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Abstract

Response-adaptive randomization designs are becoming increasingly popular in clinical
trial practice. In this paper, we present RARtool, a user interface software developed
in MATLAB for designing response-adaptive randomized comparative clinical trials with
censored time-to-event outcomes. The RARtool software can compute different types of
optimal treatment allocation designs, and it can simulate response-adaptive randomization
procedures targeting selected optimal allocations. Through simulations, an investigator
can assess design characteristics under a variety of experimental scenarios and select the
best procedure for practical implementation. We illustrate the utility of our RARtool
software by redesigning a survival trial from the literature.
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1. Introduction

Response-adaptive randomization (RAR) in clinical trials refers to sequential modification
of treatment randomization probabilities based on the history of treatment assignments and
responses from patients in the trial, with the goal of assigning more patients to the bet-
ter treatment while maintaining important statistical properties of the trial design (Hu and
Rosenberger 2006). Modern research on RAR has focused on the development of optimal
RAR procedures for multi-objective clinical trials with two or more treatment arms using a
template of Hu and Rosenberger (2003). The idea is to determine an optimal allocation for the
given experimental objectives (Sverdlov and Rosenberger 2013) and find a fully randomized
RAR procedure with minimal variability that converges to the chosen optimal allocation (Hu,
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Rosenberger, and Zhang 2006). Although optimal RAR designs frequently have more desir-
able statistical properties than traditional fixed randomization designs, implementation of the
former designs in clinical trials has been limited. One of the reasons is lack of user-friendly
statistical software which would allow an experimenter to visualize design characteristics un-
der a variety of hypothetical experimental scenarios and select an optimal procedure for use
in practice.

In this paper, we present RARtool, a user-friendly software package, developed in MAT-
LAB (The MathWorks, Inc. 2011), to facilitate the design of randomized comparative clinical
trials with time-to-event outcomes, by implementing statistical methodology from several re-
cent papers (Zhang and Rosenberger 2007; Sverdlov, Tymofyeyev, and Wong 2011; Sverdlov,
Ryeznik, and Wong 2012, 2014). The highlights of RARtool are as follows. (1) It can compute
optimal allocation designs and values of different statistical efficiency criteria for user-selected
sets of experimental parameters. Such optimal allocations provide “benchmarks” for com-
parison of various allocation designs. (2) It can perform Monte Carlo simulations of RAR
procedures targeting selected optimal allocations. Through simulations, an investigator can
assess the performance of RAR procedures under a variety of standard to worst-case scenarios
and select the best procedure for practical implementation. Therefore, the RARtool package
is intended to fill the gap between methodology and implementation of optimal RAR designs
in time-to-event trials.

The outline of the paper is as follows. Section 2 gives statistical background material. In
Section 3, we describe the structure of the RARtool package, and in Section 4, we illustrate
its utility by redesigning a survival trial from the literature. In Section 5, we give a summary
and discuss possible extensions.

2. Statistical background

Hu and Rosenberger (2003) proposed a mathematical template for developing optimal RAR
procedures. Their template consists of three major steps:

1. Deriving an optimal allocation to satisfy selected experimental objectives. The objec-
tives may include most accurate estimation of treatment contrasts, maximizing power
of a statistical test, or minimizing total hazard in the study subject to appropriate
constraints.

2. Constructing a RAR procedure with minimal variability and high speed of convergence
to the chosen optimal allocation.

3. Analyzing clinical trial data following the chosen RAR procedure.

Our software development process follows this template for clinical trials with censored time-
to-event outcomes.

2.1. Optimal allocation

Consider a clinical trial with K ≥ 2 treatment arms and time-to-event primary outcomes. We
assume a parallel group design with n subjects (n is fixed and pre-determined by budgetary
and logistical considerations) for which nk subjects are to be assigned to treatment k, where
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k = 1, . . . ,K and
∑K

k=1 nk = n. Many survival trials in the literature use designs with K = 2
or K = 3 treatment arms.

Throughout the paper we assume that event times follow a parametric distribution with
probability density function f(t|θ) and survivor function S(t|θ) =

∫∞
t f(s|θ)ds, where θ is

a vector of unknown model parameters. In time-to-event trials observations are likely to be
right-censored by some fixed or random censoring time (Lawless 2003). For the ith patient
in group k, let Tik denote the event time, Cik denote the censoring time, tik = min(Tik, Cik)
denote the actual observed time, and δik = 1{tik=Tik} denote the event indicator (δik = 1, if
Tik ≤ Cik and δik = 0 otherwise). The individual observations (tik, δik) are assumed to be
independent for i = 1, . . . , nk and k = 1, . . . ,K. The likelihood function is given by

L(Data|θ) =

K∏
k=1

nk∏
i=1

{f(tik|θ)}δik{S(tik|θ)}1−δik .

The maximum likelihood estimator can be determined by solving the system of score equa-
tions ∂

∂θ logL(Data|θ) = 0, and it is important to note that E{ ∂∂θ logL(Data|θ)} = 0. The
key object in optimal design theory is the Fisher information matrix given by M(θ) =

−E
{

∂2

∂θ∂θ>
logL(Data|θ)

}
, whose inverse provides the lower bound on the variance of an

unbiased estimator of θ. By minimizing the inverse of the Fisher information matrix by
choice of design one can achieve the most accurate inference for the parameters of interest.

In this paper we consider two different parametric model for event times and different opti-
mization problems.

Exponential model

The exponential distribution is frequently used in survival analysis because it represents a
natural starting point for development of optimal allocation designs for time-to-event trials
(Lawless 2003).

For the ith patient in group k we assume that the patient’s event time Tik follows an ex-
ponential distribution with mean θk, k = 1, . . . ,K. Then f(tik|θ) = θ−1

k exp(−tik/θk),
S(tik|θ) = exp(−tik/θk), and θ = (θ1, . . . , θK)>. The likelihood function is

L(Data|θ) =

K∏
k=1

θ−∆k
k exp(−Tk/θk), (1)

where ∆k =
∑nk

i=1 δik is the number of events in group k and Tk =
∑nk

i=1 tik is the total

observed time for group k. The maximum likelihood estimator of θk is θ̂k = Tk/∆k. Define
εk = P(Tik ≤ Cik), the probability of observing the event before censoring in group k. The
expression for εk depends on the censoring mechanism used in the trial; in general εk is a
function of θ. Let ρ = (ρ1, . . . , ρK)> denote the design that allocates the proportion ρk of
the total subjects to treatment group k, with the conditions 0 ≤ ρk ≤ 1 and

∑K
k=1 ρk = 1.

