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Abstract

This package vignette is a slightly modified version of Alfons et al. (2010d), published
in the Journal of Statistical Software.

Simulation studies are widely used by statisticians to gain insight into the quality of
developed methods. Usually some guidelines regarding, e.g., simulation designs, contami-
nation, missing data models or evaluation criteria are necessary in order to draw meaning-
ful conclusions. The R package simFrame is an object-oriented framework for statistical
simulation, which allows researchers to make use of a wide range of simulation designs with
a minimal effort of programming. Its object-oriented implementation provides clear inter-
faces for extensions by the user. Since statistical simulation is an embarrassingly parallel
process, the framework supports parallel computing to increase computational perfor-
mance. Furthermore, an appropriate plot method is selected automatically depending on
the structure of the simulation results. In this paper, the implementation of simFrame
is discussed in great detail and the functionality of the framework is demonstrated in
examples for different simulation designs.
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1. Introduction

Due to the complexity of modern statistical methods, obtaining analytical results about their
properties is often virtually impossible. Therefore, simulation studies are widely used by
statisticians as data-based, computer-intensive alternatives for gaining insight into the qual-
ity of developed methods. However, research projects commonly involve many scientists,
often from different institutions, each focusing on different aspects of the project. If these
researchers use different simulation designs, the results may be incomparable, which in turn
makes it impossible to draw meaningful conclusions. Hence simulation studies in such research
projects require a precise outline.

The R package simFrame (Alfons 2010) is an object-oriented framework for statistical simula-
tion addressing this problem. Its implementation follows an object-oriented approach based
on S4 classes and methods (Chambers 1998, 2008). A key feature is that statisticians can
make use of a wide range of simulation designs with a minimal effort of programming. The
object-oriented implementation gives maximum control over input and output, while at the
same time providing clear interfaces for extensions by user-defined classes and methods.
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Comprehensive literature exists on statistical simulation, but is mainly focused on technical
aspects (e.g., Morgan 1984; Ripley 1987; Johnson 1987). Unfortunately, hardly any publica-
tions are available regarding the conceptual elements and general design of modern simulation
experiments. To name some examples, Münnich et al. (2003) and Alfons et al. (2009) describe
how close-to-reality simulations may be performed in survey statistics, while Burton et al.
(2006) address applications in medical statistics. Furthermore, while simulation studies are
widely used in scientific articles, they are often described only briefly and without sufficient
details on all the processes involved. Having a framework with different simulation designs
ready at hand may help statisticians to plan simulation studies for their needs.

Statistical simulation is frequently divided into two categories: design-based and model-based
simulation. Design-based simulation is popular in survey statistics, as samples are drawn
repeatedly from a finite population. The close-to-reality approach thereby uses the true sam-
pling designs for real-life surveys such as EU-SILC (European Union Statistics on Income
and Living Conditions). In every iteration, certain estimators such as indicators are com-
puted or other statistical procedures such as imputation are applied. The obtained values
can then be compared to the true population values where appropriate. Nevertheless, since
real population data is only in few cases available to researchers, synthetic populations may
be generated from existing samples (see, e.g., Münnich et al. 2003; Münnich and Schürle
2003; Raghunathan et al. 2003; Alfons et al. 2010b). Such synthetic populations must re-
flect the structure of the underlying sample regarding dependencies among the variables and
heterogeneity. For household surveys, population data can be generated using the R package
simPopulation (Alfons and Kraft 2010). In model-based simulation, on the other hand, data
sets are generated repeatedly from a distributional model or a mixture of distributions. In
every iteration, certain methods are applied and quantities of interest are computed for com-
parison. Where appropriate, reference values can be obtained from the underlying theoretical
distribution. Mixed simulation designs constitute a combination of the two approaches, in
which samples are drawn repeatedly from each generated data set.

The package simFrame is intended to be as general as possible, but has initially been de-
veloped for close-to-reality simulation studies in survey statistics. Moreover, it is focused on
simulations involving typical data problems such as outliers and missing values. Therefore,
certain proportions of the data may be contaminated or set as missing in order to investigate
the quality and behavior of, e.g., robust estimators or imputation methods. In addition, an
appropriate plot method for the simulation results is selected automatically depending on
their structure. Note that statistical simulation is a very loose concept, though, and that the
application of simFrame may be subject to limitations in certain scenarios.

Section 2 gives a brief introduction to the basic concepts of object-oriented programming and
the S4 system. In Section 3, the design of the framework is motivated and Section 4 describes
the implementation in great detail. Section 5 then provides details about parallel computing
with simFrame. The use of the package for different simulation designs is demonstrated in
Section 6. Additional examples for design-based simulation are given in a supplementary
paper. How to extend the framework is outlined in Section 7. Finally, Section 8 contains
concluding remarks and gives an outlook on future developments.
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2. Object-oriented programming and S4

The object-oriented paradigm states that problems are formulated using interacting objects
rather than a set of functions. The properties of these objects are defined by classes and their
behavior and interactions are modeled with generic functions and methods. One of the most
important concepts of object-oriented programming is class inheritance, i.e., subclasses inherit
properties and behavior from their superclasses. Thus code can be shared for related classes,
which is the main advantage of inheritance. In addition, subclasses may have additional
properties and behavior, so in this sense they extend their superclasses. In S4 (Chambers
1998, 2008), properties of objects are stored in slots and can be accessed or modified with
the @ operator or the slot() function. However, accessor and mutator methods are supposed
to be used to access or modify properties of objects in simFrame (see Section 3.3). Virtual
classes are special classes from which no objects can be created. They exist for the sole reason
of sharing code. Furthermore, class unions are special virtual classes with no slots.
Generic functions define the formal arguments that are evaluated in a function call in order
to select the actual method to be used. These methods are defined by their signatures, which
assign classes to the formal arguments. In short, generic functions define what should be done
and methods define how this should be done for different (combinations of) classes. As an
example, the generic function setNA() is used in simFrame to insert missing values into a
data set. These are the available methods:

R> showMethods("setNA")

Function: setNA (package simFrame)
x="data.frame", control="NAControl"
x="data.frame", control="character"
x="data.frame", control="missing"

Even though a simple object-oriented mechanism was introduced in S3 (Chambers and Hastie
1992), it is not sufficient for the purpose of implementing a flexible framework for statistical
simulation. Only S4 offers consequent implementations of advanced object-oriented techniques
such as inheritance, object validation and method signatures. In S3, inheritance is realized
by simply using a vector for the class attribute, hence there is no way to guarantee that
the subclass contains all properties of the superclass. It should be noted that the tradeoff
of these advanced programming techniques is a slightly increased computational overhead.
Nevertheless, with modern computing power, this is not a substantial issue.

3. Design of the framework

Statistical simulation in R (R Development Core Team 2010) is often done using bespoke
use-once-and-throw-away scripts, which is perfectly fine when only a handful of simulation
studies need to be done for a specific purpose such as a paper. But when a research project is
based on extensive simulation studies with many different simulation designs, this approach
has its limitations since substantial changes may need to be applied to the R scripts for each
design. In addition, if many partners are involved in the project and each of them writes
their own scripts, they need to be very well coordinated so that the implemented simulation
designs are similar, otherwise the obtained results may not be comparable.
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The fundamental design principle of simFrame is that the behavior of functions is determined
by control objects. A collection of such control objects, including a function to be applied
in each iteration, is simply plugged into a generic function called runSimulation(), which
then performs the simulation experiment. This allows to easily switch from one simulation
design to another by just plugging in different control objects. Note that the user does not
have to program any loops for iterations or collect the results in a suitable data structure, the
framework takes care of this. Furthermore, by using the package as a common framework for
simulation in research projects, guidelines for simulation studies may be defined by selecting
specific control classes and parameter settings. If the researchers decide on a set of control
objects to be used in the simulation studies, this ensures comparability of the obtained results
and avoids problems with drawing conclusions from the project. Defining control objects
thereby requires only a few lines of code, and storing them as RData files in order to distribute
them among partners is much easier than ensuring that a large number of R scripts with big
chunks of bespoke code are comparable.

