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Abstract

Mining frequent itemsets and association rules is a popular and well researched approach
for discovering interesting relationships between variables in large databases. The R package
arules presented in this paper provides a basic infrastructure for creating and manipulating
input data sets and for analyzing the resulting itemsets and rules. The package also includes
interfaces to two fast mining algorithms, the popular C implementations of Apriori and Eclat
by Christian Borgelt. These algorithms can be used to mine frequent itemsets, maximal
frequent itemsets, closed frequent itemsets and association rules.

1 Introduction

Mining frequent itemsets and association rules is a popular and well researched method for discov-
ering interesting relations between variables in large databases. |Piatetsky-Shapiro (1991)) describes
analyzing and presenting strong rules discovered in databases using different measures of inter-
est. Based on the concept of strong rules, |Agrawal, Imielinski, and Swami| (1993) introduced the
problem of mining association rules from transaction data as follows:

Let T = {i1,i2,...,in} be a set of n binary attributes called items. Let D = {t1,ta,...,tm} be a
set of transactions called the database. Each transaction in D has an unique transaction ID and
contains a subset of the items in I. A rule is defined as an implication of the form X = Y where
X,Y C I and X NY = (. The sets of items (for short itemsets) X and Y are called antecedent
(left-hand-side or LHS) and consequent (right-hand-side or RHS) of the rule.

To illustrate the concepts, we use a small example from the supermarket domain. The set of items
is I = {milk, bread, butter, beer} and a small database containing the items is shown in Figure
An example rule for the supermarket could be {milk, bread} = {butter} meaning that if milk and
bread is bought, customers also buy butter.

To select interesting rules from the set of all possible rules, constraints on various measures of
significance and interest can be used. The best-known constraints are minimum thresholds on
support and confidence. The support supp(X) of an itemset X is defined as the proportion of
transactions in the data set which contain the itemset. In the example database in Figure [1| the
itemset {milk, bread} has a support of 2/5 = 0.4 since it occurs in 40% of all transactions (2 out
of 5 transactions).

transaction ID | items
1 milk, bread
2 bread, butter
3 beer
4 milk, bread, butter
5 bread, butter

Figure 1: An example supermarket database with five transactions.



Finding frequent itemsets can be seen as a simplification of the unsupervised learning problem
called “mode finding” or “bump hunting” (Hastie, Tibshirani, and Friedman| 2001). For these
problems each item is seen as a variable. The goal is to find prototype values so that the probability
density evaluated at these values is sufficiently large. However, for practical applications with
a large number of variables, probability estimation will be unreliable and computationally too
expensive. This is why in practice frequent itemsets are used instead of probability estimation.

The confidence of a rule is defined conf(X = Y) = supp(X UY)/supp(X). For example, the rule
{milk, bread} = {butter} has a confidence of 0.2/0.4 = 0.5 in the database in Figure |1 which
means that for 50% of the transactions containing milk and bread the rule is correct. Confidence
can be interpreted as an estimate of the probability P(Y|X), the probability of finding the RHS
of the rule in transactions under the condition that these transactions also contain the LHS (see
e.g., Hipp, Giintzer, and Nakhaeizadeh 2000)).

Association rules are required to satisfy both a minimum support and a minimum confidence con-
straint at the same time. At medium to low support values, often a great number of frequent
itemsets are found in a database. However, since the definition of support enforces that all subsets
of a frequent itemset have to be also frequent, it is sufficient to only mine all maximal frequent
itemsets, defined as frequent itemsets which are not proper subsets of any other frequent item-
set (Zaki, Parthasarathy, Ogihara, and Li |1997b). Another approach to reduce the number of
mined itemsets is to only mine frequent closed itemsets. An itemset is closed if no proper superset
of the itemset is contained in each transaction in which the itemset is contained (Pasquier, Bastide,
Taouil, and Lakhal, (1999; Zaki, 2004). Frequent closed itemsets are a superset of the maximal
frequent itemsets. Their advantage over maximal frequent itemsets is that in addition to yielding
all frequent itemsets, they also preserve the support information for all frequent itemsets which
can be important for computing additional interest measures after the mining process is finished
(e.g., confidence for rules generated from the found itemsets, or all-confidence (Omiecinskil 2003)).
A practical solution to the problem of finding too many association rules satisfying the support and
confidence constraints is to further filter or rank found rules using additional interest measures.
A popular measure for this purpose is lift (Brin, Motwani, Ullman, and Tsur, [1997). The lift of a
rule is defined as lift(X = Y) = supp(X UY)/(supp(X)supp(Y)), and can be interpreted as the
deviation of the support of the whole rule from the support expected under independence given
the supports of the LHS and the RHS. Greater lift values indicate stronger associations.

In the last decade, research on algorithms to solve the frequent itemset problem has been abundant.
Goethals and Zaki (2004) compare the currently fastest algorithms. Among these algorithms are
the implementations of the Apriori and Eclat algorithms by [Borgelt| (2003) interfaced in the arules
environment. The two algorithms use very different mining strategies. Apriori, developed by
Agrawal and Srikant| (1994), is a level-wise, breadth-first algorithm which counts transactions.
In contrast, Eclat (Zaki et al., [1997b)) employs equivalence classes, depth-first search and set
intersection instead of counting. The algorithms can be used to mine frequent itemsets, maximal
frequent itemsets and closed frequent itemsets. The implementation of Apriori can additionally
be used to generate association rules.

This paper presents arules, an extension package for R (R Development Core Team), [2005) which
provides the infrastructure needed to create and manipulate input data sets for the mining algo-
rithms and for analyzing the resulting itemsets and rules. Since it is common to work with large
sets of rules and itemsets, the package uses sparse matrix representations to minimize memory
usage. The infrastructure provided by the package was also created to explicitly facilitate exten-
sibility, both for interfacing new algorithms and for adding new types of interest measures and
associations.

The rest of the paper is organized as follows: In the next section, we give an overview of the
data structures implemented in the package arules. In Section [2] we introduce the functionality
of the classes to handle transaction data and associations. In Section [3] we describe the way
mining algorithms are interfaced in arules using the available interfaces to Apriori and Eclat as
examples. In Section[4 we present some auxiliary methods for support counting, rule induction and
sampling available in arules. We provide several examples in Section [5| The first two examples
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Figure 2: UML class diagram (see [Fowler| [2004) of the arules package.

show typical R sessions for preparing, analyzing and manipulating a transaction data set, and
for mining association rules. The third example demonstrates how arules can be extended to
integrate a new interest measure. Finally, the fourth example shows how to use sampling in order
to speed up the mining process. We conclude with a summary of the features and strengths of the
package arules as a computational environment for mining association rules and frequent itemsets.