For a trial with n patients, this means roughly nk = nρk are assigned to treatment k subject
to
∑K

k=1 nk = n. Then the Fisher information matrix for θ using design ρ is the diagonal
matrix

M(ρ,θ) = n · diag

{
ρ1ε1
θ2

1

, . . . ,
ρKεK
θ2
K

}
. (2)
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An experimental design problem is to find an optimal allocation vector ρ∗ = (ρ∗1, . . . , ρ
∗
K)> as

a solution to some formal optimization problem involving the inverse of (2). We will consider
four different optimal allocation rules that address different study objectives.

Suppose the primary objective of the study concerns efficient estimation of the contrasts
of (K − 1) experimental treatments 2, . . . ,K versus the control treatment 1. Let A>θ =
(θ2 − θ1, . . . , θK − θ1)>, where A> is the appropriate (K − 1) ×K matrix of contrasts. Let
θ̂ = (θ̂1, . . . , θ̂K)>. The variance-covariance matrix of A>θ̂ is VAR(A>θ̂) = A>M−1(ρ,θ)A,
and we want to minimize it, in some sense, to achieve most accurate inference for A>θ.

(Exp-DA) The DA-optimal allocation minimizes the criterion log(det{A>M−1(ρ,θ)A})
(Atkinson 1982). Such an allocation results in the smallest volume of the confidence
ellipsoid for A>θ. The analytical description of the DA-optimal allocation is given in
Sverdlov et al. (2011, p. 2893).

(Exp-AA) The AA-optimal allocation minimizes the criterion trace{A>M−1(ρ,θ)A}, and
the AA-optimal treatment allocation proportions are found as

ρ∗1 =
θ1

√
(K − 1)/ε1

θ1

√
(K − 1)/ε1 +

∑K
i=2 θi/

√
εi
,

ρ∗k =
θk/
√
εk

θ1

√
(K − 1)/ε1 +

∑K
i=2 θi/

√
εi
, k = 2, . . . ,K.

When K = 2, the DA-optimal and AA-optimal allocation designs coincide and are
referred to as Neyman allocation:

ρ∗1 =
θ1/
√
ε1

θ1/
√
ε1 + θ2/

√
ε2

and ρ∗2 = 1− ρ∗1. (3)

Suppose the primary objective of the study concerns testing the hypothesis of homogeneity
among treatment effects H0: θc = A>θ = 0 versus HA: θc 6= 0. Let θ̂c = A>θ̂ and consider

the Wald test statistic Wn = θ̂cΣ̂
−1
n θ̂c, where Σ̂n is a consistent estimator of Σn = VAR(θ̂c) =

A>M−1(ρ,θ)A. Let B ∈ [0, 1/K] be the minimum desired proportion of patients for each
treatment group and w = (w1, . . . , wK)> be a vector of user-defined positive weights which
may be functions of θ. Consider the following optimization problem:

minimize
∑K

i=1wini
subject to ni

/∑K
j=1 nj ≥ B, i = 1, . . . ,K,

and θcΣ
−1
n θc ≥ η,

(4)

where η > 0 is some constant (the optimal solution will not depend on η). This is a well-
defined nonlinear programming optimization problem with a unique solution (Tymofyeyev,
Rosenberger, and Hu 2007). We are interested in two choices of the vector of weights w:

(Exp-NP1) Nonlinear Programming 1 (NP-1) allocation solving (4) with w = (1, . . . , 1)>.
Such an allocation maximizes power of the Wald test (for a given sample size n) under
the restriction that the proportion for each treatment group is at least B. The closed-
form solution is available in Sverdlov et al. (2011, Theorem 2, p. 2895).
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(Exp-NP2) Nonlinear Programming 2 (NP-2) allocation solving (4) withw = (θ−1
1 , . . . , θ−1

K )>.
Such an allocation minimizes total expected hazard in the study subject to the mini-
mum constraints on the treatment proportions and power. The analytical solution is
unknown, but a numerical solution can be found using standard optimization software.

Notice that when K = 2, allocation (Exp-NP1) reduces to Neyman allocation (3), and allo-
cation (Exp-NP2) is as follows (Zhang and Rosenberger 2007):

ρ∗∗1 =

√
θ3

1/ε1√
θ3

1/ε1 +
√
θ3

2/ε2
and ρ∗∗2 = 1− ρ∗∗1 . (5)

Weibull model

The Weibull distribution is a flexible and useful model in parametric survival analysis which
allows for different hazard shapes (Carroll 2003; Cheung, Lurdes, Wathen, and Thall 2006).
We shall consider several optimal allocation designs for Weibull time-to-event outcomes.

As in Sverdlov et al. (2014), let Tik > 0 denote the event time for the ith patient in group k.
For a log-transformed Tik we assume the following linear model:

log Tik = µk + bWik, (6)

where Wik are independent, identically distributed errors with probability density f(w) =
ew exp (−ew). In (6), µk represents the effect of treatment k, b is the scale parameter assumed
to be common to the K groups and θ = (µ1, . . . , µK , b)

> is the vector of unknown parameters.
Note that when b = 1, we have an exponential model; otherwise we have a Weibull model
which allows for different hazard patterns. Let zik = (log tik − µk)/b be standardized log-
transformed observed times. The likelihood function for θ is

L(Data|θ) =

K∏
k=1

nk∏
i=1

{b−1ezik exp (−ezik)}δik{exp (−ezik)}1−δik . (7)

The maximum likelihood estimator θ̂ is found numerically from the (K + 1)-system of score
equations ∂

∂θ logL(Data|θ) = 0. The Fisher information matrix for θ is

M(ρ,θ) =
n

b2

(
diag{ρ1ε1, . . . , ρKεK} x

x>
∑K

k=1 ρk(εk + ck)

)
, (8)

where x = (ρ1a1, . . . , ρKaK)>, εk = P(δik = 1), ak = E (zike
zik), ck = E

(
z2
ike

zik
)
, and each of

the εk, ak and ck is a function of θ and the censoring mechanism used in the trial. Our goal
is to find a vector of treatment allocation proportions which minimizes some convex criterion
of the inverse of (8).