As a motivational example, consider a research project in which researchers A and B investi-
gate a specific survey such as EU-SILC (European Union Statistics on Income and Living Con-
ditions). Researcher A focuses on robust estimation of certain indicators, while researcher B
tries to improve the data quality with more suitable imputation and outlier detection meth-
ods. The aim of the project is to evaluate the developed methods with extensive simulation
studies. In order to be as realistic as possible, design-based simulation studies are performed,
where samples are drawn repeatedly from (synthetic) population data. Let the survey of
interest in real life be conducted in many countries with different sampling designs. Then
A and B could each define some control objects for the most common sampling designs and
exchange them so that they can plug each of them into the function runSimulation() along
with the population data.

Since imputation methods and outlier detection methods typically make some theoretical
assumptions about the data, B could also carry out model-based simulation studies, in which
the data are repeatedly generated from a certain theoretical distribution. All B needs to
change is to define a control object to generate the data and supply it to runSimulation()
instead of the population data and the control object for sampling.

Both researchers in this example investigate robust methods. It may be of interest to explore
the behavior of these methods under different contamination models (the term contamina-
tion is used in a technical sense in this paper, see Section 4.3 for a definition). This can
again be done by defining and exchanging a set of control objects. In addition, B can define
various control objects for inserting missing values into the data in order to study the per-
formance of imputation methods. Switching from one contamination model or missing data
mechanism to another is simply done by replacing the respective control object in the call
to runSimulation(). B could also supply a control object for inserting contamination and
one for inserting missing values to investigate robust imputation methods or outlier detection
methods for incomplete data.

One example for such research projects is the project AMELI (Advanced Methodology of
European Laeken Indicators, http://ameli.surveystatistics.net), in the course of which
the package simFrame has been developed.

http://ameli.surveystatistics.net
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3.1. UML class diagram

The Unified Modeling Language (UML) (Fowler 2003) is a standardized modeling language
used in software engineering. It provides a set of graphical tools to model object-oriented
programs. A class diagram visualizes the structure of a software system by showing classes,
attributes, and relationships between the classes. Figure 1 shows a slightly simplified UML
class diagram of simFrame.

In this example, classes are represented by boxes with two parts. The top part contains the
name of the class and the bottom part lists its slots. Class names in italics thereby indicate
virtual classes. Furthermore, each slot is followed by the name of its class, which can be a
basic R data type such as numeric, character, logical, list or function, but also an S4
class.

Lines or arrows of different forms represent class relationships. Inheritance is denoted by an
arrow with an empty triangular head pointing to the superclass. Composition, i.e., a class
having another class as a slot, is depicted by an arrow with a solid black diamond on the side
of the composed class. A solid line indicates an association between two classes. Here an
association signals that there is a method with one class as primary input and the other class
as output. Last but not least, a dashed line denotes an association class, which in the case
of simFrame is a control class that is not the primary input of the corresponding method but
nevertheless determines its behavior.

3.2. Naming conventions

In order to facilitate the usage of the framework, the following naming rules are introduced:

• Names of classes, slots, functions and methods are alphanumeric in mixed case, where
the first letter of each internal word is capitalized.

• Class names start with an uppercase letter.

• Functions, methods and slots start with a lowercase letter. Exceptions are functions
that initialize a class, which are called constructors and have the same name as the
class.

• Violate the above rules whenever necessary to maintain compatibility.

These rules are based on code conventions for the programming language Java (e.g., Arnold
et al. 2005), see http://java.sun.com/docs/codeconv/. Some R packages, e.g., rrcov
(Todorov and Filzmoser 2009; Todorov 2010), use similar rules.

3.3. Accessor and mutator methods

In object-oriented programming languages, accessor and mutator methods are typically used
to retrieve and change the properties of a class, respectively. The idea behind this concept
is to hide information about the actual implementation of a class (e.g., what data structures
are used) from the user. In simFrame, accessors are named getFoo() and mutators are
named setFoo(), where foo is the name of the corresponding slot. This naming convention
is common in Java and is also used in some R packages (e.g., rrcov).

http://java.sun.com/docs/codeconv/


6 An Object-Oriented Framework for Statistical Simulation

Figure 1: Slightly simplified UML class diagram of simFrame.
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The use of accessor and mutator methods in simFrame is illustrated with the class NAControl,
which handles the insertion of missing values into a data set (see Section 4.4). Its slot NArate
controls the proportion of missing values to be inserted.

R> nc <- NAControl(NArate = 0.05)

R> getNArate(nc)

[1] 0.05

R> setNArate(nc, c(0.01, 0.03, 0.05, 0.07, 0.09))

R> getNArate(nc)

[1] 0.01 0.03 0.05 0.07 0.09

Note that if no method setFoo() is available, the slot is not supposed to be changed by the
user. However, as already mentioned in Section 2, R allows every slot to be modified with
the @ operator or the slot() function.

4. Implementation

The open-source statistical environment R has become the main framework for computing in
statistics research. One of its main advantages is that it includes a well-developed program-
ming language and provides interfaces to many others, including the fast low-level languages
C and Fortran. The S4 system (Chambers 1998, 2008) complies with all requirements for an
object-oriented framework for statistical simulation. Thus most of simFrame is implemented
as S4 classes and methods, except some utility functions and some C code.

Method selection for generic functions is based on control classes, which in most cases provides
the interfaces for extensions by developers (see Section 7). Most of these generic functions
are not expected to be called by the user directly. The idea of the framework is rather to
define a number of control objects and to supply them to the function runSimulation(),
which performs the whole simulation experiment and calls the other functions internally (see
Section 4.5 or the examples in Section 6).

4.1. Data handling

In R, data are typically stored in a data.frame, and simFrame is no exception. However,
when samples are taken from a finite population in design-based simulation studies, each
observation in the sample represents a number of observations in the population, given by the
sample weights. Unless a basic sampling procedure such as simple random sampling is used,
the weights are in general not equal for all sampled observations and need to be considered
to obtain unbiased estimates. But even if the weights are equal for all observations, they may
be needed for the estimation of population totals (e.g., the total turnover of all businesses in
a country). In practice, the initial weights are also frequently modified by calibration (e.g.,
Deville et al. 1993), which for simple random sampling is done after post-stratification (e.g.,
Cochran 1977). Therefore, the sample weights need to be stored.
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In addition, the package has been designed with special emphasis on simulations involving
typical data problems such as outliers and missing values. It offers mechanisms to contam-
inate the data and insert missing values so that the influence of these data problems on
statistical methods can be investigated, or that outlier detection or imputation methods can
be evaluated. The term contamination is used in a technical sense here (see Section 4.3 for
a definition). Information on which observations are contaminated is often required, both for
the user running simulations and for internal use. Since it cannot be retrieved from the data
otherwise, it needs to be saved.

As a result, additional variables are added to the data set in these situations. The names of the
additional variables are ".weight" and ".contaminated", respectively. Hence these column
names should be avoided (which is why they start with a dot), or else the corresponding
columns will be overwritten.