2 Data structure overview

To enable the user to represent and work with input and output data of association rule mining
algorithms in R, a well-designed structure is necessary which can deal in an efficient way with
large amounts of sparse binary data. The S4 class structure implemented in the package arules is
presented in Figure

For input data the classes transactions and tidLists (transaction ID lists, an alternative way to
represent transaction data) are provided. The output of the mining algorithms comprises the
classes itemsets and rules representing sets of itemsets or rules, respectively. Both classes directly
extend a common virtual class called associations which provides a common interface. In this
structure it is easy to add a new type of associations by adding a new class that extends associations.

Items in associations and transactions are implemented by the itemMatrix class which provides a
facade for the sparse matrix implementation dgCMatrix from the R package Matrix (Bates and
Maechler}, [2005).

To control the behavior of the mining algorithms, the two classes ASparameter and AScontrol are
used. Since each algorithm can use additional algorithm-specific parameters, we implemented for
each interfaced algorithm its own set of control classes. We used the prefix ‘AP’ for Apriori and ‘EC’
for Eclat. In this way, it is easy to extend the control classes when interfacing a new algorithm.
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Figure 3: Example of a collection of itemsets represented as a binary incidence matrix.

2.1 Representing collections of itemsets

From the definition of the association rule mining problem we see that transaction databases
and sets of associations have in common that they contain sets of items (itemsets) together with
additional information. For example, a transaction in the database contains a transaction ID and
an itemset. A rule in a set of mined association rules contains two itemsets, one for the LHS and
one for the RHS, and additional quality information, e.g., values for various interest measures.

Collections of itemsets used for transaction databases and sets of associations can be represented
as binary incidence matrices with columns corresponding to the items and rows corresponding to
the itemsets. The matrix entries represent the presence (1) or absence (0) of an item in a particular
itemset. An example of a binary incidence matrix containing itemsets for the example database
in Figure [T] on Page [I] is shown in Figure [3] Note that we need to store collections of itemsets
with possibly duplicated elements (identical rows), i.e, itemsets containing exactly the same items.
This is necessary, since a transaction database can contain different transactions with the same
items. Such a database is still a set of transactions since each transaction also contains a unique
transaction ID.

Since a typical frequent itemset or a typical transaction (e.g., a supermarket transaction) only
contains a small number of items compared to the total number of available items, the binary
incidence matrix will in general be very sparse with many items and a very large number of rows.
A natural representation for such data is a sparse matrix format. For our implementation we
chose the dgCMatrix class defined in package Matrix. The dgCMatrix is a compressed, sparse,
column-oriented matrix which contains the indices of the non-zero rows, the pointers to the initial
indices of elements in each column and the non-zero elements of the matrix. Since package Matrix
does not provide efficient subset selection functionality which directly works on the dgCMatrix
data structure, we implemented a suitable function in C and interfaced it as the subset selection
method ([). Despite the column orientation of the dgCMatrix, it is more convenient to work with
incidence matrices which are row-oriented. This makes the most important manipulation, selecting
a subset of transactions from a data set for mining, more comfortable and efficient. Therefore, we
implemented the class itemMatrix providing a row-oriented facade to the dgCMatrix which stores
a transposed incidence matrixﬂ At this level also the constraint that the incidence matrix is
binary (and not real valued as the dgCMatrix) is enforced. In sparse representation the following
information needs to be stored for the collection of itemsets in Figure[3} A vector of indices of the
non-zero elements (row-wise starting with the first row) 1,2,2,4,1,2, 3,3 and the pointers 1, 3,5, 8
where each row starts in the index vector. The first two pointers indicate that the first row starts
with element one in the index vector and ends with element 2 (since with element 3 already the
next row starts). The first two elements of the index vector represent the items in the first row
which are 4; and io or milk and bread, respectively. The two vectors are stored in the dgCMatrix.
Note that indices for the dgCMatrix start with zero rather than with one and thus actually the
vectors 0,1,1,3,0,3,3 and 0, 3,4, 7 are stored. However, the data structure of the dgCMatrix class

1Note that the developers of package Matrix recently started adding support for a sparse row-oriented format
and for sparse logical matrices. The classes are defined, but the available functionality currently is rather minimal.
Once all required functionality is implemented, arules will switch the internal representation to sparse row-oriented
logical matrices.



is not intended to be directly accessed by the end user of arules. The interfaces of itemMatrix
can be used without knowledge of how the internal representation of the data works. However,
if necessary, the dgCMatrix can be directly accessed by developers to add functionality to arules
(e.g., to develop new types of associations or interest measures or to efficiently compute a distance
matrix between itemsets for clustering). In this case, the dgCMatrix should be accessed using the
coercion mechanism from itemMatrix to dgCMatrix via as ().

In addition to the sparse matrix, itemMatrix stores item labels (e.g., names of the items) and
handles the necessary mapping between the item label and the corresponding column number in
the incidence matrix. Optionally, itemMatrix can also store additional information on items. For
example, the category hierarchy in a supermarket setting can be stored which enables the analyst
to select only transactions (or as we later see also rules and itemsets) which contain items from a
certain category (e.g., all dairy products).

For itemMatrix, basic matrix operations including dim() and subset selection ([) are available. The
first element of dim() and [ corresponds to itemsets or transactions (rows), the second element
to items (columns). For example, on a transaction data set in variable x the subset selection
‘x[1:10, 16:20]’ selects a matrix containing the first 10 transactions and items 16 to 20.

Since itemMatrix is used to represent sets or collections of itemsets additional functionality is
provided. length() can be used to get the number of itemsets in an itemMatrix. Technically,
length() returns the number of rows in the matrix which is equal to the first element returned
by dim(). Identical itemsets can be found with duplicated(), and duplications can be removed
with unique (). match() can be used to find matching elements in two collections of itemsets.

With c(), several itemMatrix objects can be combined by successively appending the rows of
the objects, i.e., creating a collection of itemsets which contains the itemsets from all itemMatrix
objects. This operation is only possible if the itemMatrix objects employed are “compatible,” i.e.,
if the matrices have the same number of columns and the items are in the same order. If two
objects contain the same items (item labels), but the order in the matrix is different or one object
is missing some items, recode () can be used to make them compatible by reordering and inserting
columns.

