) from 20 error-
prone informants. As a fairly realistic test case, we take the informants’ false positive rates
(ep) to be beta distributed with a mean of 0.038, and their false negative rates (em) to be
likewise beta distributed with a mean of 0.375 (about ten times higher). We then subject this
data to bbnam, employing some fairly generic priors. Specifically, we employ an uninformative
network prior (specified by pnet), and identical beta(2, 11) priors for all error rates. The
summary function for the returned network describes the resulting posterior properties, along
with various diagnostics.

R> g <- rgraph(20)

R> ep <- rbeta(20, 1, 25)

R> em <- rbeta(20, 15, 25)

R> dat <- array(dim = c(20, 20, 20))

R> for(i in 1:20)

+ dat[i,,] <- rgraph(20, 1, tprob = (g * (1 - em[i]) + (1 - g) * ep[i]))

R> pnet <- matrix(0.5, ncol = 20, nrow = 20)

R> pem <- matrix(nrow = 20, ncol = 2)

R> pem[,1] <- 2

R> pem[,2] <- 11

R> pep <- matrix(nrow = 20, ncol = 2)

R> pep[,1] <- 2

R> pep[,2] <- 11

R> b <- bbnam(dat, model = "actor", nprior = pnet, emprior = pem,

+ epprior = pep, burntime = 300, draws = 100)

R> summary(b)

Butts' Hierarchical Bayes Model for Network Estimation/Informant Accuracy

Multiple Error Probability Model

Marginal Posterior Network Distribution:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
a1 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
a2 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00
a3 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00
a4 0.01 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
a5 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00
a6 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.18 1.00 0.00 0.00 1.00
a7 1.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00
a8 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00
a9 0.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00
a11 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00
a12 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Journal of Statistical Software 41

a13 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
a14 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
a15 1.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
a16 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
a17 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00
a18 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00
a19 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
a20 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

a16 a17 a18 a19 a20
a1 1.00 1.00 1.00 0.00 0.00
a2 1.00 0.00 0.00 1.00 1.00
a3 0.00 0.00 1.00 0.00 1.00
a4 0.00 1.00 0.00 1.00 1.00
a5 1.00 1.00 0.00 0.00 1.00
a6 0.00 0.00 0.00 1.00 0.00
a7 1.00 0.00 0.00 0.00 0.00
a8 0.00 0.00 1.00 0.00 1.00
a9 1.00 1.00 1.00 1.00 0.00
a10 0.00 1.00 1.00 1.00 0.00
a11 1.00 1.00 0.00 1.00 1.00
a12 1.00 0.00 1.00 1.00 0.00
a13 0.00 0.00 1.00 0.00 1.00
a14 0.00 0.00 0.00 0.00 0.00
a15 1.00 0.00 1.00 0.00 1.00
a16 0.00 0.00 1.00 0.00 0.00
a17 0.00 0.00 1.00 0.00 1.00
a18 0.00 0.00 0.00 1.00 0.00
a19 0.00 0.00 0.00 0.00 1.00
a20 1.00 1.00 1.00 1.00 0.00

Marginal Posterior Global Error Distribution:

e^- e^+
Min 0.1443951 0.0004238
1stQ 0.3126975 0.0167584
Median 0.3678306 0.0294646
Mean 0.3783663 0.0493688
3rdQ 0.4423027 0.0574099
Max 0.6909116 0.2262239

Marginal Posterior Error Distribution (by observer):

Probability of False Negatives (e^-):

Min 1stQ Median Mean 3rdQ Max
o1 0.3132 0.3599 0.3798 0.3864 0.4073 0.5071
o2 0.2613 0.2944 0.3115 0.3187 0.3419 0.3995

