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Abstract

Nonlinear regression is usually implemented in SAS either by using PROC NLIN or PROC
NLMIXED. Apart from the model structure, initial values need to be specified for each
parameter. And after some convergence criteria are fulfilled, the second order conditions
need to be analyzed. But numerical problems are expected to appear in case the likelihood
is nearly discontinuous, has plateaus, multiple maxima, or the initial values are distant
from the true parameter estimates. The usual solution consists of using a grid, and
then choosing the set of parameters reporting the highest log-likelihood. However, if the
amount of parameters or grid points is large, the computational burden will be excessive.
Furthermore, there is no guarantee that, as the number of grid points increases, an equal
or better set of points will be found. Genetic algorithms can overcome these problems
by replicating how nature optimizes its processes. The MLGA macro is presented; it solves
a maximum likelihood estimation problem under normality through PROC GA, and the
resulting values can later be used as the starting values in SAS nonlinear procedures. As
will be demonstrated, this macro can avoid the usual trial and error approach that is
needed when convergence problems arise. Finally, it will be shown how this macro can
deal with complicated restrictions involving multiple parameters.
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1. Introduction

Nonlinear regression entails certain additional difficulties compared to linear regression. As
either the likelihood (or the sum of squares) need to be maximized/minimized numerically,
problems may appear. They may be caused by different reasons, and will in general have
an impact on the final estimates. Furthermore, if the likelihood is almost flat at some areas,
traditional derivative-based algorithms may encounter difficulties progressing until a maxi-
mum is found. On a different front, if the starting values are distant from this optimum, the
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algorithm may not head towards the correct set of parameters. If the likelihood has multiple
maxima, it may well happen that the algorithm will head towards the local maximum that is
closest to the initial value used.

In addition, derivative-based methods will iterate until the norm of the gradient is close to
zero, but there is no guarantee that the second order conditions are to be fulfilled when
that happens. The Hessian may well be not of full rank, or positive definite (for example
in saddle-points). It is evident that a good choice of the initial values can mitigate or evade
these problems. On the other hand, an incorrect choice may push these algorithms towards
these situations.

Most modern software implements the possibility of using a grid to choose these starting
values. Nevertheless, it is to be noted that there is no guarantee that, as the number of grid
points increases, a better solution can be found. A second problem is that, as the number of
grid-points or variables increase, the number of grid-points that are to be evaluated by the
algorithm will increase exponentially, rendering the approach useless in some scenarios.

Genetic algorithms do not need any of the assumptions required by derivative-based methods,
namely that the function is continuous up to its second derivative, that the initial values are
close to the maximum of the function to be optimized, that a second order approximation
to the function is good, that the function does not have sudden spikes or plateaus – except
for the only requirement that the function can be evaluated in all its domain. In addition,
they can avoid situations with multiple maxima, since the strategy resides in evaluating the
function to be optimized (in this case the log-likelihood) at multiple locations, and combining
that information to breed better generations. It is thus evident that a good possibility could
be using a genetic algorithm to compute these initial values, and then pass them on to some
derivative based procedure. In this fashion, the final value reported by the genetic algorithm
may be enhanced, the confidence intervals for each parameter would be reported, and the
second order conditions could be checked.

The use of genetic algorithms in nonlinear regression is not new. Kapanoglu, Koc, and
Erdogmus (2007) find out that the convergence properties of this approach are satisfactory
and the parameters that have the most influence on the residual sum of squares converge faster.
Dorsey and Mayer (1995) analyze the advantages of genetic algorithms in terms of econometric
models focusing on how local maxima can be avoided. Pan, Chen, Kang, and Zhang (1995)
highlight that these algorithms do not require auxiliary information, as traditional methods
do, and that they provide a very flexible methodology with convincing results. Gulsen, Smith,
and Tate (1995) study how genetic algorithms can be applied to diverse curve fitting models
with multiple parameters. They find that genetic algorithms provide good results and are
robust to random seeds, dataset sizes, or amount of variables. Olinsky, Quinn, Mangiameli,
and Chen (2004) apply genetic algorithms to nonlinear least squares problems.