To get the actual number of items in the itemsets stored in the itemMatrix, size() is used. It
returns a vector with the number of items (ones) for each element in the set (row sum in the
matrix). Obtaining the sizes from the sparse representations is a very efficient operation, since it
can be calculated directly from the vector of column pointers in the dgCMatrix. For a purchase
incidence matrix, size () will produce a vector as long as the number of transactions in the matrix
with each element of the vector containing the number of items in the corresponding transaction.
This information can be used, e.g., to select or filter unusually long or short transactions.

itemFrequency() calculates the frequency for each item in an itemMatrix. Conceptually, the
item frequencies are the column sums of the binary matrix. Technically, column sums can be
implemented for sparse representation efficiently by just tabulating the vector of row numbers
of the non-zero elements in the dgCMatrix. Item frequencies can be used for many purposes.
For example, they are needed to compute interest measures. itemFrequency() is also used by
itemFrequencyPlot () to produce a bar plot of item count frequencies or support. Such a plot
gives a quick overview of a set of itemsets and shows which are the most important items in terms
of occurrence frequency.

Coercion from and to matrix and list primitives is provided where names and dimnames are used as
item labels. For the coercion from itemMatrix to list there are two possibilities. The usual coercion
via as() results in a list of vectors of character strings, each containing the item labels of the
items in the corresponding row of the itemMatrix. The actual conversion is done by LIST() with
its default behavior (argument decode set to TRUE). If in turn LIST() is called with the argument
decode set to FALSE, the result is a list of integer vectors with column numbers for items instead
of the item labels. For many computations it is useful to work with such a list and later use
the item column numbers to go back to the original itemMatrix for, e.g., subsetting columns. For
subsequently decoding column numbers to item labels, decode () is also available.
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Figure 4: Example of a set of transactions represented in (a) horizontal layout and in (b) vertical
layout.

Finally, image () can be used to produce a level plot of an itemMatrix which is useful for quick
visual inspection. For transaction data sets (e.g., point-of-sale data) such a plot can be very helpful
for checking whether the data set contains structural changes (e.g., items were not offered or out-
of-stock during part of the observation period) or to find abnormal transactions (e.g., transactions
which contain almost all items may point to recording problems). Spotting such problems in the
data can be very helpful for data preparation.

2.2 Transaction data

The main application of association rules is for market basket analysis where large transaction
data sets are mined. In this setting each transaction contains the items which were purchased
at one visit to a retail store (see e.g., Berry and Linoff, [1997)). Transaction data are normally
recorded by point-of-sale scanners and often consists of tuples of the form:

< transaction ID,item ID,... >

All tuples with the same transaction ID form a single transaction which contains all the items
given by the item IDs in the tuples. Additional information denoted by the ellipsis dots might be
available. For example, a customer ID might be provided via a loyalty program in a supermarket.
Further information on transactions (e.g., time, location), on the items (e.g., category, price), or
on the customers (socio-demographic variables such as age, gender, etc.) might also be available.

For mining, the transaction data is first transformed into a binary purchase incidence matrix with
columns corresponding to the different items and rows corresponding to transactions. The matrix
entries represent the presence (1) or absence (0) of an item in a particular transaction. This format
is often called the horizontal database layout (Zaki, |2000). Alternatively, transaction data can
be represented in a wvertical database layout in the form of ¢ransaction ID lists (Zaki, |2000). In
this format for each item a list of IDs of the transactions the item is contained in is stored. In
Figure [4] the example database in Figure[I]on Page[I]is depicted in horizontal and vertical layouts.
Depending on the algorithm, one of the layouts is used for mining. In arules both layouts are
implemented as the classes transactions and tidLists. Similar to transactions, class tidLists also uses
a sparse representation to store its lists efficiently. Objects of classes transactions and tidLists can
be directly converted into each other by coercion.

The class transactions directly extends itemMatrix and inherits its basic functionality (e.g., subset
selection, getting itemset sizes, plotting item frequencies). In addition, transactions has a slot to
store further information for each transaction in form of a data.frame. The slot can hold arbitrary
named vectors with length equal to the number of stored transactions. In arules the slot is currently
used to store transaction IDs, however, it can also be used to store user IDs, revenue or profit, or



other information on each transaction. With this information subsets of transactions (e.g., only
transactions of a certain user or exceeding a specified profit level) can be selected.

Objects of class transactions can be easily created by coercion from matrix or list. If names or
dimnames are available in these data structures, they are used as item labels or transaction IDs,
accordingly. To import data from a file, the read.transactions() function is provided. This
function reads files structured as shown in Figure [4] and also the very common format with one
line per transaction and the items separated by a predefined character. Finally, inspect() can
be used to inspect transactions (e.g., “interesting” transactions obtained with subset selection).

Another important application of mining association rules has been proposed by [Piatetsky-Shapiro
(1991) and Srikant and Agrawal (1996) for discovering interesting relationships between the values
of categorical and quantitative (metric) attributes. For mining associations rules, non-binary
attributes have to be mapped to binary attributes. The straightforward mapping method is to
transform the metric attributes into k ordinal attributes by building categories (e.g., an attribute
income might be transformed into a ordinal attribute with the three categories: “low”, “medium”
and “high”). Then, in a second step, each categorical attribute with k categories is represented by k
binary dummy attributes which correspond to the items used for mining. An example application
using questionnaire data can be found in|[Hastie et al.| (2001) in the chapter about association rule
mining.

The typical representation for data with categorical and quantitative attributes in R is a data.frame.
First, a domain expert has to create useful categories for all metric attributes. This task is
supported in R by functions such as cut(). The second step, the generation of binary dummy
items, is automated in package arules by coercing from data.frame to transactions. In this process,
the original attribute names and categories are preserved as additional item information and can
be used to select itemsets or rules which contain items referring to a certain original attributes. By
default it is assumed that missing values do not carry information and thus all of the corresponding
dummy items are set to zero. If the fact that the value of a specific attribute is missing provides
information (e.g., a respondent in an interview refuses to answer a specific question), the domain
expert can create for the attribute a category for missing values which then will be included in
the transactions as its own dummy item.

The resulting transactions object can be mined and analyzed the same way as market basket data,
see the example in Section [5.1

2.3 Associations: itemsets and sets of rules

The result of mining transaction data in arules are associations. Conceptually, associations are sets
of objects describing the relationship between some items (e.g., as an itemset or a rule) which have
assigned values for different measures of quality. Such measures can be measures of significance
(e.g., support), or measures of interest (e.g., confidence, lift), or other measures (e.g., revenue
covered by the association).

All types of association have a common functionality in arules comprising the following methods:

e summary () to give a short overview of the set and inspect () to display individual associa-
tions,

e length() for getting the number of elements in the set,

e items() for getting for each association a set of items involved in the association (e.g., the
union of the items in the LHS and the RHS for each rule),

e sorting the set using the values of different quality measures (SORT()),
e subset extraction ([ and subset()),

e set operations (union(), intersect () and setequal()), and



e matching elements from two sets (match()).

The associations currently implemented in package arules are sets of itemsets (e.g., used for fre-
quent itemsets of their closed or maximal subset) and sets of rules (e.g., association rules). Both
classes, itemsets and rules, directly extend the virtual class associations and provide the function-
ality described above.

