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Abstract

Item response theory models are often applied when a number items are used to mea-
sure a unidimensional latent variable. Originally proposed and used within educational
research, they are also used when focus is on physical functioning or psychological well-
being. Modern applications often need more general models, typically models for multidi-
mensional latent variables or longitudinal models for repeated measurements. This paper
describes a SAS macro that fits two-dimensional polytomous Rasch models using a specifi-
cation of the model that is sufficiently flexible to accommodate longitudinal Rasch models.
The macro estimates item parameters using marginal maximum likelihood estimation. A
graphical presentation of item characteristic curves is included.

Keywords: polytomous Rasch model, longitudinal Rasch model, marginal maximum likelihood
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1. Introduction

Item response theory (IRT) models were developed to describe probabilistic relationships be-
tween correct responses to a set of test items and continuous latent traits (Linden and Ham-
bleton 1997). IRT models were originally developed and used in educational testing, where
the models describe how the probability of a correct answer to an item in a test depends
on ability, but they are applicable whenever location of persons and items on an underlying
latent scale is of interest. Traditional applications in education often use dichotomous (cor-
rect/incorrect) item scoring, but polytomous items are common in other applications. The
use of IRT models in new research fields increases the need for implementation in standard
statistical software like SAS (SAS Institute Inc. 2013) or SPSS (IBM Corporation 2015). Es-
timation in IRT models using SAS has been the topic of several research papers (Rijmen,
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Tuerlinckx, De Boeck, and Kuppens 2003; Smits, De Boeck, and Verhelst 2003; Nandakumar
and Hotchkiss 2012). In particular, implementation of polytomous Rasch models in SAS has
been discussed (Sheu, Chen, Su, and Wang 2005; Christensen 2006), and SAS macros that
used these ideas are available (Christensen and Bjorner 2003; Hardouin and Mesbah 2007;
Christensen and Olsbjerg 2013; Christensen 2013).

Many applications require more general models. Typically when multidimensional latent
variables are considered or when repeated measurements are used. Longitudinal Rasch models
were studied by Pastor and Beretvas (2006), who illustrated how these models can be seen
as hierarchical generalized linear models and implemented in the software program HLM
(Raudenbush, Bryk, Cheong, and Congdon 2004). HLM uses penalized quasi-likelihood for
estimation, but as noted by Pastor and Beretvas, various estimation procedures and software
programs for these kinds of models exist. An example is the random weights linear logistic
test model (Rijmen and De Boeck 2002), which is a special case of the multidimensional
random coefficients multinomial logit model (Adams, Wilson, and Wang 1997a) implemented
in the computer program ConQuest (Wu, Adams, Wilson, and Haldane 2007). For these more
general models implementation in standard software is also useful. This paper describes the
SAS macro %lrasch_mml available from

http://biostat.ku.dk/~kach/index.html#lrasch_mml.

The macro fits polytomous longitudinal Rasch models using marginal maximum likelihood
(MML; Bock and Aitkin 1981; Thissen 1982; Zwinderman and Wollenberg 1990). It estimates
item parameters and the parameters of a two-dimensional latent distribution and plots item
characteristic curves. It is sufficiently flexible to model item parameter drift and response
dependence across time points. Recently IRT models have been used increasingly in health
status measurement and evaluation of patient reported outcomes (PROs) like physical func-
tioning and psychological well-being (Reeve et al. 2007). E.g., the simplest IRT model, the
Rasch (1960) model (Fischer and Molenaar 1995; Christensen, Kreiner, and Mesbah 2013), is
increasingly used for validation of measurement instruments (Tennant and Conaghan 2007)
and has been shown to be superior to classical approaches (Blanchin et al. 2011). The macro is
illustrated using a data set from a longitudinal study of health related quality of life (HRQoL)
in non-melanoma skin cancer patients.