(Weib-CO) Compound optimal allocation provides trade-off between D-optimality and ef-
ficiency in estimating the underlying hazard pattern (via the parameter b) (Sverdlov
et al. 2014). Consider the following dual-objective optimization problem:{

min
ρ1,...,ρK

αΦ1(ρ) + (1− α)Φ2(ρ)

subject to
∑K

k=1 ρk = 1,
(9)
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where Φ1(ρ) = − log
∣∣M−1(ρ,θ)

∣∣ is the D-optimality criterion,

Φ2(ρ) = − log(
K∑
k=1

ρkdk)

(dk = εk + ck − a2
k/εk, k = 1, . . . ,K) is a criterion whose optimization leads to the

most accurate inference for the parameter b, and 0 ≤ α ≤ 1 is a user-defined constant
determining the trade-off between Φ1(ρ) and Φ2(ρ). The values of α = 0 and α = 1
correspond to minimization of Φ2(ρ) and Φ1(ρ), respectively.

If α = 0, then the optimal allocation places all patients to the treatment group with
maximum value of dk (or assigns equal proportions if there are several such treatments).
For 0 < α ≤ 1, the optimization problem (9) has the unique solution which can be found
from the system of K nonlinear equations

α

ρk
+

dk∑K
k=1 ρkdk

= αK + 1, k = 1, . . . ,K.

(Weib-WDO) Weighted distance optimal allocation provides trade-off betweenD-optimality
and some ethical criterion (Sverdlov et al. 2014). Let ρD = (ρD1, . . . , ρDK)> denote the
D-optimal allocation vector and ρE = (ρE1, . . . , ρEK)> denote an allocation vector that
is desirable from an ethical point of view. For instance, if shorter event times signify
clinical efficacy (e.g., recovery), then an investigator may want to choose the components
of ρE as follows:

ρEk =
{exp(−µk/b)}ν∑K
j=1{exp(−µj/b)}ν

, k = 1, . . . ,K, (10)

where ν ≥ 0 is a user-specified parameter controlling the degree of skewness to the
better treatment. With allocation (10), the condition µi ≤ µj implies ρEi ≥ ρEj , with
equality if and only if µi = µj . A similar idea can be applied for trials where longer
event times are clinically desirable (e.g., survival trials).

To provide trade-off between ρD and ρE , one can consider minimizing a weighted dis-
tance αλ(ρ,ρD) + (1− α)λ(ρ,ρE), where λ(·, ·) is some distance measure between two
vectors of allocation proportions and 0 ≤ α ≤ 1 is a user-selected constant which de-
termines the trade-off between the inferential and ethical criteria (if α = 1, the optimal
solution is ρD; if α = 0, the optimal solution is ρE ; and if 0 < α < 1, then we have an
allocation that provides a trade-off between efficiency and ethics).

The choice of λKL(ρ, ρ̃) =
∑K

k=1 ρk log(ρk/ρ̃k) (Kullback-Leibler directed divergence)
yields the optimal solution as a weighted geometric mean of the components of ρD and
ρE :

ραk =
(ρDk)

α(ρEk)
1−α∑K

j=1(ρDj)α(ρEj)1−α
, k = 1, . . . ,K. (11)

If we select a quadratic distance metric λ2(ρ, ρ̃) =
∑K

k=1(ρk− ρ̃k)2, the optimal solution
is an arithmetic mean of the components of ρD and ρE :

ραk = αρDk + (1− α)ρEk, k = 1, . . . ,K. (12)
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When we have K = 2 treatment groups, we can explicitly obtain some useful allocations for
model (6); (see Zhang and Rosenberger 2007; Sverdlov et al. 2012):

(Weib-DA) DA-optimal allocation for most accurate estimation of the treatment contrast
µ2 − µ1, which minimizes

VAR(µ̂2 − µ̂1) =
1

ρ1ε1
+

1

(1− ρ1)ε2
+

(a1/ε1 − a2/ε2)2

ρ1d1 + (1− ρ1)d2
,

with respect to ρ1 ∈ (0, 1). The point of the minimum can be found numerically once
we have nominal values of εk, ak and dk, k = 1, 2.

(Weib-HR) Hazard ratio-optimal allocation for most accurate estimation of the log-hazard
ratio (µ2 − µ1)/b, which minimizes

VAR

(
µ̂2 − µ̂1

b̂

)
=

1

ρ1ε1
+

1

(1− ρ1)ε2
+

(a1/ε1 − a2/ε2 + (µ1 − µ2)/b)2

ρ1d1 + (1− ρ1)d2
,

with respect to ρ1 ∈ (0, 1). The point of the minimum can be found numerically once
we have nominal values of b, εk, ak, dk and µk, k = 1, 2.

(Weib-ZR1) The allocation minimizing the average hazard of a Weibull distribution subject
to the restriction on the non-centrality parameter of the Wald test; see Formula 14 on
page 162 in Zhang and Rosenberger (2007).

(Weib-ZR2) The allocation minimizing the average hazard of a Weibull distribution assum-
ing the common constant follow-up time for the patients subject to the restriction on
the non-centrality parameter of the Wald test; see Formula 15 on page 163 in Zhang
and Rosenberger (2007).

2.2. Response-adaptive randomization

The optimal allocation designs discussed in Section 2.1 depend on model parameters θ which
are unknown at the trial onset. For implementing optimal allocation in practice, one can
sequentially estimate θ using accumulating outcome data from patients in the trial and use
RAR for treatment allocation. The RAR procedure should have minimal variability and high
speed of convergence to the chosen optimal allocation (Hu and Rosenberger 2003).

In time-to-event trials, there is a natural delay in observing responses. The delay time for
a patient is the patient’s time-to-event outcome (minimum between the event time and the
censoring time). A RAR procedure should account for such delays. In general, RAR is
appropriate only when responses are “not significantly delayed” in the accrual pattern; e.g.,
when 60% or more of study subjects contribute outcome data throughout the recruitment
period (Hu, Zhang, Cheung, and Chan 2008). In particular, for uniform or exponential patient
accrual patterns and censored exponential or Weibull time-to-event outcomes, the asymptotic
properties of certain RAR procedures are still valid (Zhang and Rosenberger 2007).