MLGA macro reads a model structure specified by the user, and writes the corresponding
instructions to SAS (SAS Institute Inc. 2008) PROC GA. This macro can avoid many of the
aforementioned problems and usually finds the maximum of the log-likelihood. After this,
practically no further steps will be needed by a routine that maximizes the log-likelihood
(such as PROC NLMIXED). Consequently, the trial and error approach until some set of initial
values work properly is no longer required.
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2. Genetic algorithms

Over the past years, the reduction of computing prices and the availability of good software
implementations have led to a major increase in the use of stochastic search algorithms. These
methods share the property of using random numbers for finding the maximum/minimum of
a function. On most occasions, the solutions that are found using these algorithms cannot be
exactly replicated unless the exact same seed (which is used in the random number generators)
is used. Most of these algorithms need much less stringent assumptions than their non-
stochastic counterparts, or in some occasions, they do not require any assumptions at all.
Although these methods can be quite different, a specific subset of these algorithms are built
on the idea of replicating how nature optimizes processes. In particular, genetic algorithms
are based on the idea that each successive generation of a population can be interpreted as
the outcome of an optimization process.

The process of building better biological entities can be conceptualized as selecting an initial
population of individuals and then choosing usually the fittest of them iteratively. Con-
sequently, the set of chosen individuals will be composed of a larger group of the fittest
individuals, and a smaller one containing the rest of the population. This is of prime im-
portance, and it is likely one of the few ways nature tries to avoid local maxima. If all the
chosen individuals were to be part of the very best group, the population would probably fall
quickly into some local maximum, as the selected members of the population would probably
be almost identical. The selected population is thus chosen by weighting the genetic diversity
versus choosing the best members. After this selection is done, pairs are formed in order to
build offspring. Thus, the offspring carry a combination of genetic material of two individuals,
with some additional mutations that will usually render them unique. In this fashion, again,
the population is ensured to have some diversity. In practical terms, nature loops through
this process ad infinitum. Genetic algorithms mimic this selection process by assuming that
the members of the population are sets of parameters, using the pseudo-random number gen-
erator for computing the transition probabilities, evaluating the fit of the solutions by some
mathematical function that is to be optimized, and assuming there is a terminal criterion.
It is to be noted that practically no assumption is needed for applying this tool, except for
the obvious assumption that the fitness function can be computed for each observation. The
usual assumptions made by derivative-based methods (i.e., that the function is continuous up
to its second derivative, that the Hessian can be inverted, or that the initial values are close
to the optimal solutions) are not needed here. Much more detailed discussions about genetic
algorithms can be found in Whitley (1994); Forrest (1996); Wright (1991).

3. Program description

The macro was tested on SAS 9.2 64-bit and the examples presented here were obtained using
a SunOS 5.10 Unix machine. This macro should be included in the usual way %include

MLGA.sas. After that, it should be called

%MLGA(Data = , var_list = , bounds = , expr = , restrict = , gapressure = ,

out_table = , seed = , gen_size = );

Data specifies the dataset that has the data that will be used to estimate the model. var_list
should be a SAS dataset having a character variable named var with the list of the indepen-
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dent variables of the model. expr should be the mathematical formula for the model (the
dependent variable is obtained by parsing the left-hand side of this equation). bounds should
be a SAS dataset having a variable lbound and ubound respectively specifying the lower and
upper bound for each parameter (a parameter sd2 associated to the variance should always
be present), gapressure (optional) should be between 1 and 5, where 5 is the strongest evo-
lutionary pressure and 1 the minimum. Restrictions is an optional parameter that should
be a SAS dataset having a character variable restrict with the restrictions that should be
enforced. Out_table is the name for the output dataset containing the estimated values;
seed (optional) is the desired seed for reproducibility; and finally gen_size (optional) is the
population size; when more power is needed this should be increased (default is 400).