42 Social Network Analysis with sna

o3 0.4148 0.4724 0.4937 0.4948 0.5213 0.5649
o4 0.2511 0.3075 0.3246 0.3257 0.3448 0.4085
o5 0.1814 0.2417 0.2681 0.2678 0.2887 0.3434
o6 0.2881 0.3531 0.3761 0.3766 0.4046 0.4488
o7 0.2395 0.3028 0.3211 0.3244 0.3449 0.3951
o8 0.1444 0.2011 0.2209 0.2212 0.2398 0.2922
o9 0.3708 0.4358 0.4529 0.4578 0.4787 0.5503
o10 0.3210 0.3724 0.3967 0.3982 0.4259 0.4751
o11 0.3064 0.3847 0.4093 0.4109 0.4371 0.5007
o12 0.2367 0.3132 0.3354 0.3349 0.3607 0.4455
o13 0.3534 0.4144 0.4386 0.4382 0.4600 0.5337
o14 0.2438 0.2985 0.3235 0.3229 0.3452 0.4184
o15 0.2585 0.3299 0.3510 0.3519 0.3706 0.4704
o16 0.2502 0.3298 0.3481 0.3509 0.3699 0.4268
o17 0.1759 0.2273 0.2488 0.2503 0.2668 0.3372
o18 0.3959 0.4468 0.4646 0.4710 0.4922 0.5812
o19 0.4944 0.5736 0.6007 0.5975 0.6189 0.6909
o20 0.3737 0.4433 0.4631 0.4671 0.4916 0.5607

Probability of False Positives (e^+):

Min 1stQ Median Mean 3rdQ Max
o1 0.0195433 0.0397919 0.0490722 0.0510872 0.0585109 0.1069030
o2 0.1067928 0.1395067 0.1555455 0.1569023 0.1714084 0.2262239
o3 0.0084268 0.0165518 0.0224858 0.0236948 0.0293221 0.0551761
o4 0.0712109 0.1047058 0.1137249 0.1180402 0.1320136 0.1723854
o5 0.0034994 0.0103378 0.0150617 0.0169536 0.0212638 0.0468961
o6 0.0004238 0.0040509 0.0068522 0.0082363 0.0098606 0.0279960
o7 0.0061597 0.0136434 0.0192100 0.0207973 0.0266508 0.0484633
o8 0.0072124 0.0204896 0.0260316 0.0282562 0.0350608 0.0593586
o9 0.0804463 0.1092987 0.1213202 0.1246571 0.1372326 0.1935724
o10 0.0065188 0.0135991 0.0194675 0.0223006 0.0278075 0.0594150
o11 0.0173415 0.0358252 0.0445098 0.0464278 0.0551955 0.0828446
o12 0.0185894 0.0416346 0.0499440 0.0516976 0.0573815 0.1202316
o13 0.0029818 0.0108936 0.0155202 0.0170049 0.0209790 0.0401566
o14 0.0044849 0.0108034 0.0166631 0.0178764 0.0226294 0.0486647
o15 0.0084143 0.0199868 0.0271149 0.0290795 0.0355966 0.0606914
o16 0.0009067 0.0078736 0.0124531 0.0139218 0.0187929 0.0455700
o17 0.0066611 0.0216195 0.0273388 0.0290307 0.0346110 0.0691573
o18 0.0846863 0.1344580 0.1508170 0.1485688 0.1628176 0.2036186
o19 0.0037608 0.0117982 0.0171030 0.0179751 0.0225298 0.0466090
o20 0.0214701 0.0348032 0.0433397 0.0448676 0.0516594 0.0936080

MCMC Diagnostics:

Replicate Chains: 5
Burn Time: 300

Journal of Statistical Software 43

Draws per Chain: 20 Total Draws: 100
Potential Scale Reduction (G&R's sqrt(Rhat)):

Max: 1.003116
Med: 0.9992194
IQR: 0.0004545115

R> cor(em, apply(b$em, 2, median))

[1] 0.9187894

R> cor(ep, apply(b$ep, 2, median))

[1] 0.971649

R> mean(apply(b$net, c(2, 3), median) == g)

[1] 1

Although the priors do not reflect the true error distribution, bbnam still does a good job of
pinning down the error rates (and the network itself, which is actually somewhat easier to
estimate in many cases). In practice, the bbnam model is fairly robust to choice of priors,
so long as the error rate priors do not put a large degree of mass on the “perverse” region
for which em + ep > 1. Multiple actors whose error rates satisfy this condition with high
probability in the posterior, or posterior graph distributions which are strongly multimodal,
can be indicators either of excessively “perverse” priors or of extreme disagreement among
informants (e.g., as would result from systematic deception). Either possibility warrants a
re-examination of both the user’s modeling assumptions and of the data itself.