Figure 1 is a schematic illustration of a RAR procedure. Suppose the trial objectives have
been quantified and the optimal target allocation is chosen as ρ = (ρ1(θ), . . . , ρK(θ))>. At
the beginning of the trial there are no data; therefore initial treatment allocations must be
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non-adaptive. The first Km0 patients (where m0 is some small positive integer) are random-
ized among treatments 1, . . . ,K with equal probability. The constant m0 is user-defined; it
should be sufficiently large so that maximum likelihood estimators are attainable. In prac-
tice, simulations can be used to elicit the value of m0. Consider the point in the trial when
i − 1 (≥ Km0) patients have been randomized among K treatment groups and suppose pa-
tient i enrolls into the trial. Let θ̂i−1 denote the maximum likelihood estimator of θ and
ρ̂i−1 = (ρ1(θ̂i−1), . . . , ρK(θ̂i−1))> denote the estimated target allocation based on the treat-
ment assignments and responses from i − 1 patients in the trial. Then the ith patient is
randomized among the treatment groups with probabilities Ψi = (Ψ1(ρ̂i−1), . . . ,ΨK(ρ̂i−1))>,
where Ψk(·) are some appropriately chosen functions satisfying 0 ≤ Ψk(·) ≤ 1 and∑K

k=1 Ψk = 1.

The choice of Ψ = (Ψ1(·), . . . ,ΨK(·))> is essential to ensure convergence to the target al-
location. There are two types of optimal RAR procedures with established statistical prop-
erties that can be used for this purpose: the doubly-adaptive biased coin design (DBCD;
Hu and Zhang 2004) and optimal RAR designs based on urn models (Zhang, Hu, Che-
ung, and Chan 2011). In our software development we implement the former approach.
Let ρ = (ρ1(θ), . . . , ρK(θ))> be the target allocation, θ̂i−1 be the MLE of θ and ρ̂i−1 =
(ρ̂1,i−1, . . . , ρ̂K,i−1)> be an estimate of ρ based on available data from i − 1 patients in

the trial, where ρ̂k,i−1 = ρk(θ̂i−1), k = 1, . . . ,K. Also, let N i−1/(i − 1) = (N1,i−1/(i −
1), . . . , NK,i−1/(i − 1))> denote the treatment allocation proportions after i − 1 patient as-
signments. Then the DBCD treatment randomization probabilities for the ith patient are as
follows:

Ψk,i =
ρ̂k,i−1

(
ρ̂k,i−1

Nk,i−1/(i−1)

)γ
∑K

j=1 ρ̂j,i−1

(
ρ̂j,i−1

Nj,i−1/(i−1)

)γ , k = 1, . . . ,K, (13)

where γ is a user-specified parameter controlling the degree of randomness of the proce-
dure. Hu and Zhang (2004) showed that under widely satisfied conditions (ρ(θ) must be
a continuously differentiable vector function and twice continuously-differentiable in a small
neighborhood of the true value of θ), the procedure (13) works as intended: the allocation
proportion vector N i/i converges almost surely (as i → ∞) to ρ and has an asymptotically
normal distribution. Hu et al. (2008) further showed that these large-sample properties are
unaffected by delayed response under the condition that the outcomes occur “not too far out”
in the accrual pattern. A “rule of thumb” is that 60% or more of the study patients should
have their outcomes throughout the accrual period.

We make some further important remarks here. First, at the point of entry of the ith patient,
some of the previous i− 1 patients may not have responded yet, and therefore θ̂i−1 will be po-
tentially computed based on data from fewer than i− 1 patients. Second, since estimation of
θ frequently involves numerical optimization of the log-likelihood function, the algorithm may
not converge and θ̂i−1 may not be attainable. Should this happen, the treatment assignment
of the ith patient will be made with equal probability. Third, an investigator must decide
how frequently treatment randomization probabilities will be updated throughout the course
of the trial. One possibility is a fully sequential procedure, for which the RAR algorithm in
Figure 1 is applied for every patient entering the trial. This approach utilizes all available
data in the design; however, it requires that data are unblinded throughout the study, which
may compromise the integrity of the trial results. Another possibility is a two-stage design:
at the first stage, Km0 patients are randomized equally among K treatments, and based on
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Randomize initial Km0 patients to
treatments 1,…,K with equal probability

Patient i (i> Km0) enters the trial

Retrieve available data from
previous (i-1) patients.

Is there at least 1 event in
each treatment group?

 Estimate the target allocation vector: )θ̂ρ(ρ̂ 1-i1-i 

 Randomize patient i to treatments 1,…,K with
probabilities ))ρ̂(ψ),...,ρ̂((ψψ 1-iK1-i1i 

Compute the M.L.E. 1-iθ̂

Did the algorithm
converge?

Randomize patient i to
treatments 1,…,K with equal

probabilities: /K)(1/K,...,1ψi 

STOP

YES

NO

NO

YES

Has the target sample size
been reached (i=n)?

NO

YES

Repeat for
the next
patient

Figure 1: An algorithm for response-adaptive randomization with time-to-event outcomes. In
the algorithm, m0 is a user-defined, small positive integer elicited via simulation.

their data randomization probabilities are adjusted for the patients at the second stage. We
pursue a multi-stage design by requiring that the RAR algorithm in Figure 1 is applied after
every m, 2m, 3m, . . . patients, where m is some positive integer. This approach includes both
a fully sequential procedure (if m = 1) and a two-stage design (if m = n/2) as special cases.

2.3. Data analysis following response-adaptive randomization

While RAR generates complex data structures as treatment assignments are no longer inde-
pendent, the asymptotic properties of estimators and tests are valid under widely satisfied
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conditions (Hu et al. 2006). The DBCD procedure (13) has the following important asymp-
totic properties:

� The maximum likelihood estimator θ̂n is strongly consistent for θ and follows an asymp-
totically normal distribution.

� The vector of treatment allocation proportions Nn/n is strongly consistent for ρ and
has an asymptotically normal distribution with variance-covariance matrix

Σ =
1

1 + 2γ
Σ1 +

2(1 + γ)

1 + γ
ΣLB,

where Σ1 = diag{ρ1(θ), . . . , ρK(θ)}−ρρ> and ΣLB is the lower bound on the variance
of a RAR procedure targeting ρ. The expression for ΣLB depends on the gradient of
ρ(θ) and it can be found using the methodology of Hu and Zhang (2004). Note that as
γ → ∞, we have Σ = ΣLB, that is, the DBCD procedure is asymptotically best for ρ
(Hu et al. 2006), but such a procedure is almost deterministic. In our development we
use γ = 2, as suggested by Rosenberger and Hu (2004).