Class itemsets contains one itemMatrix object to store the items as a binary matrix where each row
in the matrix represents an itemset. In addition, it may contain transaction ID lists as an object of
class tidLists. Note that when representing transactions, tidLists store for each item a transaction
list, but here store for each itemset a list of transaction IDs in which the itemset appears. Such
lists are currently only returned by eclat ().

Class rules consists of two itemMatrix objects representing the left-hand-side (LHS) and the right-
hand-side (RHS) of the rules, respectively.

The items in the associations and the quality measures can be accessed and manipulated in a
safe way using accessor and replace methods for items, lhs, rhs, and quality. In addition the
association classes have built-in validity checking which ensures that all elements have compatible
dimensions.

It is simple to add new quality measures to existing associations. Since the quality slot holds
a data.frame, additional columns with new quality measures can be added. These new measures
can then be used to sort or select associations using SORT() or subset(). Adding a new type of
associations to arules is straightforward as well. To do so, a developer has to create a new class
extending the virtual associations class and implement the common functionality described above.

3 Mining algorithm interfaces

In package arules we interface free reference implementations of Apriori and Eclat by Christian
Borgelt (Borgelt and Kruse, [2002; Borgelt| [2003). The code is called directly from R by the
functions apriori() and eclat() and the data objects are directly passed from R to the C code
and back without writing to external files. The implementations can mine frequent itemsets, and
closed and maximal frequent itemsets. In addition, apriori() can also mine association rules.

The data given to the apriori() and eclat() functions have to be transactions or something
which can be coerced to transactions (e.g., matrix or list). The algorithm parameters are divided
into two groups represented by the arguments parameter and control. The mining parameters
(parameter) change the characteristics of the mined itemsets or rules (e.g., the minimum support)
and the control parameters (control) influence the performance of the algorithm (e.g., enable or
disable initial sorting of the items with respect to their frequency). These arguments have to be
instances of the classes APparameter and APcontrol for the function apriori() or ECparameter
and ECcontrol for the function eclat(), respectively. Alternatively, data which can be coerced
to these classes (e.g., NULL which will give the default values or a named list with names equal
to slot names to change the default values) can be passed. In these classes, each slot specifies a
different parameter and the values. The default values are equal to the defaults of the stand-alone
C programs (Borgelt), |2004)) except that the standard definition of the support of a rule (Agrawal
et al} [1993) is employed for the specified minimum support required (Borgelt defines the support
of a rule as the support of its antecedent).

For apriori() the appearance feature implemented by Christian Borgelt can also be used. With
argument appearance of function apriori() one can specify which items have to or must not
appear in itemsets or rules. For more information on this feature we refer to the Apriori man-
ual (Borgelt], 2004)).

The output of the functions apriori() and eclat() is an object of a class extending associations

which contains the sets of mined associations and can be further analyzed using the functionality
provided for these classes.



There exist many different algorithms which which use an incidence matrix or transaction ID
list representation as input and solve the frequent and closed frequent itemset problems. Each
algorithm has specific strengths which can be important for very large databases. Such algorithms,
e.g. kDCI, LCM, FP-Growth or Patricia, are discussed in |Goethals and Zaki (2003). The source
code of most algorithms is available on the internet and, if a special algorithm is needed, interfacing
the algorithms for arules is straightforward. The necessary steps are:

1. Adding interface code to the algorithm, preferably by directly calling into the native imple-
mentation language (rather than using files for communication), and an R function calling
this interface.

2. Implementing extensions for ASparameter and AScontrol.

4 Auxiliary functions

In arules several helpful functions are implemented for support counting, rule induction, sampling,
etc. In the following we will discuss some of these functions.

4.1 Counting support for itemsets

Normally, itemset support is counted during mining the database with a given minimum support
constraint. During this process all frequent itemsets plus some infrequent candidate itemsets are
counted (or support is determined by other means). Especially for databases with many items
and for low minimum support values, this procedure can be extremely time consuming since in
the worst case, the number of frequent itemsets grows exponentially in the number of items.

If only the support information for a single or a few itemsets is needed, we might not want to mine
the database for all frequent itemsets. We also do not know in advance how high (or low) to set
the minimum support to still get the support information for the itemsets in question.

For this problem, arules contains support () which determines the support for a set of given sets of
items (as an itemMatrix) by means of transaction ID set intersection (using tidLists). Transaction
ID set intersection is used by several fast mining algorithms (e.g., by Eclat (Zaki et al., [1997b)).
The support of an itemset is determined by intersecting the transaction ID sets of its subsets. In
the simplest case the transaction IDs for all items in an itemset are intersected. The support count
is then the size of the intersection set.

In addition to determining the support of a few itemsets without mining all frequent itemsets,
support () is also useful for finding the support of infrequent itemsets with a support so low that
mining is infeasible due to combinatorial explosion.

4.2 Rule induction

For convenience we introduce X = {X1, X, ..., X;} for sets of itemsets with length . Analogously,
we write R for sets of rules. A part of the association rule mining problem is the generation (or
induction) of a set of rules R from a set of frequent itemsets X. The implementation of the
Apriori algorithm used in arules already contains a rule induction engine and by default returns
the set of association rules of the form X = Y which satisfy given minimum support and minimum
confidence. Following the definition of |Agrawal et al.|(1993) Y is restricted to single items.

In some cases it is necessary to separate mining itemsets and generating rules from itemsets. For
example, only rules stemming from a subset of all frequent itemsets might be of interest to the
user. The Apriori implementation efficiently generates rules by reusing the data structures built
during mining the frequent itemsets. However, if Apriori is used to return only itemsets or Eclat
or some other algorithm is used to mine itemsets, the data structure needed for rule induction is
no longer available for computing rule confidence.



If rules need to be induced from an arbitrary set of itemsets, support values required to calculate
confidence are typically missing. For example, if all available information is an itemset containing
five items and we want to induce rules, we need the support of the itemset (which we might
know), but also the support of all subsets of length four. The missing support information has
to be counted from the database. Finally, to induce rules efficiently for a given set of itemsets,
we also have to store support values in a suitable data structure which allows fast look-ups for
calculating rule confidence.

Function ruleInduction() provided in arules reuses the counting mechanism, the data structure
and the rule induction engine of the C implementation of Apriori to induce rules for a given
confidence from an arbitrary set of itemsets X in the following way:

1. Reduce the database to only the items which occur in &,
2. determine the lowest support of an itemset in X,

3. reuse the implementation of Apriori to mine the set of all rules R from the reduced database
using the given confidence and the lowest itemset support found above,

4. remove the rules from R which can not be generated from the itemsets in X.