Having obtained a Bayesian point estimate, we can also evaluate the performance of various
classical network estimators. The consensus function allows us to calculate several, including
the union and intersection LAS, central graph, and Romney-Batchelder model:

R> mean(consensus(dat, method = "LAS.intersection") == g)

[1] 0.7725

R> mean(consensus(dat, method = "LAS.union") == g)

[1] 0.905

R> mean(consensus(dat, method = "central.graph") == g)

[1] 0.9575

R> mean(consensus(dat, method = "romney.batchelder") == g)

44 Social Network Analysis with sna

Estimated competency scores:
[1] 0.5384305 0.5152780 0.4482434 0.5333154 0.7128820 0.5920044 0.6278100
[8] 0.7532642 0.3863239 0.5535066 0.5120474 0.6065419 0.5147395 0.6447705
[15] 0.6046575 0.6121955 0.7115359 0.3448647 0.3351731 0.4501279
Estimated bias parameters:
[1] 0.13137940 0.35170786 0.06013660 0.28684742 0.09962490 0.04767398
[7] 0.08915006 0.15302781 0.22559772 0.07431412 0.11489655 0.15412247
[13] 0.05894590 0.08052288 0.09550557 0.06195760 0.14675686 0.24625026
[19] 0.04302486 0.10195838
[1] 1

For this scenario, the intersection LAS is an especially poor choice (since it exacerbates the
effects of false negatives); the central graph and Romney-Batchelder models are far better.
The performance of the central graph will degrade quickly, however, when either false positive
or false negative rates approach or exceed 0.5. The two likelihood-based methods (bbnam and
Romney-Batchelder) can still be quite robust in such such cases, provided that total error
rates (false positive plus false negative) are less than 1.

As a final example of sna’s model-based methods, we here illustrate the use of lnam to fit a
linear network autocorrelation model. We show in this case an example which includes both
AR and MA components, estimating both effects simultaneously. (This example requires the
numDeriv package.)

R> w1 <- rgraph(50)

R> w2 <- rgraph(50)

R> x <- matrix(rnorm(50 * 5), 50, 5)

R> r1 <- 0.2

R> r2 <- 0.3

R> sigma <- 0.1

R> beta <- rnorm(5)

R> nu <- rnorm(50, 0, sigma)

R> e <- qr.solve(diag(50) - r2 * w2, nu)

R> y <- qr.solve(diag(50) - r1 * w1, x %*% beta + e)

R> fit <- lnam(y, x, w1, w2)

R> summary(fit)

Call:
lnam(y = y, x = x, W1 = w1, W2 = w2)

Residuals:
Min 1Q Median 3Q Max

-0.52052 -0.18305 0.01156 0.15557 0.62082

Coefficients:
Estimate Std. Error Z value Pr(>|z|)

X1 -0.331259 0.010831 -30.58 <2e-16 ***
X2 0.535608 0.009448 56.69 <2e-16 ***
X3 -0.685068 0.007138 -95.98 <2e-16 ***

Journal of Statistical Software 45

X4 0.691812 0.008417 82.19 <2e-16 ***
X5 0.016491 0.007890 2.09 0.0366 *
rho1.1 0.194935 0.002575 75.71 <2e-16 ***
rho2.1 0.307491 0.021167 14.53 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Estimate Std. Error
Sigma 0.09597 9.22e-05