Since the DBCD procedure has established asymptotic properties, one can perform statistical
inference for θ using standard asymptotic techniques. For instance, treatment contrasts can
be tested using the Wald test and asymptotic confidence intervals for different subsets of θ
can be constructed using normal approximations. It is important, however, to investigate
accuracy of large-sample approximations for small and moderate sample sizes via simulation.

3. The RARtool package

The RARtool package has been developed in MATLAB. Our main motivation for using MAT-
LAB as a basis for software development is that MATLAB has an excellent software optimiza-
tion toolbox which is well-suited for fast and accurate implementation of numerical methods
that are invoked repeatedly in RAR algorithms. MATLAB also has an easy-to-use tool to
compile a GUI interface and create stand-alone executable files and display results in an
appealing way.

There are two ways to run the RARtool package. The first way is to launch the application di-
rectly from MATLAB. The second way is to create a stand-alone executable file from MATLAB
and launch this executable file. In both cases, it is assumed that the MATLAB Compiler Run-
time (MCR) version 7.16 or higher is installed; if it is not, the user should run MCR Installer,
e.g., located in <matlabroot>\toolbox\compiler\deploy\win32\MCRInstaller.exe on
Windows. For more information about MCR, see http://www.mathworks.com/products/

compiler/mcr/.

Before running RARtool, a user should copy the RARtool project files into some folder that
must be added to the MATLAB path (File->Set Path in the main MATLAB window). The
project files are as follows:

1.allocExponential.m – calculates optimal allocation designs for different optimality cri-
teria in trials with exponential event times.

2.allocWeibull.m – calculates optimal allocation designs for different optimality criteria in
trials with Weibull event times.

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/
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3.effExponential.m – calculates efficiency of an allocation design in trials with exponential
event times.

4.effWeibull.m – calculates efficiency of an allocation design in trials with Weibull event
times.

5.mle.m – calculates maximum likelihood estimates of θ for exponential and Weibull event
times.

6.powerExponential.m – calculates power of an allocation design in trials with exponential
event times.

7.powerWeibull.m – calculates power of an allocation design in trials with Weibull event
times.

8.rarsimtool.m – provides the graphical user interface (GUI) for trial simulations.

9.rartool.m – provides the GUI to get theoretical and simulated characteristics of the trial.

10.setrsp.m – generates random time-to-event outcomes.

11.trsetup.m – sets up simulated trial options (used by rarsimtool.m).

12.trsimulate.m – simulates response-adaptive trials (used by rarsimtool.m).

To run RARtool directly from MATLAB, one should type the command

rartool

in the MATLAB Command Window and press ENTER. The GUI window will open.

To create a stand-alone executable file, one should type the command

mcc -m rartool

in the MATLAB Command Window and press ENTER. The executable file rartool.exe will
be created in the main MATLAB folder for Windows. After one launches rartool.exe, the
GUI window will open. The following subsections give a detailed description of the GUI
components of RARtool.

3.1. Configuration of clinical trial parameters

Figure 2 displays the first level menu options of RARtool. A user should specify:

(i) Time-to-event distribution (exponential or Weibull).

(ii) Number of treatment arms (K = 2 or K = 3).

Once the choices in (i) and (ii) are made, the following options become available:

(iii) Specify the vector of underlying model parameters θ.
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(1) Time-to-event distribution
(exponential or Weibull)

(2) Number of treatment arms
(K=2 or K=3)

(5) Censoring scheme

(4) Specify allocation designs
to be compared

(3) Specify the vector
of underlying
model parameters θ

This will generate the
plots of allocation
proportions and design
efficiency criteria

This will calculate optimal
allocation proportions and the
values of efficiency criteria for
the selected designs

Figure 2: RARtool interface (first level GUI) shows the configuration of trial parameters,
and tabular and graphical displays of operating characteristics of selected optimal allocation
designs.

(iv) Allocation design (see Section 2.1). Note that a user can check/uncheck boxes to in-
clude/exclude a particular allocation design from the comparison.

� For an exponential model with K = 2 or K = 3 treatments, five allocation designs
are available:

– D-A-optimal (Exp-DA).

– A-A-optimal (Exp-AA).

– NP-1-optimal (Exp-NP1).

– NP-2-optimal (Exp-E2).

– Balanced.

� For a Weibull model with K = 2 treatments, six allocation designs are available:

– D-optimal (allocation (Weib-CO) with α = 1).

– D-A-optimal (Weib-DA).

– Hazard ratio-optimal (Weib-HR).

– Zhang-Rosenberger-1 (Weib-ZR1).

– Zhang-Rosenberger-2 (Weib-ZR2).

– Balanced.
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� For a Weibull model with K = 3 treatments, six allocation designs are available:

– D-optimal (allocation (Weib-CO) with α = 1).

– Compound optimal (allocation (Weib-CO) with a user-defined α ∈ [0, 1]).

– Weighted optimal-KL (allocation (Weib-WD) with Kullback-Leibler diver-
gence (Equation 11 with a user-defined α ∈ [0, 1]).

– Weighted optimal-Euclid (allocation (Weib-WD) with Euclidean distance
(Equation 12 with a pre-defined α ∈ [0, 1]).

– Ethical (Equation 11 with α = 0).

– Balanced.

(v) Censoring scheme:

� with constant follow-up time (each patient in the study is followed-up for a
fixed time period τ > 0. The observed time is tik = min(Tik, τ)).

� combination of uniform and administrative censoring (A trial has a fixed
recruitment period R > 0 and a fixed duration D > R. Patient arrival times follow
a Poisson process over (0, R). The observed time is tik = min(Tik, Cik, D − R),
where Cik is the ith patient’s censoring time, assumed to be uniform over (0, D)).