Note that in the rule filtering step the set of items in each mined rule in R has to be matched
against the items in each itemset in X'. This procedure can take a considerable amount of time,
especially, if set X’ contains many disjoint itemsets. In this case a large number of rules containing
items from different itemsets in X will be generated and have to be filtered. However, if only a
small number of distinct items occurs in X', ruleInduction() is reasonably fast.

4.3 Sampling from transactions

Taking samples from large databases for mining is a powerful technique which is especially useful
if the original database does not fit into main memory, but the sample does. However, even if the
database fits into main memory, sampling can provide an enormous speed-up for mining at the
cost of only little degradation of accuracy.

Mannila, Toivonen, and Verkamo| (1994) proposed sampling with replacement for association rule
mining and quantify the estimation error due to sampling. Using Chernov bounds on the binomial
distribution (the number of transactions which contains a given itemset in a sample), the authors
argue that in theory even relatively small samples should provide good estimates for support.
Zaki, Parthasarathy, Li, and Ogihara (1997a)) built upon the theoretic work by Mannila et al.
(1994) and show that for an itemset X with support 7 = supp(X) and for an acceptable relative
error of support € (an accuracy of 1 —¢€) at a given confidence level 1 — ¢, the needed sample size n
can be computed by

—2In(e)

n=—- (1)
Depending on its support, for each itemset a different sample size is appropriate. As a heuristic,
the authors suggest to use the user specified minimum support threshold for 7. This means
that for itemsets close to minimum support, the given error and confidence level hold while for
more frequent itemsets the error rate will be less. However, with this heuristic the error rate
for itemsets below minimum support can exceed € at the given confidence level and thus some
infrequent itemsets might appear as frequent ones in the sample.
Zaki et al| (1997a) also evaluated sampling in practice on several data sets and conclude that
sampling not only speeds mining up considerably, but also the errors are considerably smaller
than those given by the Chernov bounds and thus samples with size smaller than obtained by
Equation [I] are often sufficient.
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Another way to obtain the required sample size for association rule mining is progressive sam-
pling (Parthasarathy, [2002)). This approach starts with a small sample and uses progressively
larger samples until model accuracy does not improve significantly anymore. [Parthasarathy|{ (2002)
defines a proxy for model accuracy improvement by using a similarity measure between two sets
of associations. The idea is that since larger samples will produce more accurate results, the simi-
larity between two sets of associations of two consecutive samples is low if accuracy improvements
are high and increases with decreasing accuracy improvements. Thus increasing sample size can
be stopped if the similarity between consecutive samples reaches a “plateau.”

Toivonen| (1996) presents an application of sampling to reduce the needed I/O overhead for very
large databases which do not fit into main memory. The idea is to use a random sample from the
data base to mine frequent itemsets at a support threshold below the set minimum support. The
support of these itemsets is then counted in the whole database and the infrequent itemsets are
discarded. If the support threshold to mine the sample is picked low enough, almost all frequent
itemsets and their support will be found in one pass over the large database.

In arules sampling is implemented by sample() which provides all capabilities of the standard
sampling function in R (e.g., sampling with or without replacement and probability weights).

5 Examples

5.1 Example 1: Analyzing and preparing a transaction data set

In this example, we show how a data set can be analyzed and manipulated before associations
are mined. This is important for finding problems in the data set which could make the mined
associations useless or at least inferior to associations mined on a properly prepared data set.
For the example, we look at the Epub transaction data contained in package arules. This data
set contains downloads of documents from the Electronic Publication platform of the Vienna
University of Economics and Business Administration available via http://epub.wu-wien.ac.at
from January 2003 to August 2005.

First, we load arules and the data set.
> library("arules")
Loading required package: stats4
Loading required package: Matrix
> data("Epub")
> Epub
transactions in sparse format with
3307 transactions (rows) and
436 items (columns)
We see that the data set consists of 3307 transactions and is represented as a sparse matrix with
3307 rows and 436 columns which represent the items. Next, we use the summary() to get more
information about the data set.
> summary (Epub)
transactions as itemMatrix in sparse format with

3307 rows (elements/itemsets/transactions) and
436 columns (items)
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http://epub.wu-wien.ac.at

most frequent items:
doc_11d doc_4c6 doc_2cd doc_71 doc_24e (Other)
194 115 106 102 93 5323

element (itemset/transaction) length distribution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2359 491 201 95 46 24 17 12 11 7 9 4 4 3 1
16 17 18 19 20 22 24 25 28 34 38 4 79
3 2 3 5 2 1 1 1 1 1 1 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 1.794 2.000 79.000

includes extended transaction information - examples:
transactionID TimeStamp

1 session_4795 2003-01-01 19:59:00

2 session_4797 2003-01-02 06:46:01

3 session_479a 2003-01-02 09:50:38

summary () displays the most frequent items in the data set, information about the transaction
length distribution and that the data set contains some extended transaction information. We see
that the data set contains transaction IDs and in addition time stamps (using class POSIXct) for
the transactions. This additional information can be used for analyzing the data set.

> year <- strftime(as.P0SIX1t(transactionInfo(Epub) [["TimeStamp"]]),
+ 'l%Y")
> table(year)

year
2003 2004 2005
988 1375 944

For 2003, the first year in the data set, we have 988 transactions. We can select the corresponding
transactions and inspect the structure using a level-plot (see Figure [5).

> Epub2003 <- Epubl[year == "2003"]
> length (Epub2003)

[1] 988
> image (Epub2003)

The plot is a direct visualization of the binary incidence matrix where the the dark dots represent
the ones in the matrix. From the plot we see that the items in the data set are not evenly
distributed. In fact, the white area to the top right side suggests, that in the beginning of 2003 only
very few items were available (less than 50) and then during the year more items were added until
it reached a number of around 300 items. Also, we can see that there are some transactions in the
data set which contain a very high number of items (denser horizontal lines). These transactions
need further investigation since they could originate from data collection problems (e.g., a web
robot downloading many documents from the publication site). To find the very long transactions
we can use the size() and select very long transactions (containing more than 20 items).

> transactionInfo (Epub2003[size (Epub2003) > 20])

12
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Figure 5: The Epub data set (year 2003).

transactionID

301
580
896

We found three long transactions and printed the corresponding transaction information.

TimeStamp

session_b6e2 2003-04-29 12:30:38
session_6308 2003-08-17 17:16:12
session_72dc 2003-12-29 19:35:35

Of

course, size can be used in a similar fashion to remove long or short transactions.

Transactions can be inspected using inspect (). Since the long transactions identified above would
result in a very long printout, we will inspect the first 5 transactions in the subset for 2003.