Goodness-of-Fit:
Residual standard error: 0.2913 on 43 degrees of freedom (w/o Sigma)
Multiple R-Squared: 0.96, Adjusted R-Squared: 0.9534
Model log likelihood: 58.47 on 42 degrees of freedom (w/Sigma)
AIC: -100.9 BIC: -85.65

Null model: meanstd
Null log likelihood: -82.48 on 48 degrees of freedom
AIC: 169.0 BIC: 172.8
AIC difference (model versus null): 269.9
Heuristic Log Bayes Factor (model versus null): 258.4

In addition to the above diagnostics, plot(fit) produces residual plots and a “net influence
plot” which depicts the total influence of each vertex on each other vertex in network form;
(i, j) pairs for which i’s net influence on j is estimated to be at least two standard deviations
greater than the mean net influence are designated by green edges, while corresponding pairs
for which i’s net influence on j is estimated to be at least two standard deviations lower (i.e.,
more negative) than the mean net influence are designated by red edges. Sample output for
the above example is provided in Figure 6.

3. Closing comments

The methodological literature on social network analysis is large and growing, and no one
package can hope to implement all known measures and techniques. sna provides a collection
of routines which is diverse, and which covers many of the methods currently seeing wide
use within the field. Together with the other packages of the statnet ensemble, it is hoped
that the inclusion of such tools within a freely available, widely used statistical computing
platform will help further the integration of network analytic methods with more conventional
approaches to modern data analysis.

Acknowledgments

The author would like to thank the many persons who have contributed to sna in some fashion,
including (but not limited to) David Barron, Matthijs den Besten, Alex Montgomery, David
Krackhardt, David Dekker, Kurt Hornik, Ulrik Brandes, Mark S. Handcock, and the statnet

46 Social Network Analysis with sna

−3 −2 −1 0 1 2

−3
−2

−1
0

1
2

Fitted vs. Observed Values

y

ŷ

−3 −2 −1 0 1 2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Fitted Values vs. Estimated Disturbances

ŷ

ν̂

−2 −1 0 1 2

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Residual Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Net Influence Plot

Figure 6: Plot method output for lnam.

team. This paper is based upon work supported by National Institutes of Health award 5
R01 DA012831-05, subaward 918197, and by NSF award IIS-0331707.

References

Anselin L (1988). Spatial Econometrics: Methods and Models. Kluwer, Norwell, MA.

Banks D, Carley KM (1994). “Metric Inference for Social Networks.” Journal of Classification,
11(1), 121–149.

Batagelj V, Mrvar A (2007). Pajek: Package for Large Network Analysis. University of
Ljubljana, Slovenia. URL http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

Batchelder WH, Romney AK (1988). “Test Theory Without an Answer Key.” Psychometrika,
53(1), 71–92.

Bonacich P (1987). “Power and Centrality: A Family of Measures.” American Journal of
Sociology, 92, 1170–1182.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Journal of Statistical Software 47

Boorman SA, White HC (1976). “Social Structure from Multiple Networks II. Role Struc-
tures.” American Journal of Sociology, 81, 1384–1446.

Borgatti SP (2007). NetDraw: Network Visualization Software. Version 2.067, URL http:
//www.analytictech.com/.

Borgatti SP, Carley K, Krackhardt D (2006). “Robustness of Centrality Measures Under
Conditions of Imperfect Data.” Social Networks, 28, 124–136.

Borgatti SP, Everett MG, Freeman LC (1999). UCINET 6.0 for Windows: Software for
Social Network Analysis. Analytic Technologies, Natick. URL http://www.analytictech.
com/.

Boyd JP (1969). “The Algebra of Group Kinship.” Journal of Mathematical Psychology, 6,
139–167.

Brandes U, Erlebach T (eds.) (2005). Network Analysis: Methodological Foundations.
Springer-Verlag, Berlin.

Brandes U, Kenis P, Wagner D (2003). “Communicating Centrality in Policy Network Draw-
ings.” IEEE Transactions on Visualization and Computer Graphics, 9(2), 241–253.