The reason why we focused on the two aforementioned censoring schemes in the current
version of RARtool is that these schemes are quite common in practice, and they serve as
useful starting points to construct optimal designs for time-to-event trials. In particular, for a
censoring scheme combining uniform and administrative censoring, the censoring probabilities
can be derived in closed form in the exponential response case (Zhang and Rosenberger
2007); this substantially simplifies calculation of optimal allocation designs and simplifies the
development of corresponding optimal RAR designs. Our software can potentially be extended
to incorporate more complex censoring schemes, such as when both accrual and censoring
time distributions are not uniformly distributed. Sverdlov, Rosenberger, and Ryeznik (2013)
considered such a situation, where one of the goals was to evaluate robustness of the designs
to misspecification of the recruitment pattern. Implementing these additional, more complex
accrual patterns and censoring schemes is one important possible extension of the RARtool
package which we intend to pursue in subsequent versions of our software.

3.2. Operating characteristics of optimal allocation designs

Once the clinical trial parameters have been configured, the operating characteristics of var-
ious optimal allocation designs can be computed and visualized graphically. A user has the
following options (see Figure 2):

Get Allocation – The values of allocation proportions and corresponding statistical effi-
ciency criteria for the selected designs are calculated and displayed in a tabular format.
Treatment 1 is the control group, and Treatments 2 and 3 are experimental groups.
For a given allocation, statistical efficiency criteria (which take values from 0 to 1, and
higher values are desirable) include:

� D-eff (D-efficiency for estimating the vector of model parameters θ).
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� DA-eff (DA-efficiency for estimating the vector of treatment contrasts (experimen-
tal vs. control).

� HR-eff (Efficiency for estimating the vector of hazard ratios (experimental vs. con-
trol), for the Weibull distribution with K = 2 groups).

� b-eff (Efficiency for estimating the Weibull hazard pattern via the parameter b).

� Power (Statistical power of the Wald test of homogeneity of treatment effects).

Get Plots – The plots of optimal allocation proportions and design efficiency criteria are
generated for selected optimal allocation designs and the chosen parameter values. To
assess changes in allocation and design efficiency criteria, the range of values is taken
for the parameter of Treatment 1, whereas the values of other parameters (as defined
by the user) are kept fixed.

3.3. Simulation of a response-adaptive randomization trial

In RARtool we have implemented the DBCD randomization procedure (13) with γ = 2.
To evaluate performance of a RAR design over multiple simulation runs, one should first
configure the clinical trial parameters as described in Section 3.1. After that, one should click
the Make Simulations button in the first level menu of RARtool.

To illustrate the utility of the simulation tool, we reproduce the results from Zhang and
Rosenberger (2007) who used the DBCD procedure with Weibull time-to-event outcomes to
redesign a phase III survival trial in metastatic breast cancer originally reported by Jones
et al. (2005). In this trial, n = 449 patients were randomized equally between two treatment
regimens, docetaxel (Treatment 1) and paclitaxel (Treatment 2). In the intent-to-treat popu-
lation, median time to progression was significantly longer for patients treated with docetaxel
(5.7 months) than with paclitaxel (3.6 months). As in Zhang and Rosenberger (2007), we
assume the sample size n = 449, µ1 = 1.1, µ2 = 0.64, b = 0.93, the length of the recruitment
period R = 84 months, and the overall study duration D = 102 months. In the first level
menu of RARtool (Figure 2) we configure the trial parameters as follows:

(i) Time-to-Event = Weibull;

(ii) Number of treatments = 2;

(iii) Response distribution options are: mu1 = 1.1, mu2 = 0.64, b = 0.93;

(iv) Design = Zhang-Rosenberger-1;

(v) Censoring scheme is combination of uniform and administrative censoring with
Recruitment = 84 and Duration = 102.

The second level GUI menu will open (Figure 3). The additional parameters must be specified
at this point:

� Number of patients involved in the trial (selected is 449).

� Number of patients randomized with CRD (selected is 20). This determines the ini-
tial number of patients randomized with equal probability between two treatments.
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Specify additional parameters: total
sample size, initial number of patients for
equal allocation, cohort size

Specify target allocation design

Specify whether simulations should be
run assuming delayed responses

Specify the number of simulation runs

Once the parameters are configured,
click the button to start the simulations

Figure 3: RARtool interface (second level GUI) shows simulation of a selected RAR procedure
with results displayed in both tabular and graphical formats on the right side.

� Number of patients in a cohort (selected is 20). This determines how frequently
randomization probabilities are updated based on accrued data in the trial. In our
example, randomization probabilities are updated after every 20 patients.

� Design (selected is Zhang-Rosenberger-1).

� With delayed responses? (Yes/No) (Selected is Yes). If No, then simulations will
be performed under an “idealized” scenario assuming that responses become available
immediately after the treatment assignment. The No option may be useful for assessing
theoretical properties of RAR procedures.

� Number of simulations (selected is 1000).

After all these selections have been made, we click on the Simulate button, after which the
progress status bar will appear. The generated results will be output in tabular and graphical
formats (as shown in Figure 3).

In the tabular format (left-hand part of the display), one can see theoretical and simulated
(average with standard deviation) values of target allocation proportions and model param-
eters, simulated (average with standard deviation) total time observed in the study (TT),
simulated median values of various design efficiency criteria, and the average proportion of
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“responders”, i.e., subjects in the study whose response data become available throughout the
recruitment phase to enable adaptations in the design (prop). The simulation results show
that the allocation proportion (S.D.) for Treatment 1 is 0.556 (0.017). This matches well the
the results reported in Zhang and Rosenberger (2007).

In the right-hand part of the display are the plots of treatment randomization probabilities
(averaged across simulation runs) at the points in the trial when the response-adaptive algo-
rithm is applied to modify randomization probabilities. One can see that allocation becomes
skewed in favor of Treatment 1 as the trial progresses. Also displayed is the plot of the
simulated distribution of the maximum likelihood estimators of model parameters. In the-
ory, model parameter estimators are consistent and have asymptotically normal distributions;
however, due to delayed responses the simulated results may deviate from the theoretical ones.
Therefore, it may be useful to perform simulations with the No option for delayed responses
to obtain the design characteristics in the “idealized” no-delay case. In our example, the
distributions look approximately normal around the “true” assumed values of the parameters.