> inspect (Epub2003[1:5])

items
{doc_154}
{doc_3d63}
{doc_16f}
{doc_f4,
doc_11d,
doc_1aT7}
5 {doc_83}

S W N -

transactionID

session_4795
session_4797
session_479a

session_47b7
session_47bb

TimeStamp
2003-01-01 19:59:00
2003-01-02 06:46:01
2003-01-02 09:50:38

2003-01-02 17:55:50
2003-01-02 20:27:44

Most transactions contain one item. Only transaction 4 contains three items. For further inspec-
tion transactions can be converted into a list with:

> as(Epub2003[1:5], "list")
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$session_4795
[1] "doc_154"

$session_4797
[1] "doc_3d6"

$session_479a
[1] "doc_16f"

$session_47b7
[1] "doc_f4" "doc_11d" "doc_1a7"
$session_47bb

[1] "doc_83"

Finally, transaction data in horizontal layout can be converted to transaction ID lists in vertical
layout using coercion.

> EpubTidLists <- as(Epub, "tidLists")
> EpubTidLists

tidLists in sparse format for
436 items/itemsets (rows) and
3307 transactions (columns)

For performance reasons the transaction ID list is also stored in a sparse matrix. To get a list,
coercion to list can be used.

> as(EpubTidLists[1:3], "list")

$doc_154

[1] "session_4795" "session_6082" "session_60dd" "session_67db"
[6] "session_769c" "session_7ee3" "session_bd9d" "session_cb591"
[9] "session_ce9f"

$doc_3d6
[1] "session_4797" "session_4893" "session_48f4"
[4] "session_4ca3" "session_wu4450a" "session_52c6"
[7] "session_b5712" "session_58e3" "session_5984"
[10] "session_5b20" "session_5c20" "session_5dc0"
[13] "session_b5eac" "session_wu4al29" "session_6599"
[16] "session_6734" "session_683e" "session_wu4d25a"
[19] "session_6f2f" "session_708a" "session_7a0c"
[22] "session_7deb5" "session_89db" "session_9227"
[25] "session_9941" "session_a4d7" "session_a8c0"
[28] "session_c3c4" "session_cb46" "session_ca44"
$doc_16F
[1] "session_479a" "session_b56e2" "session_630c" "session_72dc"

(5]

"session_8b3e" "session_91ab" "session_a202" "session_a7b9"
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In this representation each item has an entry which is a vector of all transactions it occurs in.
tidLists can be directly used as input for mining algorithms which use such a vertical database
layout to mine associations.

In the next example, we will see how a data set is created and rules are mined.

5.2 Example 2: Preparing and mining a questionnaire data set

As a second example, we prepare and mine questionnaire data. We use the Adult data set from
the UCI machine learning repository (Blake and Merz, [1998|) provided by package arules. This
data set is similar to the marketing data set used by Hastie et al| (2001)) in their chapter about
association rule mining. The data originates from the U.S. census bureau database and contains
48842 instances with 14 attributes like age, work class, education, etc. In the original applications
of the data, the attributes were used to predict the income level of individuals. We added the
attribute income with levels small and large, representing an income of < USD 50,000 and
> USD 50,000, respectively. This data is included in arules as the data set AdultUCI.

> data("AdultUCI")
> dim(AdultUCI)

[1] 48842 15

> AdultUCI[1:2, ]

age workclass fnlwgt education education-num marital-status
1 39 State-gov 77516 Bachelors 13 Never-married
2 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse
occupation relationship race sex capital-gain capital-loss
1 Adm-clerical Not-in-family White Male 2174 0
2 Exec-managerial Husband White Male 0 0
hours-per-week native-country income
1 40 United-States small

13 United-States small

AdultUCI contains a mixture of categorical and metric attributes and needs some preparations
before it can be transformed into transaction data suitable for association mining. First, we
remove the two attributes fnlwgt and education-num. The first attribute is a weight calculated
by the creators of the data set from control data provided by the Population Division of the U.S.
census bureau. The second removed attribute is just a numeric representation of the attribute
education which is also part of the data set.

> AdultUCI[["fnlwgt"]] <- NULL
> AdultUCI[["education-num"]] <- NULL

Next, we need to map the four remaining metric attributes (age, hours-per-week, capital-gain
and capital-loss) to ordinal attributes by building suitable categories. We divide the attributes
age and hours-per-week into suitable categories using knowledge about typical age groups and
working hours. For the two capital related attributes, we create a category called None for cases
which have no gains/losses. Then we further divide the group with gains/losses at their median
into the two categories Low and High.

> AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15,

+ 25, 45, 65, 100)), labels = c("Young", "Middle-aged",

+ "Senior", "01d"))

> AdultUCI[["hours-per-week"]] <- ordered(cut (AdultUCI[["hours-per-week"]],
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c(0, 25, 40, 60, 168)), labels = c("Part-time", "Full-time",
"Over-time", "Workaholic"))
AdultUCI[["capital-gain"]] <- ordered(cut (AdultUCI[["capital-gain"]],
c(-Inf, 0, median(AdultUCI[["capital-gain"]] [AdultUCI[["capital-gain"]] >
0]), Inf)), labels = c("None", "Low", "High"))
AdultUCI[["capital-loss"]] <- ordered(cut (AdultUCI[["capital-loss"]],
c(-Inf, 0, median(AdultUCI[["capital-loss"]] [AdultUCI[["capital-loss"]] >
0]), Inf)), labels = c("none", "low", "high"))

+ + VvV + 4+ V + +

Now, the data can be automatically recoded as a binary incidence matrix by coercing the data set
to transactions.

> Adult <- as(AdultUCI, "transactions')
> Adult

transactions in sparse format with
48842 transactions (rows) and
115 items (columns)

The remaining 115 categorical attributes were automatically recoded into 115 binary items. During
encoding the item labels were generated in the form of <variable name>=<category label>.
Note that for cases with missing values all items corresponding to the attributes with the missing
values were set to zero.

> summary (Adult)
transactions as itemMatrix in sparse format with
48842 rows (elements/itemsets/transactions) and

115 columns (items)

most frequent items:

capital-loss=none capital-gain=None

46560 44807
native-country=United-States race=White
43832 41762

workclass=Private (Other)

33906 401333

element (itemset/transaction) length distribution:
9 10 11 12 13
19 971 2067 15623 30162

Min. 1st Qu. Median Mean 3rd Qu. Max.
9.00 12.00 13.00 12.53 13.00 13.00

includes extended item information - examples:

labels variables levels
1 age=Young age Young
2 age=Middle-aged age Middle-aged

The summary of the transaction data set gives a rough overview showing the most frequent items,
the length distribution of the transactions and the extended item information which shows which
variable and which value were used to create each binary item. In the first example we see that
the item with label age=Middle-aged was generated by variable age and level middle-aged.
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Figure 6: Item frequencies of items in the Adult data set with support greater than 10%.