Breiger RL, Boorman SA, Arabie P (1975). “An Algorithm for Clustering Relational Data with
Applications to Social Network Analysis and Comparison with Multidimensional Scaling.”
Journal of Mathematical Psychology, 12, 323–383.

Brockwell PJ, Davis RA (1991). Time Series: Theory and Methods. Springer-Verlag, New
York, second edition.

Burt RS (1976). “Positions In Networks.” Social Forces, 55, 93–122.

Burt RS (1991). STRUCTURE. Columbia University. Software package version 4.2, URL
http://faculty.chicagogsb.edu/ronald.burt/teaching/.

Butts CT (2003). “Network Inference, Error, and Informant (In)Accuracy: A Bayesian Ap-
proach.” Social Networks, 25(2), 103–140.

Butts CT (2007). “Permutation Models for Relational Data.” Sociological Methodology, 37,
257–281.

Butts CT, Carley KM (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Center for the Computational Analysis of Social and Organization Systems,
Carnegie Mellon University.

Butts CT, Carley KM (2005). “Some Simple Algorithms for Structural Comparison.” Com-
putational and Mathematical Organization Theory, 11(4), 291–305.

Butts CT, Handcock MS, Hunter DR (2007). network: Classes for Relational Data. Statnet
Project http://statnetproject.org/, Seattle, WA. R package version 1.3, URL http:
//CRAN.R-project.org/package=network.

Butts CT, Pixley JE (2004). “A Structural Approach to the Representation of Life History
Data.” Journal of Mathematical Sociology, 28(2), 81–124.

http://www.analytictech.com/
http://www.analytictech.com/
http://www.analytictech.com/
http://www.analytictech.com/
http://faculty.chicagogsb.edu/ronald.burt/teaching/
http://statnetproject.org/
http://CRAN.R-project.org/package=network
http://CRAN.R-project.org/package=network

48 Social Network Analysis with sna

Cliff AD, Ord JK (1973). Spatial Autocorrelation. Pion, London.

Davis JA, Leinhardt S (1972). “The Structure of Positive Interpersonal Relations in Small
Groups.” In J Berger (ed.), “Sociological Theories in Progress, Volume 2,” pp. 218–251.
Houghton Mifflin, Boston.

Dodds PS, Watts DJ, Sabel CF (2003). “Information Exchange and the Robustness of Organi-
zational Networks.” Proceedings of the National Academy of Sciences, 100(2), 12516–12521.

Doreian P (1990). “Network Autocorrelation Models: Problems and Prospects.” In IDA
Griffith (ed.), “Spatial Statistics: Past, Present, and Future,” pp. 369–389. Institute of
Mathematical Geography, Ann Arbor.

Doreian P, Batagelj V, Ferlioj A (2005). Generalized Blockmodeling. Cambridge University
Press, Cambridge.

Fararo TJ (1981). “Biased Networks and Social Structure Theorems. Part I.” Social Networks,
3, 137–159.

Fararo TJ (1983). “Biased Networks and the Strength of Weak Ties.” Social Networks, 5,
1–11.

Fararo TJ, Sunshine MH (1964). A Study of a Biased Friendship Net. Youth Development
Center, Syracuse, NY.

Faust K (2007). “Very Local Structure in Social Networks.” Sociological Methodology, 37,
209–256.

Frank O, Strauss D (1986). “Markov Graphs.” Journal of the American Statistical Association,
81(395), 832–842.

Freeman LC (1979). “Centrality in Social Networks: Conceptual Clarification.” Social Net-
works, 1(3), 223–258.

Freeman LC (2004). The Development of Social Network Analysis: A Study in the Sociology
of Science. Empirical Press, Vancouver.

Fruchterman TMJ, Reingold EM (1991). “Graph Drawing by Force-directed Placement.”
Software – Practice and Experience, 21(11), 1129–1164.