Statistical methods often make assumptions about the distribution of the data, e.g., outlier
detection methods in multivariate statistics usually assume that the majority of the data
follow a multivariate normal distribution. Consequently, such methods are typically tested in
simulations on data coming from a certain theoretical distribution. The generation of data
from a distributional model is handled by control classes inheriting from the class union (which
is a special virtual class with no slots) VirtualDataControl. This virtual class is available
so that the framework can be extended by the user (see Section 7.1). A simple control class
already implemented in simFrame is DataControl. It consists of the following slots (see also
Figure 1):

size: The number of observations to be generated.

distribution: A function for generating the data, e.g., rmvnorm in package mvtnorm (Genz
and Bretz 2009; Genz et al. 2010) for data following a multivariate normal distribution.
It should take a positive integer as its first argument (the slot size will be passed) and
return an object that can be coerced to a data.frame.

dots: Additional arguments to be passed to distribution.

The following example demonstrates how to define a control object for generating data from
a multivariate normal distribution.

R> library("mvtnorm")

R> dc <- DataControl(size = 10, distribution = rmvnorm, dots =

+ list(mean = rep(0, 2), sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2)))

In a model-based simulation study, such a control object is then used by the framework in
repeated internal calls of the generic function generate(control, ...).

R> foo <- generate(dc)

R> foo

V1 V2
1 -1.289442540 -0.77334436
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2 0.009574644 -0.89256328
3 0.846580448 -0.46912965
4 -2.249086822 -0.54484880
5 0.662837956 1.03786573
6 0.460268469 0.02444930
7 -0.687415163 -0.64235093
8 -0.763840555 -1.02162592
9 -0.761894738 -0.95473667
10 -0.234446371 2.10315885

While the function generate() is designed to be called internally by the simulation frame-
work, it is possible to use it as a general wrapper function for data generation in other contexts.
For convenience, the name of the control class may then also be passed to generate() as a
character string (the default is "DataControl"), in which case the slots may be supplied as
arguments. Nevertheless, it might be simpler for the user to call the underlying function from
the slot distribution directly in such applications.

Memory-efficient storage of data frames has recently been added to package ff (Adler et al.
2010), which might be useful for design-based simulation with large population data. The
incorporation into simFrame may therefore be investigated as a future task.

4.2. Sampling

A fundamental design principle of simFrame in the case of design-based simulation stud-
ies is that the sampling procedure is separated from the simulation procedure. Two main
advantages arise from setting up all samples in advance.

First, the repeated sampling reduces overall computation time dramatically in certain situa-
tions, since computer-intensive tasks like stratification need to be performed only once. This
is particularly relevant for large population data. As an example, consider the AMELI project
that has been mentioned in Section 3. In the close-to-reality simulation studies carried out
in this project, up to 10 000 samples are drawn from a population of more than 8 000 000
individuals with stratified sampling or even more complex sampling designs. For such large
data sets, stratification takes a considerable amount of time and is a very memory-intensive
task. If the samples are taken on-the-fly, i.e., in every simulation run one sample is drawn, the
function to take the stratified sample would typically split the population into the different
strata in each of the 10 000 iterations. If all samples are drawn in advance, on the other hand,
the population data need to be split only once and all 10 000 samples can be taken from the
respective strata together.

Second, the samples can be stored permanently, which simplifies the reproduction of simula-
tion results and may help to maximize comparability of results obtained by different partners
in a research project. Consider again the AMELI project, where one group of researchers
investigates robust semiparametric approaches to improve the estimation of certain indica-
tors (i.e., a distribution is fitted to parts of the data; see Alfons et al. 2010e), while another
group is focused on nonparametric methods (e.g., trimming or M-estimators; see Hulliger and
Schoch 2009b). The aim of this project is to evaluate these methods in realistic settings,
therefore the most commonly used sampling designs in real life are applied in the simulation
studies. If the two groups use not only the same population data, but also the same previously
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set up samples, their results are highly comparable. In addition, the same samples may be
used for other close-to-reality simulation studies within the project, e.g., in order to evaluate
imputation or outlier detection methods. This is useful in particular for large population
data, when complex sampling techniques may be very time-consuming.

In simFrame, the generic function setup(x, control, ...) is available to set up multiple
samples. It returns an object of class SampleSetup, which contains the following slots (among
others, all slots are shown in Figure 1):

indices: A list containing the indices of the sampled observations.

prob: A numeric vector giving the inclusion probabilities for every observation of the popu-
lation. These are necessary to compute the sample weights.

seed: A list containing the seeds of the random number generator before and after setting
up the samples, respectively.

The function setup() may be called by the user to permanently store the samples, but it
may also be called internally by the framework if this is not necessary. In any case, methods
are selected according to control classes extending VirtualSampleControl, which is a virtual
class whose only slot k specifies the number of samples to be set up. This virtual class
provides the interface for extensions by the user (see Section 7.2). The implemented control
class SampleControl is highly flexible and covers the most frequently used sampling designs
in survey statistics:

• Sampling of individual observations with a basic sampling method such as simple ran-
dom sampling or unequal probability sampling.

• Sampling of whole groups (e.g., households) with a specified sampling method. There
are two common approaches towards sampling of groups:

– Groups are sampled directly. This is usually referred to as cluster sampling. How-
ever, here the term cluster is avoided in the context of sampling to prevent confu-
sion with computer clusters for parallel computing (see Section 5 and the example
in Section 6.3).

– In a first step, individuals are sampled. Then all individuals that belong to the
same group as any of the sampled individuals are collected and added to the sample.

• Stratified sampling using one of the above procedures in each stratum.

In addition to the inherited slot k, the class SampleControl consists of the following slots
(see also Figure 1):

design: A vector specifying variables to be used for stratification.

grouping: A character string, single integer or logical vector specifying a variable to be used
for grouping.

collect: A logical indicating whether groups should be collected after sampling individuals
or sampled directly. The default is to sample groups directly.



Andreas Alfons, Matthias Templ, Peter Filzmoser 11

fun: A function to be used for sampling (the default is simple random sampling). For strat-
ified sampling, this function is applied to each stratum.

size: The sample size. For stratified sampling, this should be a numeric vector.

prob: A numeric vector giving probability weights.

dots: Additional arguments to be passed to fun.

Currently, the functions srs and ups are implemented in simFrame for simple random sam-
pling and unequal probability sampling, respectively, but this can easily be extended with
user-defined sampling methods (see Section 7.2). Note that the sampling method is evalu-
ated using try(). Hence, if an error occurs in obtaining one sample, the others are not lost.
This is particularly useful for complex and time-consuming sampling procedures, as the whole
process of setting up all samples does not have to be repeated.

The control class for setup() may be specified as a character string (the default is, of
course, "SampleControl"), which allows the slots to be supplied as arguments. Furthermore,
simSample() is a convenience wrapper for setup() with control class SampleControl.

To actually draw one of the previously set up samples from the population, the generic
function draw(x, setup, ...) is used internally by the framework in the simulation runs. It
is important to note that the column ".weight", which contains the sample weights, is added
to the resulting data set. When sampling from finite populations, storing the sample weights
is essential. In general, the weights are not equal for all sampled observations, depending on
the inclusion probabilities. Hence the sample weights need to be considered in order to obtain
unbiased estimates. But even for simple random sampling, when all weights are equal, each
observation in the sample represents a number of observations in the population. For the
estimation of population totals (e.g., the total turnover of all businesses in a country), the
sample weights are thus still necessary. Moreover, the initial sample weights are in practice
often modified by calibration (e.g., Deville et al. 1993). In the case of simple random sampling,
this is done after post-stratification (e.g., Cochran 1977).

In the following illustrative example, two samples from synthetic EU-SILC population data
are set up and stored in an object of class SampleSetup. EU-SILC is a well-known survey
on income and living conditions conducted in European countries (see Section 6.1 for more
information and a more detailed example). Afterwards, the first of the two set up samples is
drawn from the population.