The macro works by first reading the parameters specified by the user, and checking that the
required datasets exist. Secondly, the log-likelihood maximization is written into SAS PROC

GA terminology. The equation for the model is parsed through a regular expression, and the
restrictions are finally incorporated into the procedure.

The genetic pressure parameter deserves some particular attention. As it has been mentioned,
more genetic pressure will produce generations which are the fittest, but they will probably
be very much alike. The immediate consequence of this is that the genetic algorithm may
suffer from premature convergence (see Section 6).

The most relevant part of the program is where the likelihood is computed for each obser-
vation, taking into account the restrictions. Note that in case restrictions are defined and
satisfied, the computation of the log-likelihood is to be carried out in the regular way. On the
contrary, if restrictions are present and not satisfied, then a large negative value is returned.
In this fashion, the algorithm will tend to favor solutions belonging to the relevant subspace.

sum1 = 0 ;

&rt. ;

%if %length(&restrict.) = 0 %then %do ;

do i = 1 to &obs_data. ;

yhat = &modif_formula. ;

loglik = &TY. ;

sum1 = sum1 + loglik ;

end ;

%end ;

%else %do;

if &list_res. then do ;

do i = 1 to &obs_data. ;

yhat = &modif_formula. ;

loglik = &TY. ;

sum1 = sum1 + loglik ;

end ;

end ;

else do ;

sum1 = -10000000000 ;

end ;

%end ;

return(sum1) ;
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where yhat is the predicted value using the parameters from the current iteration and loglik

is the log-likelihood for observation i.

4. Examples

4.1. Michaelis-Menten kinetics

This is one of the fundamental equations describing enzime kinetics. It states a relationship
between the reaction rate of enzymatic reactions to the concentration of a substrate. Interest-
ing discussions on the statistical aspect of this equation can be found in Raaijmakers (1987);
Ritchie and Prvan (1996). The model can be formulated as

v =
(Vmax × S)

Km + S
+ ε, ε ∼ N (0, σ2).

SAS Institute Inc. (2008) PROC NLIN documentation discusses possible strategies to obtain
initial values for this problem. Essentially, since the function is increasing in S, and as S
increases the limit is Vmax, the largest observed value should be taken as Vmax. Regarding
Km doing some replacements and using a grid it is possible to obtain a reasonable range of
values for it.

In Example 1 (in the replication files) it can be seen that when, for example n = 30 and the
true values are: Vmax = 158, Km = 0.07 and σ2 = 1 and the starting values are Vmax = 40,
Km = 40 and σ2 = 1.5, PROC NLMIXED reports problems with final estimates very distant
from the true ones (Vmax = 172590, Km = −121743, σ2 = 32387) (also problems with the
Hessian appear).

Before calling the MLGA macro, two simple datasets need to be created. The first one should
hold a list of coefficients with a lower and upper bound. The second dataset should hold a
list of the independent variables. Finally, the macro should be called.

data coefi ; length coefficient $50. ;

coefficient = "Vmax" ; lbound = 0.1 ; ubound = 1000 ; output ;

coefficient = "Km" ; lbound = 0.1 ; ubound = 500 ; output ;

coefficient = "sd2" ; lbound = 0.2 ; ubound = 10 ; output ;

run ;

data list_var ;

length var $50. ;

var = "S"; output ;

run ;

%MLGA( data = SIMU_DATA_MM ,

var_list = list_var ,

bounds = coefi ,

expr = "y = ( Vmax * S) / ( Km + S )" ,

out_table = XDG ,

seed = 11

);
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Parameter True value MLGA estimated lbound ubound

Vmax 158 158.427 0.1 1000
Km 0.07 0.100 0.1 500
σ2 1 0.963 0.2 10

Table 1: Michaelis-Menten model.

Furthermore, the MLGA macro solves this problem easily as can be verified in Table 1. Note
that MLGA is searching coefficients in a broad space, compared to PROC NLMIXED which tends
to fail when some of those initial values are = 40.