Geary R (1954). “The Contiguity Ratio and Spatial Mapping.” The Incorporated Statistician,
5, 115–145.

Gelman A, Carlin JB, Stern HS, Rubin DB (1995). Bayesian Data Analysis. Chapman &
Hall/CRC, London.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7, 457–511.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier
L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C,
Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang

Journal of Statistical Software 49

J (2004). “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome Biology, 5, R80. URL http://genomebiology.com/2004/5/10/
R80/.

Gilks WR, Richardson S, Spiegelhalter DJ (eds.) (1996). Markov Chain Monte Carlo in
Practice. Chapman & Hall/CRC, New York.

Gould R, Fernandez R (1989). “Structures of Mediation: A Formal Approach to Brokerage
in Transaction Networks.” Sociological Methodology, 19, 89–126.

Hall KM (1970). “An r-dimensional Quadratic Placement Algorithm.” Management Science,
17, 219–229.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003). statnet: Soft-
ware Tools for the Statistical Modeling of Network Data. Statnet Project http:
//statnetproject.org/, Seattle, WA. R package version 2.0, URL http://CRAN.
R-project.org/package=statnet.

Holland PW, Leinhardt S (1970). “A Method for Detecting Structure in Sociometric Data.”
American Journal of Sociology, 70, 492–513.

Hubert LJ (1987). Assignment Methods in Combinatorial Data Analysis. Marcel Dekker,
New York.

Huisman M, van Duijn MAJ (2003). “StOCNET: Software for the Statistical Analysis of
Social Networks.” Connections, 25(1), 7–26.

Ingram P, Roberts PW (2000). “Friendships Among Competitors in the Sydney Hotel Indus-
try.” American Journal of Sociology, 106, 387–423.

Kamada T, Kawai S (1989). “An Algorithm for Drawing General Undirected Graphs.” Infor-
mation Processing Letters, 31(1), 7–15.

Koenker R, Ng P (2007). SparseM: Sparse Linear Algebra. R package version 0.73, URL
http://CRAN.R-project.org/package=SparseM.

Krackhardt D (1987a). “Cognitive Social Structures.” Social Networks, 9(2), 109–134.

Krackhardt D (1987b). “QAP Partialling as a Test of Spuriousness.” Social Networks, 9(2),
171–186.

Krackhardt D (1988). “Predicting with Networks: Nonparametric Multiple Regression Anal-
yses of Dyadic Data.” Social Networks, 10, 359–382.

Krackhardt D (1994). “Graph Theoretical Dimensions of Informal Organizations.” In KM Car-
ley, MJ Prietula (eds.), “Computational Organizational Theory,” pp. 88–111. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Krackhardt D, Blythe J, McGrath C (1994). “KrackPlot 3.0: An Improved Network Drawing
Program.” Connections, 17(2), 53–55.

Leenders TTAJ (2002). “Modeling Social Influence Through Network Autocorrelation: Con-
structing the Weight Matrix.” Social Networks, 24(1), 21–47.

http://genomebiology.com/2004/5/10/R80/
http://genomebiology.com/2004/5/10/R80/
http://statnetproject.org/
http://statnetproject.org/
http://CRAN.R-project.org/package=statnet
http://CRAN.R-project.org/package=statnet
http://CRAN.R-project.org/package=SparseM

50 Social Network Analysis with sna

Marsden PV (2005). “Recent Developments in Network Measurement.” In PJ Carrington,
J Scott, S Wasserman (eds.), “Models and Methods in Social Network Analysis,” chapter 2,
pp. 8–30. Cambridge University Press, Cambridge.

Mayhew BH (1984). “Baseline Models of Sociological Phenomena.” Journal of Mathematical
Sociology, 9, 259–281.

Moran PAP (1950). “Notes on Continuous Stochastic Phenomena.” Biometrika, 37, 17–23.

Pattison P, Robins GL (2002). “Neighbourhood-Based Models for Social Networks.” Socio-
logical Methodology, 32, 301–337.