To see which items are important in the data set we can use the itemFrequencyPlot (). To reduce
the number of items, we only plot the item frequency for items with a support greater than 10%.
For better readability of the labels, we reduce the label size with the parameter cex.names. The
plot is shown in Figure [6}

> itemFrequencyPlot (Adult[, itemFrequency(Adult) > 0.1], cex.names = 0.8)

Next, we call the function apriori() to find all rules (the default association type for apriori())
with a minimum support of 1% and a confidence of 0.6.

> rules <- apriori(Adult, parameter = list(support = 0.01,
+ confidence = 0.6))

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen
0.6 0.1 1 none FALSE TRUE 0.01 1 5
target  ext
rules FALSE

algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[115 item(s), 48842 transaction(s)] done [0.11s].
sorting and recoding items ... [67 item(s)] done [0.01s].

creating transaction tree ... done [0.14s].
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checking subsets of size 1 2 3 4 5 done [0.78s].

writing ... [80215 rule(s)] done [0.04s].
creating S4 object ... done [0.36s].
> rules

set of 80215 rules

First, the function prints the used parameters. Apart from the specified minimum support and
minimum confidence, all parameters have the default values. It is important to note that with
parameter maxlen, the maximum size of mined frequent itemsets, is by default restricted to 5.
Longer association rules are only mined if maxlen is set to a higher value. After the parameter
settings, the output of the C implementation of the algorithm with timing information is displayed.

The result of the mining algorithm is a set of 80215 rules. For an overview of the mined rules
summary () can be used. It shows the number of rules, the most frequent items contained in
the left-hand-side and the right-hand-side and their respective length distributions and summary
statistics for the quality measures returned by the mining algorithm.

> summary (rules)

set of 80215 rules

rule length distribution (lhs + rhs):
1 2 3 4 5
6 432 4981 22127 52669

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 4.000 5.000 4.584 5.000 5.000

summary of quality measures:

support confidence 1ift
Min. :0.01001 Min. :0.6000 Min. : 0.7201
1st Qu.:0.01364 1st Qu.:0.7542 1st Qu.: 1.0027
Median :0.02090 Median :0.8944 Median : 1.0433
Mean :0.03770 Mean :0.8501 Mean 1.2476
3rd Qu.:0.03966 3rd Qu.:0.9457 3rd Qu.: 1.2355
Max. :0.95328 Max. :1.0000 Max. :20.6075

As typical for association rule mining, the number of rules found is huge. To analyze these rules, for
example, subset () can be used to produce separate subsets of rules for each item which resulted
form the variable income in the right-hand-side of the rule. At the same time we require that the
1lift measure exceeds 1.2.

> rulesIncomeSmall <- subset(rules, subset = rhs Jinj), "income=small" &
+ 1lift > 1.2)
> rulesIncomelarge <- subset(rules, subset = rhs Jinj, "income=large" &
+ lift > 1.2)

We now have a set with rules for persons with a small income and a set for persons with a large
income. For comparison, we inspect for both sets the three rules with the highest confidence (using

18



SORTQ)).
> inspect (SORT(rulesIncomeSmall, by = "confidence")[1:3])

1lhs rhs support confidence 1ift

1 {workclass=Private,

relationship=0wn-child,

sex=Male,

hours-per-week=Part-time} => {income=small} 0.01154744 0.7058824 1.394689
2 {workclass=Private,

marital-status=Never-married,

sex=Male,

hours-per-week=Part-time} => {income=small} 0.01517137 0.6951220 1.373428
3 {workclass=Private,

occupation=0ther-service,

relationship=0wn-child,

capital-gain=None} => {income=small} 0.01617460 0.6942004 1.371607

> inspect (SORT (rulesIncomelarge, by = "confidence") [1:3])

1lhs rhs support confidence 1lift

1 {marital-status=Married-civ-spouse,

capital-gain=High,

native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398
2 {marital-status=Married-civ-spouse,

capital-gain=High,

capital-loss=none,

native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398
3 {relationship=Husband,

race=White,

capital-gain=High,

native-country=United-States} => {income=large} 0.01302158 0.6846071 4.264454

From the rules we see that workers in the private sector working part-time or in the service industry
tend to have a small income while persons with high capital gain who are born in the US tend to
have a large income. This example shows that using subset selection and sorting a set of mined
associations can be analyzed even if it is huge.

5.3 Example 3: Extending arules with a new interest measure

In this example, we show how easy it is to add a new interest measure, using all-confidence as
introduced by |Omiecinski (2003]). The all-confidence of an itemset X is defined as

supp(X)

aH—COHﬁdenCQ(X) = m

(2)
This measure has the property conf(I = X \ I) > all-confidence(X) for all I C X. This means
that all possible rules generated from itemset X must at least have a confidence given by the
itemset’s all-confidence value. |Omiecinski| (2003)) shows that the support in the denominator of
equation [2l must stem from a single item and thus can be simplified to max;ex supp({i}).

To obtain an itemset to calculate all-confidence for, we mine frequent itemsets from the previously
used Adult data set using the Eclat algorithm.

> data("Adult")

> fsets <- eclat(Adult, parameter = list(support = 0.05), control = list(verbose = FALSE))

For the denominator of all-confidence we need to find all mined single items and their corresponding
support values. In the following we create a named vector where the names are the column numbers
of the items and the values are their support.
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> singleltems <- fsets[size(items(fsets)) == 1]

> singleSupport <- quality(singleItems)$support

> names (singleSupport) <- unlist(LIST(items(singleItems), decode = FALSE))
> head(singleSupport, n = 5)

66 63 111 60 8
0.9532779 0.9173867 0.8974243 0.8550428 0.6941976

Next, we can calculate the all-confidence using Equation 2] for all itemsets. The single item support
needed for the denomination is looked up from the named vector singleSupport and the resulting
measure is added to the set’s quality data frame.