4.2. Four parameter Emax model

This model is widely used to model dose-relationships of certain drugs (for example Dette,
Melas, and Wong 2005; Accorsi-Mendonça, Corrêa, Paiva, Souza, Laurindo, and De Oliveira
2012; Sunzel, Paalzow, Berggren, and Eriksson 1988). The typical formulation of the model
is as follows:

v = E0 +
Emax× (Doseβ)

(ED50β) + (Doseβ)
+ ε, ε ∼ N (0, σ2).

Similar to the previous example, two datasets need to be created.

data coefi ; length coefficient $40.;

coefficient = "beta" ; lbound = 0.1 ; ubound = 50 ; output;

coefficient = "E0" ; lbound = 0.1 ; ubound = 1000 ; output;

coefficient = "ED50" ; lbound = 0.1 ; ubound = 1000 ; output;

coefficient = "Emax" ; lbound = 0.1 ; ubound = 1000 ; output;

coefficient = "sd2" ; lbound = 0.2 ; ubound = 10 ; output;

run;

data list_var ;

length var $20. ;

var = "Dose" ; output ;

run ;

%MLGA( data = SIMU_DATA_EM ,

var_list = list_var ,

bounds = coefi ,

expr = "predx = E0 + (( Emax * ( Dose**beta ))/(( ED50**beta )

+ ( Dose**beta )))" ,

out_table = XDG ,

seed = 11

);

PROC NLMIXED shows problems when the true values are E0 = 183, β = 6.22, ED50 = 5.06,
Emax = 37, s2 = 1 and the starting values are for example E0 = 250, β = 0.1, ED50 =
2.06, Emax = 130, s2 = 1, reporting final estimates very distant from the true ones, and
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Parameter True value MLGA estimated lbound ubound

E0 183 185.409 0.1 1000
β 6.22 5.884 0.1 50

Emax 37 34.673 0.1 1000
ED50 5.06 5.161 0.1 1000
σ2 1 1.429 0.2 10

Table 2: Emax model.

with problems in the Hessian. Other sets of initial values such as: E0 = 183, β = 6.22,
ED50 = 5.06, Emax = 130, s2 = 1, have problems needing more than 200 iterations and
reporting a warning, with estimates very different from the true ones. On the contrary, the
MLGA macro solves this problem easily as can be verified in Table 2. These results can be
checked in Example 2 in the replication files.

5. Restrictions

Restrictions are frequently necessary in nonlinear models, mostly for two different reasons:
in order to incorporate prior knowledge into the model (the magnitude or sign of a certain
coefficient may already be known), or to ensure proper identification of it. A clear example of
this last case is the bi-exponential model. It is used extensively to model drug concentrations
as functions of time, for example in Sekimoto, Fukui, and Fujita (1997); Zhang, Sigmund,
Rusinek, Chandarana, Storey, Chen, and Lee (2012); Williams, Buhl, and Mody (2012). This
model is not identified, since the pairs (A,α1) and (B,α2) are exchangeable. Naturally, all
algorithms are expected to fluctuate between these two pairs of coefficients.

z = α1× (exp(−A× x)) + α2× (exp(−B × x)) + ε, ε ∼ N (0, σ2).

Consequently, a restriction is usually added to ensure proper identification of the model:

α1 > α2 (1)

Even if the identification issues are resolved, initial values may be difficult to obtain. Bonate
(2011, p. 114) and Pinheiro and Bates (2000, p. 514) show how using some algebra and an
auxiliary linear regression in logs, reasonable initial values can be obtained. With the genetic
algorithm, these calculations are no longer required.

data coefi ; length coefficient $40. ;

coefficient = "alpha1" ; lbound = 0.0 ; ubound = 100 ; output ;

coefficient = "alpha2" ; lbound = 0.0 ; ubound = 100 ; output ;

coefficient = "A" ; lbound = 0.1 ; ubound = 1000 ; output ;

coefficient = "B" ; lbound = 0.1 ; ubound = 1000 ; output ;

coefficient = "sd2" ; lbound = 0.2 ; ubound = 10 ; output ;

run ;

data list_var ;

length var $20. ;
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Parameter True value Starting value PROC NLMIXED estimated MLGA restricted