R> data("eusilcP")

R> set <- setup(eusilcP, size = 10, k = 2)

R> summary(set)

2 samples of size 10 are set up

R> set

Indices of observations for each of the 2 samples:

[[1]]
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[1] 32456 37914 18290 36471 19342 29442 39711 28444 14306 44891

[[2]]
[1] 4328 18165 42070 29593 8974 29556 28970 44056 10243 49754

R> draw(eusilcP[, c("id", "eqIncome")], set, i = 1)

id eqIncome .weight
33670 1376802 17760.93 5865.4
10460 1611302 13603.65 5865.4
48757 0782302 13910.35 5865.4
33719 1549903 14641.86 5865.4
55360 0825101 12463.90 5865.4
35123 1251602 27331.19 5865.4
29673 1686001 27981.36 5865.4
26985 1210302 7247.55 5865.4
38182 0611002 19968.32 5865.4
6448 1913501 18091.90 5865.4

4.3. Contamination

When evaluating robust statistical methods in simulation studies, a certain part of the data
needs to be contaminated, so that the influence of these outliers on the robust estimators (and
possibly their classical counterparts) can be studied. The term contamination is thereby used
in a technical sense in this paper. In robust statistics, the distribution F of contaminated
data is typically modeled as a mixture of distributions

F = (1− ε)G+ εH, (1)

where ε denotes the contamination level, G is the distribution of the non-contaminated part
of the data and H is the distribution of the contamination (e.g., Maronna et al. 2006). Con-
sequently, outliers may be modeled by a two-step process in simulation studies (Béguin and
Hulliger 2008; Hulliger and Schoch 2009a):

1. Select the observations to be contaminated. The probabilities of selection may or may
not depend on any other information in the data set.

2. Model the distribution of the outliers. The distribution may or may not depend on the
original values of the selected observations.

A more detailed mathematical notation of this process with respect to the implementation in
simFrame can be found in Alfons et al. (2010c).
Even though this is a rather simple concept, taking advantage of object-oriented programming
techniques such as inheritance allows for a flexible implementation that can be extended by the
user with custom contamination models. In simFrame, contamination is implemented based
on control classes inheriting from VirtualContControl. For extensions of the framework, the
user may define subclasses of this virtual class (see Section 7.3). Figure 1 displays the full
hierarchy of the available control classes for contamination. The basic virtual class contains
the following slots:
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target: A character vector defining the variables to be contaminated, or NULL to contaminate
all variables (except the additional ones generated internally).

epsilon: A numeric vector giving the contamination levels to be used in the simulation.

With the contamination control classes available in simFrame, it is possible to contaminate
whole groups (e.g., households) rather than individual observations. In addition, the proba-
bilities for selecting items to be contaminated may depend on an auxiliary variable. In order
to share these properties, another virtual class called ContControl is implemented. These
are the additional slots:

grouping: A character string specifying a variable to be used for grouping.

aux: A character string specifying an auxiliary variable whose values are used as probability
weights for selecting the items (observations or groups) to be contaminated.

The distribution of the contaminated data in simulation experiments may or may not depend
on the original values. Similar to model-based data generation (see Section 4.1), the control
class DCARContControl supports specifying a distribution function for generating the contami-
nation. DCAR stands for distributed completely at random and corresponds to contamination
independent of the original data. If a variable for grouping is specified, the same values are
used for all observations in the same group. DCARContControl extends ContControl by the
following slots:

distribution: A function for generating the data for the contamination, e.g., rmvnorm in
package mvtnorm for a multivariate normal distribution.

dots: Additional arguments to be passed to distribution.

On the other hand, contamination based on the original values is realized by the control class
DARContControl. DAR thereby stands for distributed at random. An arbitrary function
may be used to modify the data. To do so, the original values of the observations to be
contaminated are passed as its first argument. Thus the following slots are available in
addition to those from ContControl:

fun: A function generating the values of the contaminated data based on the original values.

dots: Additional arguments to be passed to fun.

In the following example, a control object of class DARContControl is defined. The contami-
nation level is set to 20% and the specified function multiplies the original values from variable
"V2" of the observations to be contaminated by a factor 100.

R> cc <- DARContControl(target = "V2", epsilon = 0.2,

+ fun = function(x) x * 100)
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If a control object for contamination is supplied, the framework calls the generic function
contaminate(x, control, ...) in the simulation runs internally to add the contamination.
In many applications, it is necessary to know which observations were contaminated, e.g., to
evaluate outlier detection methods. Hence a logical variable, which is called ".contaminated"
and indicates the contaminated observations, is added to the resulting data set. As an exam-
ple, the data generated in Section 4.1 is contaminated below.

R> bar <- contaminate(foo, cc)

R> bar

V1 V2 .contaminated
1 -1.289442540 -77.33443574 TRUE
2 0.009574644 -0.89256328 FALSE
3 0.846580448 -0.46912965 FALSE
4 -2.249086822 -0.54484880 FALSE
5 0.662837956 1.03786573 FALSE
6 0.460268469 0.02444930 FALSE
7 -0.687415163 -0.64235093 FALSE
8 -0.763840555 -1.02162592 FALSE
9 -0.761894738 -95.47366744 TRUE
10 -0.234446371 2.10315885 FALSE

Despite being designed for internal use in the simulation procedure, contaminate() also
allows the control class to be specified as a character string (with "DCARContControl" being
the default). In this case the slots may be supplied as arguments.

4.4. Insertion of missing values

Missing values are included in many data sets, in particular survey data hardly ever contain
complete information. In practice, missing values often need to be imputed, which results
in additional uncertainty in further statistical analysis (e.g., Little and Rubin 2002). This
additional variability needs to be considered when computing variance estimates or confidence
intervals. In simulation studies, it may therefore be of interest to study the properties of
different imputation methods or to investigate the influence of missing values on point and
variance estimates.

Three mechanisms generating missing values are commonly distinguished in the literature
addressing missing data (e.g., Little and Rubin 2002):

• Missing completely at random (MCAR): The probability of missingness does not depend
on any observed or missing information.

• Missing at random (MAR): The probability of missingness depends on the observed
information.

• Missing not at random (MNAR): The probability of missingness depends on the missing
information itself and may also depend on the observed information.
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Similar to the implementation of the functionality for contamination, the insertion of missing
data is handled by control classes extending VirtualNAControl (the hierarchy of the control
classes is shown in Figure 1). This virtual class is the basis for extensions by the user (see
Section 7.4). It consists of the following slots:

target: A character vector specifying the variables into which missing values should be in-
serted, or NULL to insert missing values into all variables (except the additional ones
generated internally).

NArate: A numeric vector or matrix giving the missing value rates to be used in the simula-
tion.

It should be noted that missing value rates may be selected individually for the target vari-
ables. The same missing value rates are used for all target variables if they are specified as a
vector. If a matrix is supplied, on the other hand, the missing value rates to be used for each
target variable are given by the respective column.

Extending VirtualNAControl, the control class NAControl allows whole groups to be set as
missing rather than individual values. To account for MAR or MNAR situations instead of
MCAR, an auxiliary variable of probability weights may be specified for each target variable.
Furthermore, when studying robust methods for the analysis or imputation of incomplete
data, it is sometimes desired to insert missing values only into non-contaminated observa-
tions. In other situations, a more realistic scenario in which missing values are also inserted
into contaminated observations may be preferred. Both scenarios are implemented in the
framework. These are the additional slots of NAControl:

grouping: A character string specifying a variable to be used for grouping.

aux: A character vector specifying auxiliary variables whose values are used as probability
weights for selecting the values to be set as missing in the respective target variables.

intoContamination: A logical indicating whether missing values should also be inserted into
contaminated observations. The default is to insert missings only into non-contaminated
observations.