> itemsetList <- LIST(items(fsets), decode = FALSE)

> allConfidence <- quality(fsets)$support/sapply(itemsetList,
+ function(x) max(singleSupport[as.character(x)]))

> quality(fsets) <- cbind(quality(fsets), allConfidence)

The new quality measure is now part of the set of itemsets.
> summary(fsets)
set of 5908 itemsets

most frequent items:
capital-loss=None native-country=United-States

2301 2245
capital-gain=None race=White
2236 2107
workclass=Private (Other)
1784 13555

element (itemset/transaction) length distribution:
1 2 3 4 5
36 303 1078 2103 2388

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 4.000 4.000 4.101 5.000 5.000

summary of quality measures:

support allConfidence
Min. :0.05004  Min. :0.05249
1st Qu.:0.06230 1st Qu.:0.06986
Median :0.08124  Median :0.09349

0 0

0 0
Mean :0.11114 Mean :0.13111
3rd Qu.:0.12554 3rd Qu.:0.14326
Max. :0.95328 Max. :1.00000

includes transaction ID lists: FALSE

It can be used to manipulate the set. For example, we can look at the itemsets which contain an
item related to education and sort them by all-confidence (we filter itemsets of length 1 first, since
they have per definition an all-confidence of 1).
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> fsetsEducation <- subset(fsets, subset = items /inJ, "education")

> inspect (SORT (fsetsEducation[size(fsetsEducation) > 1], by = "allConfidence")[1:3])
items support allConfidence
1 {education=HS-grad,
hours-per-week=Full-time} 0.2090209 0.3572453
2 {education=HS-grad,
income=small} 0.1807051 0.3570388
3 {workclass=Private,
education=HS-grad} 0.2391794 0.3445408

The resulting itemsets show that the item high school graduate (but no higher education) is highly
associated with working full-time, a small income and working in the private sector. All-confidence
is already implemented in arules as the function allConfidence().

5.4 Example 4: Sampling

In this example, we show how sampling can be used in arules. We use again the Adult data set.

> data("Adult")
> Adult

transactions in sparse format with
48842 transactions (rows) and
115 items (columns)

To calculate a reasonable sample size n, we use the formula developed by |Zaki et al.| (1997a) and
presented in Section We choose a minimum support of 5%. As an acceptable error rate for
support ¢ we choose 10% and as the confidence level (1 — ¢) we choose 90%.

> supp <- 0.05

> epsilon <- 0.1

> c <-0.1

>n <- -2 * log(c)/(supp * epsilon~2)
>n

[1] 9210.34

The resulting sample size is considerably smaller than the size of the original database. With
sample() we produce a sample of size n with replacement from the database.

> AdultSample <- sample(Adult, n, replace = TRUE)

The sample can be compared with the database (the population) using an item frequency plot.
The item frequencies in the sample are displayed as bars and the item frequencies in the original
database are represented by the line. For better readability of the labels, we only display frequent
items in the plot and reduce the label size with the parameter cex.names. The plot is shown in

Figure[7]
> itemsFrequent <- itemFrequency(Adult) > supp

> itemFrequencyPlot (AdultSample[, itemsFrequent], population = Adult/[,
+ itemsFrequent], cex.names = 0.7)
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Figure 7: Item frequencies in a sample of the Adult data set (bars) compared to the complete data
set (line).

Alternatively, relative deviations from the population can be visualized using deviation = TRUE.
With this plot, large relative deviations for less frequent items can be identified (see Figure .

> itemsFrequent <- itemFrequency(Adult) > supp
> itemFrequencyPlot (AdultSample[, itemsFrequent], population = Adult/[,
+ itemsFrequent], cex.names = 0.7, deviation = TRUE)

To compare the speed-up reached by sampling we use the Eclat algorithm to mine frequent itemsets
on both, the database and the sample and compare the system time (in seconds) used for mining.

> time <- system.time(itemsets <- eclat(Adult, parameter = list(support = supp),
+ control = list(verbose = FALSE)))
> time

[1] 1.27 0.01 1.27 0.00 0.00

> timeSample <- system.time(itemsetsSample <- eclat(AdultSample,
+ parameter = list(support = supp), control = list(verbose = FALSE)))
> timeSample

[1] 0.27 0.00 0.27 0.00 0.00

The first element of the vector returned by system.time() gives the (user) CPU time needed for
the execution of the statement in its argument. Therefore, mining the sample instead of the whole
data base results in a speed-up factor of:

> time[1]/timeSample[1]
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Figure 8: Deviations of the item frequencies in the sample from the complete Adult data set.

[1] 4.703704

To evaluate the accuracy for the itemsets mined from the sample, we analyze the difference between
the two sets.

> itemsets

set of 5908 itemsets

> itemsetsSample

set of 5873 itemsets

The two sets have roughly the same size. To check if the sets contain similar itemsets, we match
the sets and see what fraction of frequent itemsets found in the database were also found in the

sample.

> match <- match(itemsets, itemsetsSample, nomatch = 0)
> sum(match > 0)/length(itemsets)

[1] 0.972918

Almost all frequent itemsets were found using the sample. The summaries of the support of the
frequent itemsets which were not found in the sample and the itemsets which were frequent in the
sample although they were infrequent in the database give:
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> summary(quality(itemsets[which(!match)])$support)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05004 0.05055 0.05118 0.05168 0.05251 0.05647

> summary(quality(itemsetsSample[-match])$support)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05005 0.05049 0.05125 0.05144 0.05212 0.05505

This shows that only itemsets with support very close to the minimum support were falsely missed
or found.

For the frequent itemsets which were found in the database and in the sample, we can calculate
accuracy from the the error rate.

supportItemsets <- quality(itemsets[which(match > 0)])$support
supportSample <- quality(itemsetsSample[match])$support

accuracy <- 1 - abs(supportSample - supportltemsets)/supportItemsets
summary (accuracy)

vV VvV VvV

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8470 0.9582 0.9756 0.9711 0.9886 1.0000

The summary shows that sampling resulted in finding the support of itemsets with high accuracy.
This small example illustrates that for extremely large databases or for application where mining
time is important, sampling can be a powerful technique.

6 Summary and outlook

With package arules we provide the basic infrastructure which enables us to mine associations and
analyze and manipulate the results. Previously, in R there was no such infrastructure available.
The main features of arules are:

e Efficient implementation using sparse matrices.

e Simple and intuitive interface to manipulate and analyze transaction data, sets of itemsets
and rules with subset selection and sorting.

e Interface to two fast mining algorithms.

e Flexibility in terms of adding new quality measures, and additional item and transaction
descriptions which can be used for selecting transactions and analyzing resulting associations.

e Extensible data structure to allow for easy implementation of new types of associations and
interfacing new algorithms.

There are several interesting possibilities to extend arules. For example, it would be very useful
to interface algorithms which use statistical measures to find “interesting” itemsets (which are
not necessarily frequent itemsets as used in an association rule context). Such algorithms include
implementations of the y2-test based algorithm by |Silverstein, Brin, and Motwani (1998) or the
baseline frequency approach by [DuMouchel and Pregibon| (2001)).
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Another interesting extension would be to interface synthetic data generators for fast evaluation
and comparison of different mining algorithms. The best known generator for transaction data for
mining association rules was developed by [Agrawal and Srikant| (1994). Alternatively data can be
generated by simple probabilistic models as done by [Hahsler, Hornik, and Reutterer| (2005)).

Finally, similarity measures between itemsets and rules can be implemented for arules. With such
measures distance based clustering and visualization of associations is possible (see e.g., [Strehl
and Ghosh| 2003]).
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