It is of considerable importance that model assumptions are checked before the results of a
statistical analysis are reported. This is especially important for IRT models where the model
requirements are a mathematical formulation of measurement requirements. Thus, existing
methodology should be used to make sure that the Rasch model fits at each time point. This
can be done using the fit statistics implemented in proprietary software packages like RUMM
(Andrich, Sheridan, and Luo 2010) and WINSTEPS (Linacre 2011) or in free stand-alone
software like DIGRAM (Kreiner 2003). In SAS the macros %AnaQol (Hardouin and Mesbah
2007), GLIMMIX_Rasch (Chen, Li, and Kromrey 2013) and %rasch_mml (Christensen and
Olsbjerg 2013) that report infit and outfit test statistics can be used.

Beyond the requirement of fit of the Rasch model at each time point special requirements
arise from the use of the Rasch model for longitudinal data. Two of these requirements, item
parameter drift and local dependence across time points, can be tested in a likelihood frame
work using the SAS macro %1lrasch_mml.
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1.1. Item parameter drift

To measure trends over time is important in many areas, also for latent variables (Goldstein
1983), but it is important that the item parameters do not change over time (Miller and
Fitzpatrick 2009; Chan, Drasgow, and Sawin 1999; Chan et al. 1999; Wells, Subkoviak, and
Serlin 2002). The macro %lrasch_mml can be used to test this assumption since models
where one or more items do not stay constant over time can be fitted. Different methods for
detection of item parameter drift exist (Donoghue and Isham 1998; DeMars 2004; Galdin and
Laurencelle 2010). The macro %1lrasch_mml makes it possible to test the assumption of item
parameter invariance using likelihood ratio tests.

1.2. Local dependence across time points

Local dependence has been extensively studied in the psychometric literature, especially
within the class of Rasch models (Kelderman 1984; Kreiner and Christensen 2004, 2007;
Marais and Andrich 2008a,b). However in the context of longitudinal studies references are
sparse. In a study of response dependence and measurement of change, Marais (2009) found
that when the assumption of local independence across time is violated it can lead to incorrect
conclusions. A few tests of this assumption have been discussed (Olsbjerg and Christensen
2013). Andrich and Kreiner (2010) proposed a way of quantifying local dependence for two
dichotomous items. Their method is based on splitting an item into two new ones according
to the responses to another item. This method has been generalized to polytomous items
and to other IRT models and can be used to overcome local response dependence across
time points (Olsbjerg and Christensen 2014). The macro %lrasch_mml makes it possible to
include splitted items and to test the assumption of local independence across time points
using likelihood ratio tests.

2. The unidimensional polytomous Rasch model

IRT models can be seen as a mathematical formalization of the following measurement re-
quirements: (i) items measure only one latent variable, (ii) expected item scores increase with
the underlying latent variable, (iii) items are sufficiently different to avoid redundancy, and
(iv) items function in the same way across sub-populations. Let 6 denote the latent variable
and X = (X;);es a vector of item responses. The requirements can be written as

(i) 0 € R,
(ii) Vi € I : 0 — E(X;|0) is increasing,
(iii) P(X =%|0) = [[;c; P(X; = 2;]0) for all 0,
(iv) P(X; = ;]Y,0) = P(X; = x;]0) for all items i € I and all variables Y.

The requirements (i)—(iv) are referred to as unidimensionality, monotonicity, local indepen-
dence and absence of differential item functioning (DIF), respectively. Fit of observed data
to an IRT model thus implies that these requirements are met and evaluation of model fit is
crucial. Assume that item ¢ € I has m; + 1 response categories represented by the numbers
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0,...,m; and let the stochastic variable X; with realization x; denote the response. For items
1 € I the polytomous Rasch model is given by probabilities

exp(zif + Miz,)

P(X; = 3]0) = = :

(1)
where K; = K;(0) = K;(0,7;) = % exp(10 + ny) with 7; = (9i)h=1,....m; and 10 = 0. An
alternative parametrization can be obtained by replacing the vector of item parameters 7,
with the thresholds