The following example shows how to define a control object of class NAControl that corre-
sponds to an MCAR situation. For all variables, 30% of the values will be set as missing.
However, missing values will only be inserted into non-contaminated observations.

R> nc <- NAControl(NArate = 0.3)

If a control object for missing data is supplied, the generic function setNA(x, control, ...)
is called internally by the framework in the simulation runs to set the missing values. Below,
missing values are inserted into the contaminated data from the previous section.

R> setNA(bar, nc)
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V1 V2 .contaminated
1 -1.2894425 -77.33443574 TRUE
2 NA -0.89256328 FALSE
3 NA -0.46912965 FALSE
4 NA NA FALSE
5 0.6628380 NA FALSE
6 0.4602685 0.02444930 FALSE
7 -0.6874152 NA FALSE
8 -0.7638406 -1.02162592 FALSE
9 -0.7618947 -95.47366744 TRUE
10 -0.2344464 2.10315885 FALSE

As contaminate(), the function setNA() is designed for internal use in the simulation proce-
dure. Nevertheless, it is possible to supply the name of the control class as a character string
(the default is "NAControl"), which allows the slots to be supplied as arguments.

4.5. Running simulations

The central component of the simulation framework is the generic function runSimulation(),
which combines all the elements of the package into one convenient interface for running
simulation studies. Based on a collection of control objects, it allows to perform even complex
simulation experiments with just a few lines of code. Switching between simulation designs is
possible with minimal programming effort as well, only some control objects need to be defined
or modified. For design-based simulation, population data and a control object for sampling or
previously set up samples may be passed to runSimulation(). For model-based simulation,
on the other hand, a control object for data generation and the number of replications may
be supplied.
In addition, the control class SimControl determines how the simulation runs are performed.
These are the slots of SimControl (see also Figure 1):

contControl: A control object for contamination.

NAControl: A control object for inserting missing values.

design: A character vector specifying variables to be used for splitting the data into domains
and performing the simulations on every domain.

fun: The function to be applied in the simulation runs.

dots: Additional arguments to be passed to fun.

SAE: A logical indicating whether small area estimation (see, e.g., Rao 2003) will be used in
the simulation.

Most importantly, the function to be applied in the simulation runs needs to be defined. There
are some requirements for the function:

• It must return a numeric vector, or a list with the two components values (a numeric
vector) and add (additional results of any class, e.g., statistical models). Note that the
latter is computationally slightly more expensive.
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• A data.frame is passed to fun in every simulation run. The corresponding argument
must be called x.

• If comparisons with the original data need to be made, e.g., for evaluating the quality
of imputation methods, the function should have an argument called orig.

• If different domains are used in the simulation, the indices of the current domain can
be passed to the function via an argument called domain.

One of the most important features of simFrame is that the supplied function is evaluated
using try(). Therefore, if computations fail in one of the simulation runs, runSimulation()
simply continues with the next run. The results from previous runs are not lost and the
computation time has not been spent in vain.

Furthermore, control classes for adding contamination and missing values may be specified.
In design-based simulations, contamination and nonresponse are added to the samples rather
than the population, for maximum control over the amount of outliers or missing values
(cf. Alfons et al. 2009). Another useful feature is that the data may be split into different
domains. The simulations, including contamination and the insertion of missing values, are
then performed on every domain separately, unless small area estimation is used.

Concerning small area estimation, the following points have to be kept in mind. The design
for splitting the data must be supplied and SAE must be set to TRUE. However, the data are
not actually split into the specified domains. Instead, the whole data set is passed to the
specified function. Also contamination and missing values are added to the whole data. Last,
but not least, the function for the simulation runs must have a domain argument so that the
current domain can be extracted from the whole data. In any case, small area estimation
is not a main focus of the current version of simFrame and will therefore not be discussed
further in this paper. Improving the support for small area estimation is future work.

For user convenience, the slots of the SimControl object may also be supplied as arguments.
After running the simulations, the results of the individual simulation runs are combined and
packed into an object of class SimResults. The most important slots are (see Figure 1 for a
complete list):

values: A data.frame containing the simulation results.

add: A list containing additional simulation results, e.g., statistical models.

epsilon: The contamination levels used in the simulation.

NArate: The missing value rates used in the simulation.

seed: A list containing the seeds of the random number generator before and after the sim-
ulation, respectively.

An illustrative example for the use of runSimulation() is given in the following design-based
simulation experiment. The synthetic EU-SILC example data of the package is thereby used
as population data. It contains information about household income, but data is also available
on the personal level (see Section 6.1 for more information on the data). From this data set, 50
samples of 500 persons are drawn with simple random sampling. In addition, the equivalized
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income of 2% of the sampled persons are multiplied by a factor 25. In every simulation run,
the population mean income is estimated with the mean and the 2% trimmed mean of the
sample. With the following commands, control objects for sampling and contamination are
defined, along with the function for the simulation. Before calling runSimulation(), the seed
of the random number generator is set for reproducibility of the results.

R> data("eusilcP")

R> sc <- SampleControl(size = 500, k = 50)

R> cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

+ fun = function(x) x * 25)

R> sim <- function(x) {

+ c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, trim = 0.02))

+ }

R> set.seed(12345)

R> results <- runSimulation(eusilcP, sc, contControl = cc, fun = sim)

Methods for several frequently used generic functions are available to inspect the simulation
results. Besides head(), tail() and summary() methods, a method for aggregate() is
implemented. The latter can be used to calculate summary statistics of the results. By default,
the mean is used as summary statistic. Depending on the simulation design, the summary
statistics are are computed for different subsets of the results. These subsets are thereby given
by the different combinations of contamination levels (if contamination is used), missing value
rates (if missing values are inserted) and domains (if the simulations are performed on different
domains of the data).

Below, the first parts of the simulation results are returned using head() and the average
results are computed with aggregate(). For comparison, the true population mean is com-
puted afterwards.

R> head(results)

Run Sample Epsilon mean trimmed
1 1 1 0.02 29609.10 20737.05
2 2 2 0.02 28834.87 20023.74
3 3 3 0.02 29819.41 20410.12
4 4 4 0.02 28840.16 20438.05
5 5 5 0.02 27323.11 19298.89
6 6 6 0.02 29614.79 20442.76

R> aggregate(results)

Epsilon mean trimmed
1 0.02 29697.64 20361.22

R> tv <- mean(eusilcP$eqIncome)

R> tv

[1] 20162.8
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Figure 2: Simulation results from the simple illustrative example. Left : Default plot of
results from a simulation study with one contamination level, in this example obtained by
plot(results, true = tv). Right : Kernel density plots of the simulation results, obtained
by simDensityplot(results, true = tv).

Various plots for simulation results are implemented in the framework, as discussed in the
following section. In Figure 2, the results for this illustrative example are displayed by box
plots and kernel density plots. The plots show the well-known fact that the mean is highly
influenced by outliers. While the trimmed mean is not influenced by the contamination and
has much smaller variance, there is still some bias. Since the outliers in this example are only
in the upper tail of the data, the remaining bias results from trimming lower part as well.

Section 6 contains more elaborate examples for design-based and model-based simulation with
detailed step-by-step instructions, as well as some motivation and interpretation.

4.6. Visualization

Visualization methods for the simulation results are based on lattice graphics (Sarkar 2008,
2010). If the simulation study has been divided into several domains, the results for each
domain are displayed in a separate panel. Box plots and kernel density plots are implemented
in the functions simBwplot() and simDensityplot(), respectively. For simulations involving
different contamination levels or missing value rates, simXyplot() plots the average results
against the contamination levels or missing value rates. In all of these plots, reference lines
for the true values can be added. Moreover, the plot() method for the class SimResults
selects a suitable graphical representation of the simulation results automatically.