Rapoport A (1957). “A Contribution to the Theory of Random and Biased Nets.” Bulletin
of Mathematical Biophysics, 15, 523–533.

R Development Core Team (2007). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
Version 2.6.1, URL http://www.R-project.org/.

Richards WD, Seary AJ (2006). MultiNet for Windows. Version 4.75, URL http://www.
sfu.ca/~richards/Multinet/Pages/multinet.htm.

Romney AK, Weller SC, Batchelder WH (1986). “Culture as Consensus: A Theory of Culture
and Informant Accuracy.” American Anthropologist, 88(2), 313–338.

Sabidussi G (1966). “The Centrality Index of a Graph.” Psychometrika, 31, 581–603.

Shimbel A (1953). “Structural Parameters of Communication Networks.” Bulletin of Mathe-
matical Biophysics, 15, 501–507.

Skvoretz J, Fararo TJ, Agneessens F (2004). “Advances in Biased Net Theory: Definitions,
Derivations, and Estimations.” Social Networks, 26, 113–139.

Snijders TAB (2001). SIENA: Simulation Investigation for Empirical Network Analysis.
Version 3.1, URL http://stat.gamma.rug.nl/snijders/siena.html.

Snijders TAB (2002). “Markov Chain Monte Carlo Estimation of Exponential Random Graph
Models.” Journal of Social Structure, 3(2).

Stallman RM (2002). Free Software, Free Society: Selected Essays of Richard M. Stallman.
GNU Press/Free Software Foundation, Boston, MA.

Stephenson K, Zelen M (1989). “Rethinking Centrality: Methods and Applications.” Social
Networks, 11, 1–37.

Stokman FN, Van Veen FJAM (1981). GRADAP, Graph Definition and Analysis Pack-
age User’s Manual. Interuniversity Project Group GRADAP, University of Amsterdam-
Gröningen-Nijmegen. URL http://www.assess.com/.

Wasserman S, Robins G (2005). “An Introduction to Random Graphs, Dependence Graphs,
and p∗.” In PJ Carrington, J Scott, S Wasserman (eds.), “Models and Methods in Social
Network Analysis,” chapter 10, pp. 192–214. Cambridge University Press, Cambridge.

http://www.R-project.org/
http://www.sfu.ca/~richards/Multinet/Pages/multinet.htm
http://www.sfu.ca/~richards/Multinet/Pages/multinet.htm
http://stat.gamma.rug.nl/snijders/siena.html
http://www.assess.com/

Journal of Statistical Software 51

Wasserman SS, Faust K (1994). Social Network Analysis: Methods and Applications. Struc-
tural Analysis in the Social Sciences. Cambridge University Press, Cambridge.

Watts DJ, Strogatz SH (1998). “Collective Dynamics of ‘Small-World’ Networks.” Nature,
393, 440–442.

West DB (1996). Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ.

White HC (1963). An Anatomy of Kinship. Englewood Cliffs, NJ, Prentice Hall.

Affiliation:

Carter T. Butts
Department of Sociology and Institute for Mathematical Behavioral Sciences
University of California, Irvine
Irvine, CA 92697-5100, United States of America
E-mail: buttsc@uci.edu
URL: http://www.faculty.uci.edu/profile.cfm?faculty_id=5057

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 24, Issue 6 Submitted: 2007-06-01
February 2008 Accepted: 2007-12-25

mailto:buttsc@uci.edu
http://www.faculty.uci.edu/profile.cfm?faculty_id=5057
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction and overview
	Package history
	sna and statnet
	Functionality
	Terminology and data representation
	Importing relational data into R

	Package highlights
	Random graph generation
	Example

	Visualization and data manipulation
	Neighborhood and ego net functions
	Visualization

	Descriptive indices
	Node-level indices
	Graph-level indices

	Connectivity and subgraph statistics
	Example

	Position and role analysis
	Example

	Exploratory edge set comparison
	Example

	Network inference and process models
	Example

	Closing comments