4. An application

In this section we illustrate how to use the RARtool software to redesign a phase III survival
trial for greater efficiency and ethical measures. We consider a phase III survival trial in
patients with unresectable squamous cell head and neck cancer reported by Adelstein et al.
(2003). Between March 1992 and December 1999, 295 eligible patients were randomized
equally among three treatment arms: Radiotherapy Alone (Treatment 1), Radiotherapy plus
Cisplatin (Treatment 2), and Radiotherapy (Split Course) plus Cisplatin/5FU (Treatment 3).
The original study goal was 462 patients; however, because of a slow accrual rate, the study
was closed in December 1999, after 295 patients had been enrolled. The data were analyzed
as of January 2001. The primary endpoint was overall survival defined as the time from
randomization to death from any cause. The median survival times were 12.6, 19.1, and 13.8
months, for Treatments 1, 2, and 3, respectively. The study recruitment duration was R = 94
months and the overall study duration was D = 106 months. To gain insights of various
possible allocation designs for this study, we examine both exponential and Weibull time-to-
event distributions. In both cases, we assume a combination of uniform and administrative
censoring scheme.

4.1. Exponential event times

For an exponential distribution, Mean = Median/log(2). Under this assumption, based on
data in Adelstein et al. (2003) we elicit that the mean survival times in the three treatment
groups are 18.2, 27.6, and 19.9 months. In the first level menu of RARtool we configure the
trial parameters as follows: (1) Time-to-Event = Exponential; (2) Number of treatments

= 3; (3) Response distribution options are: theta1 = 18.2, theta2 = 27.6, theta3 =

19.9; (4) Design options: checked are D-A-optimal, A-A-optimal, NP-1 with B = 0.1,
and balanced; (5) Censoring scheme is combination of uniform and administrative

censoring with Recruitment = 94 and Duration = 106.

The Get Allocation calculates the target allocation proportions as follows: (0.29, 0.39, 0.32)
for the D-A-optimal design; (0.34, 0.39, 0.27) for the A-A-optimal design; (0.32, 0.58, 0.10)
for the NP-1 with B = 0.1 design; and (0.33, 0.33, 0.33) for the balanced design. Note the
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different degree of skewing in the allocation proportions. The most skewed is the NP-1 with B

= 0.1 design which should assign 58% of study patients to the most efficacious Treatment 2,
32% of study patients to the“control”Treatment 1, and 10% of study patients to Treatment 3.
Let us consider DA-efficiency as a measure of goodness of the designs. From RARtool, the val-
ues of DA-efficiency for the D-A-optimal, A-A-optimal, NP-1 with B = 0.1, and balanced

designs are 1, 0.97, 0.58, and 0.98, respectively.

Next, we click on the Make Simulations button in RARtool. In addition to the already
specified parameters, we specify that Number of patients involved in the trial = 295,
Number of patients randomized with CRD = 30, Number of patients in cohort = 30,
and Number of simulations = 5000. We perform seven sets of simulations consecutively
for the four designs (D-A-optimal, A-A-optimal, NP-1 with B = 0.1, and balanced). For
the first three designs, we explore both the cases of “without delay” and “with delay” (op-
tions No and Yes, respectively, in the With delayed responses field). For the balanced
randomization design, which is non-adaptive, only the No option is used.

Table 1 summarizes the key operating characteristics of the four randomization designs. For
each of the three response-adaptive designs, there is overall a good agreement between the
operating characteristics (average allocation proportions and median values of DA-efficiency)
in the simulations“without delay”and the corresponding theoretical values. Some discrepancy
is present for the “most skewed” NP-1 with B = 0.1 design. In the simulations “with delay”,
while the adaptive designs are skewed towards their intended targets, the convergence is not
fully achieved due to delayed responses. It is worth noting that the D-A-optimal design is
advantageous over the balanced design both in terms of DA-efficiency and the total survival
time, both in the “without delay” and the “with delay” cases.

4.2. Weibull event times

For the Weibull model (6), the median of the event time in group k is eµk(log 2)1/b. To
match the median survival times reported in Adelstein et al. (2003) and to be consistent with
the setting in Section 4.1, we assume b = 1 (exponential distribution) and elicit µ1 = 2.90,
µ2 = 3.32, µ1 = 2.99. We want to compare the merits of three allocation designs developed
under the Weibull model. These designs are:

� D-Optimal – D-optimal allocation (Equation 12 with α = 1);

� WO-Euclid with alpha = 0.5 – Weighted distance optimal allocation that provides
equal trade-off between D-efficiency and ethics (Equation 12 with α = 0.5);

� Ethical – Ethical allocation (Equation 12 with α = 0).

As in the exponential case (Section 4.1), in the first level menu we configure the trial pa-
rameters: (1) Time-to-Event = Weibull; (2) Number of treatments = 3; (3) Response

distribution options are: mu1 = 2.90, mu2 = 3.32, mu3 = 2.99, b = 1; (4) Design op-
tions: checked are D-Optimal, WO-Euclid with alpha = 0.5, and Ethical (also one should
check the Long trial option which indicates that this is a survival trial where long times
are desirable); (5) Censoring scheme is combination of uniform and administrative

censoring with Recruitment = 94 and Duration = 106.

The Get Allocation calculates the target allocation proportions as follows: (0.34, 0.32, 0.34)
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Treatment
Design Allocation Proportions DA-efficiency Total Time

1 2 3
D-A-optimal Theoretical 0.29 0.39 0.32 Theoretical 1.00 Simulated

Delay Mean 0.29 0.39 0.32 Simulated† 0.99 Mean 4045
= “No” (S.D.) (0.03) (0.03) (0.03) (S.D.) (199)

Delay Mean 0.31 0.37 0.32 Simulated† 0.99 Mean 4020
= “Yes” (S.D.) (0.03) (0.03) (0.03) (S.D.) (200)

1 2 3
A-A-optimal Theoretical 0.34 0.39 0.27 Theoretical 0.97 Simulated

Delay Mean 0.34 0.39 0.26 Simulated† 0.96 Mean 4026
= “No” (S.D.) (0.05) (0.05) (0.04) (S.D.) (199)

Delay Mean 0.37 0.35 0.28 Simulated† 0.95 Mean 3993
= “Yes” (S.D.) (0.04) (0.04) (0.04) (S.D.) (203)

1 2 3
NP-1 with Theoretical 0.32 0.58 0.10 Theoretical 0.58 Simulated

B = 0.1 Delay Mean 0.26 0.51 0.23 Simulated† 0.78 Mean 4122
= “No” (S.D.) (0.08) (0.11) (0.10) (S.D.) (217)

Delay Mean 0.29 0.42 0.29 Simulated† 0.95 Mean 4053
= “Yes” (S.D.) (0.06) (0.08) (0.07) (S.D.) (201)

1 2 3
balanced Theoretical 1/3 1/3 1/3 Theoretical 0.98 Simulated

Delay Mean 0.33 0.33 0.33 Simulated† 0.98 Mean 3997
= “No” (S.D.) (0.01) (0.01) (0.01) (S.D.) (187)

† Median value of the simulated distribution.