Figure 2 shows the default plot and kernel density plots for the simulation results from the
simple illustrative example in the previous section. Further examples for the visualization of
simulation results are given in Section 6.
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5. Parallel computing

Statistical simulation is embarrassingly parallel, hence computational performance can be
increased by parallel computing. In simFrame, parallel computing is implemented using
the R package snow (Rossini et al. 2007; Tierney et al. 2008, 2009), which is recommended
by Schmidberger et al. (2009) in an analysis of the state-of-the-art in parallel computing
with R. For setting up multiple samples and running simulations on a cluster, the functions
clusterSetup() and clusterRunSimulation() are implemented. Note that all objects and
packages required for the computations (including simFrame) need to be made available on
every worker process. An example for parallel computing is presented in Section 6.3.

In order to ensure reproducibility of the simulation results, random number streams should be
used. The R packages rlecuyer (L’Ecuyer et al. 2002; Sevcikova and Rossini 2009) and rsprng
(Mascagni and Srinivasan 2000; Li 2010) for creating random number streams are supported
by snow via the function clusterSetupRNG(). It should be noted that the package rstream
(L’Ecuyer and Leydold 2005; Leydold 2010) provides a faster connection to the C library by
L’Ecuyer et al. (2002) than rlecuyer. Support in simFrame may thus be beneficial and may
be added as a future task.

The R package multicore (Urbanek 2009) offers parallel computing on machines with multiple
cores or CPUs. No data or code needs to be initialized and no additional R instances need
to be started, hence spawning parallel processes is very fast. In addition, worker processes
share memory and no network traffic is required, which allows fast computations on machines
with a sufficient number of cores. However, multicore is not available for Microsoft Windows
operating systems and it does not support random number streams out-of-the-box (as snow
does). The incorporation of multicore into simFrame may be investigated in the future.

6. Using the framework

In this section, the use of simFrame is demonstrated on examples for design-based and model-
based simulation. An example for parallel computing is included as well. Note that the only
purpose of these examples is to illustrate the use of the package. It is not the aim of this
section to provide a thorough analysis of the presented methodology, as this is beyond the
scope of this paper.

6.1. Design-based simulation

The Laeken indicators are a set of indicators used to measure social cohesion in member
states of the European Union and other European countries (cf. Atkinson et al. 2002). Most
of the Laeken indicators are computed from EU-SILC (European Union Statistics on Income
and Living Conditions) survey data. Synthetic EU-SILC data based on the Austrian sample
from 2006 is included in simFrame. This data set was generated using the synthetic data
generation framework by Alfons et al. (2010b) from package simPopulation (Alfons and Kraft
2010). It consists of 25 000 households with data available on the personal level, and is used
as population data in this example. Note that this is an illustrative example, as the data set
does not represent the true population sizes of Austria and its regions.

While only being a secondary Laeken indicator, the Gini coefficient is a frequently used
measure of inequality and is widely studied in the literature. In the case of EU-SILC, the
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Gini coefficient is calculated based on an equivalized household income. In this example, the
standard estimation method (EU-SILC 2004) is compared to two semiparametric approaches,
which fit a Pareto distribution (e.g., Kleiber and Kotz 2003) to the upper tail of the data.
Hill (1975) introduced the maximum-likelihood estimator, which is thus referred to as Hill
estimator. The partial density component (PDC) estimator (Vandewalle et al. 2007), on the
other hand, follows a robust approach. These methods are available in the R package laeken
(Alfons et al. 2010a). A more detailed discussion on Pareto tail modeling with application to
selected Laeken indicators can be found in Alfons et al. (2010e).
First, the required package and the data set need to be loaded. Furthermore, the seed of the
random number generator is set for reproducibility of the results.

R> library("laeken")

R> data("eusilcP")

R> set.seed(12345)

Next, 100 samples of 1500 households are set up. Stratified sampling by regions combined with
sampling of whole households rather than individuals can be achieved with one command.

R> set <- setup(eusilcP, design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

Since a robust method is going to be compared to two classical ones, a control object for con-
tamination is defined. EU-SILC data typically contain a very low amount of outliers, therefore
the equivalized household income of 0.5% of the households is contaminated. In addition, the
contamination is generated by a normal distribution N (µ, σ2) with mean µ = 500 000 and
standard deviation σ = 10 000.

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

The function for the simulation runs is quite simple as well. Its argument k determines the
number of households whose income is modeled by a Pareto distribution.

R> sim <- function(x, k) {

+ g <- gini(x$eqIncome, x$.weight)$value

+ eqIncHill <- fitPareto(x$eqIncome, k = k, method = "thetaHill",

+ groups = x$hid)

+ gHill <- gini(eqIncHill, x$.weight)$value

+ eqIncPDC <- fitPareto(x$eqIncome, k = k, method = "thetaPDC",

+ groups = x$hid)

+ gPDC <- gini(eqIncPDC, x$.weight)$value

+ c(standard = g, Hill = gHill, PDC = gPDC)

+ }

With all necessary objects available, running the simulation experiment is only one more
command. Note that simulations are performed separately for each gender. The value of k
for the Pareto distribution is thereby set to 125.
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R> results <- runSimulation(eusilcP, set, contControl = cc,

+ design = "gender", fun = sim, k = 125)

The head() and aggregate() methods are used to take a look at the simulation results. In
this case, aggregate() computes the average results for each subset.

R> head(results)

Run Sample Epsilon gender standard Hill PDC
1 1 1 0.005 male 34.58446 29.96658 26.61414
2 1 1 0.005 female 38.82356 33.93700 28.82046
3 2 2 0.005 male 34.34853 29.09325 27.66382
4 2 2 0.005 female 36.38429 30.06097 27.42664
5 3 3 0.005 male 33.39992 30.54211 23.96698
6 3 3 0.005 female 35.12883 30.51336 26.06519

R> aggregate(results)

Epsilon gender standard Hill PDC
1 0.005 male 33.18580 29.00265 26.20346
2 0.005 female 35.61341 31.28984 27.69054

For comparison with the simulation results, the true values of the Gini coefficient need to be
computed. These can be added as reference lines to the plot of the simulation results (see
Figure 3).

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

Figure 3 shows that even a small proportion of outliers completely corrupts the standard
estimation of the Gini coefficient. Also fitting the Pareto distribution with the Hill estimator
is highly influenced by contamination, whereas the robust PDC estimator leads to excellent
results. But most importantly, this example shows that even complex simulation designs
require only a few lines of code.

Further examples for design-based simulation that demonstrate the strengths of the frame-
work can be found in a supplementary paper. This supplementary paper is also included in
simFrame as a package vignette (Leisch 2003).

6.2. Model-based simulation

In this section, model-based simulation is demonstrated using an example for compositional
data. An observation x = (x1, . . . , xD) is by definition a D-part composition if, and only
if, xi > 0, i = 1, . . . , D, and all relevant information is contained in the ratios between the
components (Aitchison 1986). Consequently, compositional data contain only relative infor-
mation. The information is essentially the same if an observation is multiplied with a positive
constant. But if the value of one component changes, the other components need to change
accordingly. Examples for compositional data are element concentrations in chemical analysis
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Figure 3: Default plot of results from a simulation study with one contamination level and
different domains, in this example obtained by plot(results, true = tv, xlab = "Gini
coefficient").

of a sample material or monthly household expenditures on different spending categories such
as housing, food or leisure activities.