Bi = (Bit)k=1,....m;» (2)
defined by Bix = —(mik — Mik—1). These can be interpreted as the locations on the latent
continuum where the probabilities of choosing adjacent categories intersect. Under the as-
sumption (iii) of local independence the distribution of the vector X = (X;);c; with realization
T = (x;)ier is given by the probabilities

P(X = |6) = exp(rf) P zicl iz (IZ((% tiz,), (3)

where K(0) = [I;c; K(0,7;) and r = Y21 ;. Tt is clear from Equation 3 that the sum of
item responses R = 2{21 X is sufficient for . The contribution to the joint log likelihood for
a person v with item responses (z;)ier,, Ly C I is

U(@)ier,,00) = 100 + D Nia, — log K1,(00), (4)
i€ly

with r = >7,c; x; and Kp,(0y) = [lics, Ki(0y). Restrictions are needed to ensure that the
model in Equation 4 is identified since for all (6,7;)

P(X; = z;0,7;) = P(X; = x;|0",7;)

for 0* = 0 — k and 77 = (nin, + Kh)p=1,....m,;. We can make sure that the model is identified by
imposing a linear restriction on the §’s or on the #’s.

Jointly estimating all parameters yields inconsistent estimates, since the number of parameters
increases with the sample size (Neyman and Scott 1948). This can be overcome by assuming
that 6 is drawn from a normal distribution and maximizing the marginal log likelihood (Bock
and Aitkin 1981; Thissen 1982; Zwinderman and Wollenberg 1990). The contribution for
person v with item responses (z;);er,, Iy C I to the marginal likelihood is

b ((M)ier,) = Y Nia; + log/R e?;((;))cp(e)dﬁ. (5)

i€ly

This model can be fitted with PROC NLMIXED in SAS using an adaptive Gaussian quadrature.
If the mean of the normal distribution is fixed at zero all item parameters can be identified,
and if a linear restriction is imposed on the item parameters the mean and variance of the
normal distribution can be identified. Thus depending on the linear restriction imposed to
ensure identifiability two different ways of parameterizing the model exist:

(1) ier 35y min = 0 (or equivalently Yic; 3231 Bin = 0), 0 ~ N(p,0?);

(i) (Bin)ier;n=1,...,m, unrestricted, § ~ N (0, o?)
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The polytomous Rasch model was proposed by Andersen (1977). Masters (1982) called this
model the partial credit model deriving probabilities in Equation 1 from the requirement that
the conditional probabilities P(X; = k| X; € {k — 1,k};0) fit a dichotomous Rasch model.

3. The two-dimensional polytomous Rasch model
Assume that the set of items can be split into two new, i.e.,
I=1Ul, (6)

with items in I; and Iy measuring latent variables 61 and s respectively. Two situations are
common: (i) f; and 6, are distinct, but correlated latent variables, (ii) 6; and 6, represent
repeated measurements of the same latent variable. The latter is the focus in this paper. If the
distribution of the items is as specified by the polytomous Rasch model and the assumption
(iii) of local independence holds the vector X with realization 7 is distributed as follows

Y _ = _ exp (Eieh xiel + Ziéh iz + Zielz xie? + Zieb nzml)
K1(91)K2(02)
_ &P (r161 + rof + > iel Miz;) (7)
K1 (91)K2(92)

where

7‘122%7 7"2:2962‘7

i€l i€ls
K1(61) = [] Ki(61,m,), Ky(02) = ] Ki(62,m;)-
i€l i€l

Again Neyman’s factorization theorem shows that Ry = > ,c; X; and Ry = >, X; are
sufficient for 6; and 6o, respectively.

The contribution to the joint log likelihood for a person v with item responses (x;);er,, Iy C I
is given by

W(T)ier,,01,02) = r101 + ra202 + > iz, — log K1(61) — log K2(62) (8)
icl,

with K;(01) = K1,nr,(61) and K5(02) = K1,n1,(02). Again, jointly estimating all parameters
does not provide consistent estimates and restrictions are needed in order to ensure that the
model is identified. This can be done by placing a restriction on either the item parameters
or the person parameters.