Table 1: Redesign of a phase III survival trial reported by Adelstein et al. (2003) using
RARtool, assuming exponential outcomes, based on 5, 000 simulation runs.

for D-Optimal; (0.28, 0.42, 0.30) for WO-Euclid with alpha = 0.5; and (0.22, 0.51, 0.27) for
Ethical.

Next, we click on the Make Simulations button and specify additional parameters as in
the exponential case (Section 4.1): Number of patients involved in the trial = 295,
Number of patients randomized with CRD = 30, Number of patients in cohort = 30,
and Number of simulations = 5000. We run six sets of simulation studies consecutively for
the three designs (D-Optimal, WO-Euclid with alpha = 0.5, and Ethical), each with the
options No and Yes in the With delayed responses field.

Table 2 summarizes the key results. The D-Optimal design is almost identical to the balanced
completely randomized design. It is highly efficient, but does not allocate patients to better
performing treatment arms. Designs WO-Euclid with alpha = 0.5 and Ethical result in
skewed allocations in favor of treatments with longer event times. The Ethical design is
most skewed and has highest average total survival time; yet it is also most variable and
least efficient among the three designs. The WO-Euclid with alpha = 0.5 design achieves
a reasonable trade-off between inferential efficiency (DA-efficiency = 0.98) and ethics (total
survival time). Note that because of delayed responses the intended skewing is not achieved for
the latter two designs. This is consistent with the findings in the exponential case (Section 4.1).

4.3. Some further remarks

The examples considered in this paper are phase III trials. One may argue that the regulatory
agencies give very limited flexibility to adaptive phase III confirmatory trials, in particular
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Treatment

Design Allocation Proportions DA-efficiency‡ Total Time

1 2 3
D-Optimal Theoretical 0.34 0.32 0.34 Theoretical 0.99 Simulated

Delay Mean 0.34 0.32 0.34 Simulated† 1.00 Mean 4661
= “No” (S.D.) (0.01) (0.01) (0.01) (S.D.) (239)

Delay Mean 0.34 0.33 0.33 Simulated† 1.00 Mean 4630
= “Yes” (S.D.) (0.01) (0.01) (0.01) (S.D.) (240)

1 2 3
WO-Euclid Theoretical 0.28 0.42 0.30 Theoretical 0.98 Simulated

with Delay Mean 0.28 0.42 0.30 Simulated† 0.98 Mean 4776
alpha = 0.5 = “No” (S.D.) (0.05) (0.05) (0.04) (S.D.) (246)

Delay Mean 0.30 0.38 0.32 Simulated† 0.98 Mean 4699
= “Yes” (S.D.) (0.03) (0.04) (0.03) (S.D.) (245)

1 2 3
Ethical Theoretical 0.22 0.51 0.27 Theoretical 0.92 Simulated

Delay Mean 0.22 0.52 0.27 Simulated† 0.89 Mean 4856
= “No” (S.D.) (0.07) (0.09) (0.07) (S.D.) (274)

Delay Mean 0.27 0.42 0.30 Simulated† 0.95 Mean 4811
= “Yes” (S.D.) (0.06) (0.07) (0.06) 0.90 (S.D.) (259)

† Median value of the simulated distribution.
‡ Computed relative to the balanced allocation.

Table 2: Redesign of a phase III survival trial reported by Adelstein et al. (2003) using
RARtool, assuming Weibull outcomes, based on 5, 000 simulation runs.

trials with response-adaptive randomization (US Food and Drug Administration 2010). The
main reasons we considered phase III trials in this paper are three-fold. First, we wanted
to illustrate that our software can successfully validate simulation results previously reported
in the literature – the example in Section 3.3 shows that RARtool accurately replicates the
results from Zhang and Rosenberger (2007). Second, the examples from Sections 4.1 and
4.2 show that RAR can be an attractive strategy for phase III survival trials which exhibit
significant differences among the treatment arms – in this case the allocation is skewed to
treatment arms with longer survival times. Third, and most important, we believe that the
examples presented here add to the body of knowledge on how RAR works in phase III
survival trials; we hope that this work along with others will eventually pave the way for
implementation of RAR trials in practice.

We would also like to mention that our software can simulate design operating characteristics
for any user-specified sample size. As such the software can potentially handle designs of
randomized phase II time-to-event trials with small or moderate sample sizes. While RAR
methodology relies on large sample approximations, simulations show that moderate sample
sizes (n = 50 to 100) are sufficient for the large sample approximations to be reasonably valid
if the doubly-adaptive biased coin design of Hu and Zhang (2004), implemented in the current
paper, is used; see Rosenberger, Sverdlov, and Hu (2012, p. 728) for further details.

5. Conclusions and future work

In this paper, we have presented a user-friendly software RARtool which should aid an inves-
tigator in planning response-adaptive randomized comparative clinical trials with censored
time-to-event outcomes. Our software implements various optimal allocation schemes (Zhang
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and Rosenberger 2007; Sverdlov et al. 2011, 2012, 2014), under the assumptions of exponen-
tial and Weibull distribution for the event times. The implemented randomization designs
are scientifically sound and can provide trade-off between statistical efficiency and ethical
considerations. While the current version of RARtool can be useful in designing randomized
time-to-event clinical trials, it can be improved in a number of ways. We outline a few possible
extensions:

� Explore additional design optimality criteria and additional censoring schemes.

� Implement optimal allocation designs and corresponding RAR procedures in a (K > 3)-
treatment case.

� Implement urn-based optimal RAR procedures (Zhang et al. 2011) and compare them
with the the DBCD procedure (Hu and Zhang 2004) implemented in this paper.

� Incorporate group-sequential monitoring schemes on top of RAR to allow early stopping
of a trial for efficacy or futility.

� Develop a utility that allows interactive sequential data entry to recalculate treatment
randomization probabilities and facilitate implementation of RAR designs in practice.

We intend to tackle the above mentioned problems in our future work.
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