It is important to note that compositional data have no direct representation in the Euclidean
space and that their geometry is entirely different (see Aitchison 1986). The sample space of
D-part compositions is called the simplex and a suitable distance measure is the Aitchison
distance dA (Aitchison 1992; Aitchison et al. 2000). Fortunately, there exists an isometric
transformation from the D-dimensional simplex to RD−1, which is called the isometric logratio
(ilr) transformation (Egozcue et al. 2003). With this transformation, the Aitchison distance
can be expressed as

dA(x,y) = dE(ilr(x), ilr(y)), (2)

where dE denotes the Euclidean distance.

Hron et al. (2010) introduced imputation methods for compositional data, which are imple-
mented in the R package robCompositions (Templ et al. 2009, 2010). While the package is
focused on robust methods, only classical imputation methods are used in this example. The
first method is a modification of k-nearest neighbor (knn) imputation (Troyanskaya et al.
2001), the second follows an iterative model-based approach using least squares (LS) regres-
sion.

Before any computations are performed, the required packages are loaded and the seed of the
random number generator is set for reproducibility.

R> library("robCompositions")

R> library("mvtnorm")

R> set.seed(12345)
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The data in this example are generated by a normal distribution on the simplex, denoted by
ND
S (µ,Σ) (e.g., Mateu-Figueras et al. 2008). A random composition x = (x1, . . . , xD) follows

this distribution if, and only if, the vector of ilr transformed variables follows a multivariate
normal distribution on RD−1 with mean vector µ and covariance matrix Σ. The follow-
ing commands create a control object for generating 150 realizations of a random variable
X ∼ N 4

S(µ,Σ) with

µ =

 0
2
3

 and Σ =

 1 −0.5 1.4
−0.5 1 −0.6
1.4 −0.6 2

 .

R> crnorm <- function(n, mean, sigma) invilr(rmvnorm(n, mean, sigma))

R> sigma <- matrix(c(1, -0.5, 1.4, -0.5, 1, -0.6, 1.4, -0.6, 2), 3, 3)

R> dc <- DataControl(size = 150, distribution = crnorm,

+ dots = list(mean = c(0, 2, 3), sigma = sigma))

Furthermore, a control object for inserting missing values needs to be created. In every
variable, 5% of the observations are set as missing completely at random.

R> nc <- NAControl(NArate = 0.05)

For the two selected imputation methods, the relative Aitchison distance between the original
and the imputed data (cf. the simulation study in Hron et al. 2010) is computed in every
simulation run.

R> sim <- function(x, orig) {

+ i <- apply(x, 1, function(x) any(is.na(x)))

+ ni <- length(which(i))

+ xKNNa <- impKNNa(x)$xImp

+ xLS <- impCoda(x, method = "lm")$xImp

+ c(knn = aDist(xKNNa, orig)/ni, LS = aDist(xLS, orig)/ni)

+ }

The simulation can then be run with the following command:

R> results <- runSimulation(dc, nrep = 50, NAControl = nc, fun = sim)

As in the previous example, the results are inspected using head() and aggregate().

R> head(results)

Run Rep NArate knn LS
1 1 1 0.05 0.3438037 0.2880082
2 2 2 0.05 0.2812875 0.1792722
3 3 3 0.05 0.4211458 0.2680063
4 4 4 0.05 0.3004898 0.2259575
5 5 5 0.05 0.3317538 0.2011256
6 6 6 0.05 0.4174775 0.3070453
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Figure 4: Left : Default plot of results from a simulation study with one missing value rate,
in this example obtained by plot(results, xlab = "Relative Aitchison distance").
Right : Kernel density plots of the simulation results, obtained by simDensityplot(results,
alpha = 0.6, xlab = "Relative Aitchison distance").

R> aggregate(results)

NArate knn LS
1 0.05 0.4357479 0.309891

Box plots and kernel density plots of the simulation results are presented in Figure 4. Since
the imputation methods in this example are evaluated in terms of a relative distance measure,
values closer to 0 indicate better performance. Clearly, the iterative model-based procedure
leads to better results than the modified knn approach with respect to the relative Aitchison
distance. This is not a surprising result, as the latter is used as a starting point in the
iterative procedure. For serious evaluation of the imputation methods, however, also other
criteria need to be taken into account (e.g., how well the variability of the multivariate data
is reflected; see Hron et al. 2010).

6.3. Parallel computing

Using parallel computing, computation time may be significantly decreased in statistical sim-
ulation. In this section, the example for model-based simulation from before is extended to
more than one missing value rate. Hence some of the objects are already defined above, but in
order to provide a complete description on how to perform parallel computing with simFrame,
these definitions are repeated here.

The first step is to start a snow cluster. In this example, four parallel worker processes on
the local machine are initialized.

R> cl <- makeCluster(4, type = "SOCK")
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All the functions and packages required for the computations (including simFrame) need to
be loaded on the worker processes.

R> clusterEvalQ(cl, {

+ library("simFrame")

+ library("robCompositions")

+ library("mvtnorm")

+ })

For reproducibility of the results, a random number stream is generated.

R> clusterSetupRNG(cl, seed = 12345)

Control objects for data generation and the insertion of missing values, as well as the function
for the simulation runs are defined as in the previous section. The only difference is that
multiple missing value rates (1%, 3%, 5%, 7% and 9%) are used in this example.

R> crnorm <- function(n, mean, sigma) invilr(rmvnorm(n, mean, sigma))

R> sigma <- matrix(c(1, -0.5, 1.4, -0.5, 1, -0.6, 1.4, -0.6, 2), 3, 3)

R> dc <- DataControl(size = 150, distribution = crnorm,

+ dots = list(mean = c(0, 2, 3), sigma = sigma))

R> nc <- NAControl(NArate = c(0.01, 0.03, 0.05, 0.07, 0.09))

R> sim <- function(x, orig) {

+ i <- apply(x, 1, function(x) any(is.na(x)))

+ ni <- length(which(i))

+ xKNNa <- impKNNa(x)$xImp

+ xLS <- impCoda(x, method = "lm")$xImp

+ c(knn = aDist(xKNNa, orig)/ni, LS = aDist(xLS, orig)/ni)

+ }

These objects need to be made available on the worker processes. Since they are small in size,
they are exported. Note that large objects, e.g., data sets for design-based simulation, should
rather be constructed on the worker processes, as computation is much faster than network
communication (Schmidberger et al. 2009).

R> clusterExport(cl, c("crnorm", "sigma", "dc", "nc", "sim"))

Then only one more command is needed to run the simulation.

R> results <- clusterRunSimulation(cl, dc, nrep = 50, NAControl = nc,

+ fun = sim)

Last, the cluster needs to be stopped after carrying out the simulation study in order to ensure
that the worker processes are properly shut down.

R> stopCluster(cl)
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Figure 5: Left : Default plot of results from a simulation study with multiple missing
value rates, in this example obtained by plot(results, ylab = "Relative Aitchison
distance"). Right : Kernel density plots of the simulation results for a specified miss-
ing value rate (7%), obtained by simDensityplot(results, NArate=0.07, alpha = 0.6,
xlab = "Relative Aitchison distance").

After the parallel computations have finished, the simulation results can be inspected as usual.
In this example, the aggregate() method returns the average results of the relative distances
for each missing value rate.

R> head(results)

Run Rep NArate knn LS
1 1 1 0.01 0.3651501 0.2572328
2 2 1 0.03 0.4699935 0.3629816
3 3 1 0.05 0.3950942 0.1858227
4 4 1 0.07 0.4145427 0.4004828
5 5 1 0.09 0.4455230 0.3474315
6 6 2 0.01 0.3189354 0.1451337

R> aggregate(results)

NArate knn LS
1 0.01 0.3831000 0.2478023
2 0.03 0.4205646 0.3010503
3 0.05 0.4399412 0.3016496
4 0.07 0.4862358 0.3436344
5 0.09 0.5120861 0.3606849

Figure 5 visualizes the simulation results. On the left hand side, the average relative Aitchison
distances are plotted against the missing value rates. On the right hand side, kernel density
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plots for a specified missing value rate (7%) is shown. The results are not much different
from those in the previous section. Note that the difference of the average results for the two
methods remains quite constant in this simulation example.