A 70 3 49.817 70.513
B 50 3 70.032 50.991
α1 0.5 0.01 0.049 0.520
α2 0.05 0.01 0.495 0.051
σ2 1 1 0.920 0.906

Table 3: Bi-exponential model with inverted coefficients for PROC NLMIXED.

var = "Dose" ; output ;

run ;

data restrictions ;

restriction = "alpha1>alpha2" ;

output ;

run ;

%MLGA( data = data_biexp,

var_list = list_var ,

bounds = coefi ,

expr = "predx = A * exp(-alpha1 * Dose) +

B * exp(-alpha2 * Dose)",

out_table = XDG ,

restrict = restrictions ,

gen_size = 800 ,

seed = 11

);

The macro is called the standard way, with the only exception that an additional restriction
table needs to be passed. This example can be found in Example 3 in the replication file.

6. Genetic pressure

In general, a genetic algorithm that applies mutation operations or crosses solutions infre-
quently in order to build offspring will be very selective. This means that the solutions
carried across iterations will have on average a very good score on the fitness function. But
the problem is that they will be very much alike, with the dire consequence of having a major
risk of suffering premature convergence. On the other hand, a very diverse population of pa-
rameters will explore the solution space much better, with the consequence of having a very
low chance of achieving the optimum. It is thus evident that a balance needs to be achieved.
A proper strategy could be to force each solution to compete in a tournament of size x and
then retain the parameter set that has won that tournament. The members that compete in
each tournament are selected at random.

In this macro, there is an optional parameter called genetic_pressure that should be an
integer between 1 and 5 (1 being the lowest genetic pressure and 5 the highest). This param-
eter alters certain aspects of the genetic algorithm. For instance, it affects the delta mutation
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genetic_pressure Log-likelihood E0 β Emax ED50 σ2

1 −1526.331 185.409 5.884 34.673 5.161 1.429
2 −5719.118 217.437 50.000 0.236 1000.000 10.000

Table 4: Emax model with different genetic pressure.

vector (the values that are summed to each perturbed solution) – a higher genetic pressure
will add a larger value equal to 0.2/genetic_pressure to each element. On the contrary,
when this parameter is close to 5, practically nothing will be added to perturbed solutions. In
addition, this parameter affects the tournament size. When the tournament size is big, there
is a high probability that a good solution is present and will win the tournament, discard-
ing the other solutions. On the other hand, in small tournament sizes it is likely that only
bad solutions are present, consequently increasing the probability that a bad solution moves
forward to the next generation. Finally the probability that two solutions are paired and
offspring is built is modified according to this parameter as 0.65/genetic_pressure meaning
that when the genetic pressure is high, solutions will most likely be passed as they are to the
next generation. As an example of how relevant this impact can be, returning to Section 4.2,
and running it with genetic_pressure = 1 and genetic_pressure = 2 yields the following
results in Table 4 (see Example 4 in the replication files).

Clearly, the poor mixing induced by the large value of this macro parameter produces incorrect
results in this case. The optimal value for this parameter is an unknown a priori, and depends
on the model and the data. Naturally, it is fairly straightforward to call this macro looping
through a couple of values in order to determine the optimal one.

7. Conclusion

Numerical problems may appear when estimating nonlinear regression models, thus requiring
a trial and error approach until correct convergence is detected. In SAS, it is customary to
use the TO-BY option in the PARMS statement, but it is generally impractical for large grids.
Moreover, there is no guarantee that the log-likelihood will increase as the number of grid
points augments. The MLGA macro is presented; it allows to search for values that maximize
the log-likelihood under Gaussian residuals in a reasonable large space without needing the
usual assumptions required by most maximization methods. In addition, it can also handle
very complicated multi-parameter restrictions. The resulting values produced by it may be
used later as starting values for derivative-based numerical maximization algorithms.
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