7. Extending the framework

One of the main advantages of the S4 implementation of simFrame is that it provides clear
interfaces for user-defined extensions. With the available control classes for data generation,
sampling, contamination and the insertion of missing data, the framework is highly flexible and
can be used for a wide range of simulation designs. Nevertheless, extensions may sometimes
be desired for specialized functionality. In order to extend the framework, developers can
implement custom control classes and the corresponding methods.

7.1. Model-based data

The control class DataControl available in simFrame is quite simple but general. For user-
defined data generation models, it often suffices to implement a function and use it as the
distribution slot in the DataControl object. This function should have the number of
observations to be generated as its first argument, as illustrated in the code skeleton in
Figure 6 (top). The name of the argument is thereby not important. Furthermore, the
function should return an object that can be coerced to a data.frame.

However, if more specialized data generation models are required, the framework can be
extended by defining a control class extending VirtualDataControl and the corresponding
method for the generic function generate(). If, e.g., a specific distribution or mixture of
distributions is frequently used in simulation experiments, a distinct control class may be
more convenient for the user. Figure 6 (bottom) contains the code skeleton for such an
extension.

myDataGeneration <- function(size , ...) {
# computations

}

setClass (" MyDataControl",
# class definition
contains = "VirtualDataControl ")

setMethod (" generate",
signature(control = "MyDataControl "),
function(control) {

# method definition
})

Figure 6: Top: Code skeleton for a user-defined data generation method. Bottom: Code
skeleton for extending model-based data generation with a custom control class and the
corresponding method for generate().
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7.2. Sampling

In simFrame, the control class SampleControl is highly flexible and allows stratified sampling
as well as sampling of whole groups rather than individuals with a specified sampling method.
Hence it is often sufficient to implement the desired sampling method for the simple non-
stratified case to extend the existing framework. However, there are some restrictions on the
argument names of the function, which should return a vector containing the indices of the
sampled observations.

• If the sampling method needs population data as input, the corresponding argument
should be called x and should expect a data.frame.

• If it only needs the population size as input, the argument should be called N.

• If necessary, the argument for the sample size should be called size.

• If necessary, the argument for the probability weights should be called prob.

Note that the function is not expected to have both x and N as arguments, and that the
latter is much faster for stratified sampling or group sampling. Furthermore, a function with
prob as its only argument is perfectly valid (for probability proportional to size sampling).
Figure 7 (top) shows an example for Poisson sampling using the implementation in package
sampling (Tillé and Matei 2009).

Nevertheless, for very complex sampling procedures, it is possible to define a control class
extending VirtualSampleControl and the corresponding setup() method. The code skele-
ton for such an extension is shown in Figure 7 (bottom). In order to optimize computational
performance, it is necessary to efficiently set up multiple samples. Thereby the slot k of
VirtualSampleControl needs to be used to control the number of samples, and the resulting
object must be of class SampleSetup. For using parallel computing to set up samples with a
self-defined control class, a method for clusterSetup() may be defined.

7.3. Contamination

A wide range of contamination models is covered by the control classes DCARContControl and
DARContControl. However, other contamination models can be added by defining a control
class inheriting from VirtualContControl and the corresponding method for contaminate()
(see the code skeleton in Figure 8). Note that VirtualContControl contains the slots target
and epsilon for selecting the target variable(s) and contamination level(s), respectively. In
case the contaminated observations need to be identified at a later stage of the simulation,
e.g., if conflicts with inserting missing values should be avoided, a logical indicator variable
".contaminated" should be added to the returned data set.

7.4. Insertion of missing values

Similar to extending the framework for model-based data generation and contamination, user-
defined missing value models can be added by defining a control class extending the virtual
class VirtualNAControl and the corresponding method for the generic function setNA()
(see the code skeleton in Figure 9). The slots target and NArate for selecting the target
variable(s) and missing value rate(s), respectively, are inherited from VirtualNAControl.
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myPoisson <- function(prob) {
require(sampling)
which(as.logical(UPpoisson(prob )))

}

setClass (" MySampleControl",
# definition of additional properties
contains = "VirtualSampleControl ")

setMethod ("setup",
signature(x = "data.frame", control = "MySampleControl "),
function(x, control) {

# method definition
})

setMethod (" clusterSetup",
signature(x = "data.frame", control = "MySampleControl "),
function(cl , x, control) {

# method definition
})

Figure 7: Top: User-defined function for Poisson sampling. Bottom: Code skeleton for user-
defined setup of multiple samples with a custom control class and the corresponding methods
for setup() and clusterSetup().

setClass (" MyContControl",
# definition of additional properties
contains = "VirtualContControl ")

setMethod (" contaminate",
signature(x = "data.frame", control = "MyContControl "),
function(x, control , i) {

# method definition
})

Figure 8: Code skeleton for a user-defined control class for contamination and the correspond-
ing method for contamintate().

setClass (" MyNAControl",
# definition of additional properties
contains = "VirtualNAControl ")

setMethod ("setNA",
signature(x = "data.frame", control = "MyNAControl "),
function(x, control , i) {

# method definition
})

Figure 9: Code skeleton for a user-defined control class for the insertion of missing values and
the corresponding method for setNA().
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8. Conclusions and outlook

The flexible, object-oriented implementation of simFrame allows researchers to make use of
a wide range of simulation designs with a minimal effort of programming. Control classes
are used to handle data generation, sampling, contamination and the insertion of missing
values. Due to the use of control objects, switching from one simulation design to another
requires only minimal programming effort. Developers can easily extend the existing frame-
work with user-defined classes and methods. Guidelines for simulation studies in research
projects can therefore be established by selecting or implementing control classes and agree-
ing upon parameter values, thus ensuring comparable results from different researchers. Based
on the structure of the simulation results, an appropriate plot method is selected automati-
cally. Hence simFrame is widely applicable for gaining insight into the quality of statistical
methods. Furthermore, since the workload in statistical simulation is embarrassingly parallel,
simFrame supports parallel computing using snow to increase computational performance.

Future plans include to further develop the model-based data generation facilities and imple-
ment mixed simulation designs, to improve the support for small area estimation, as well as
to extend the framework with different sampling methods and more specialized contamina-
tion and missing data models. In addition, adding support of additional packages for parallel
computing and random number streams may be considered. Concerning large data sets, the
incorporation of the package ff for memory-efficient storage may be investigated.
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Rodŕıguez, W Trutschnig, M Lubiano, M Gil, P Grzegorzewski, O Hryniewicz (eds.), “Com-
bining Soft Computing and Statistical Methods in Data Analysis,” volume 77 of Advances
in Intelligent and Soft Computing, pp. 17–24. Springer-Verlag, Heidelberg. ISBN 978-3-
642-14745-6.

Alfons A, Templ M, Filzmoser P, Kraft S, Hulliger B (2009). “Intermediate Report on the Data
Generation Mechanism and on the Design of the Simulation Study.” AMELI Deliverable
6.1, Vienna University of Technology. URL http://ameli.surveystatistics.net.

Arnold K, Gosling J, Holmes D (2005). The Java Programming Language. Prentice Hall,
Upper Saddle River, 4th edition. ISBN 978-0321349804.

Atkinson T, Cantillon B, Marlier E, Nolan B (2002). Social Indicators: The EU and Social
Inclusion. Oxford University Press, New York. ISBN 0-19-925349-8.
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