3.1. Estimation of item parameters

Assuming that (01, 62) is drawn from a two-dimensional normal distribution

(B =)

pPo102 05

K1
M2

i
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yields the two-dimensional marginal log likelihood function to which the contribution of a
person v with item responses (x;)icr,, Iy C I, is

exp(r1601 + 1r262)
I i iz T 1 01,65)d01dbs. 1
((1)ier) %:nﬁog// Ry O 020 (10)

Two-dimensional Rasch models of this kind were originally discussed by Andersen (1985) and
Embretson (1991), who both considered longitudinal measurement. Both models fit within
the general framework for multidimensional Rasch models described by Adams and colleagues
(Adams et al. 1997a; Adams, Wilson, and Wu 1997b).

3.2. Parameter restrictions

Restrictions are needed in order to ensure that the model is identified. Typically this is done
by assuming that p; = po = 0. For the special case of longitudinal data further restrictions
are often imposed and other parametrizations are of interest. Consider the situation where
the same set of items is used at two time points and let the response to item ¢ at time ¢
be denoted by X;;. In the longitudinal Rasch model it is a natural restriction that the item
parameters do not change over time, i.e., that for all items i

Ni2 =M1 (11)

When this restriction is imposed there is no need for the assumption that g3 = po = 0. In fact,
for longitudinal data a model where the mean changes over time, but the item parameters are
invariant as in Equation 11, is often preferable. The original formulations of the longitudinal
Rasch model for dichotomous items (Andersen 1985; Embretson 1991) used this restriction,
but a more general model where only a subset of the items are restricted to be equal would also
be identified. Depending on the linear restriction imposed to ensure identifiability different
ways of parameterizing the model exist. The macro %lrasch_mml uses

(i) (7;1)ielh=1,....m; unrestricted,

(11) ﬁ272 — ﬁi,l fOI“ all /l S I,

oo |61 0 o? pPO102
6 [o] = (1] "557])

The assumption that item parameters do not change over time can be relaxed. This is outlined
in the following Section 3.3.

3.3. Relaxing assumptions

The longitudinal Rasch model formulated for the situation where 6; and 6 are (correlated)
values of the same latent variable at two distinct time points and the two sets of items I
and [y are identical. This can be relaxed in two ways: by allowing item parameter drift (as
outlined in Section 1.1) and by allowing local dependence across time points (as outlined in
Section 1.2).
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Item parameter drift can be allowed by specifying a model where the item sets I; and I are
overlapping, but not identical. To illustrate how this could be done, note that allowing an
item ¢ € T to change over time can be specified using I1 = (I\{i})U{é}} and Ir, = (I\{i})U{i’}
where the item is modeled as two separate items, each one only administered at one of the
time points.

Two similar items are highly correlated, and the correlation could be even higher than what
the underlying latent variable accounts for. For this reason the requirement (iii) of local
independence is formulated as a requirement of non-redundancy. In the longitudinal Rasch
model this requirement is imposed at each time point, but an additional requirement of local
dependence across time points is also imposed: Responses given to the same item at the
two points should be independent given (61,63). In the unidimensional Rasch model local
dependence can be modeled using log linear Rasch models (Kelderman 1984; Kreiner and
Christensen 2004), but also by “splitting” one item with respect to the observed values of
another (Andrich and Kreiner 2010). In our implementation of the longitudinal Rasch model
the latter of these approaches is used. A detailed account of how splitting an item at the
second time point based on observed responses at the first time point is provided by Olsbjerg
and Christensen (2014). Briefly, a model where local dependence across time points is modeled
for an item ¢ € I can be formulated by defining m; 4+ 1 time 2 items

. ) om, ity =my _ ‘
iam) = { ., otherwise. (m=0,1,...,mi) (12)

where . denotes a missing value. The extended model uses I} = I and

Since missing values are easily included in the implemented MML framework the parameters
of this model are readily estimated.

4. Implementation in SAS

The SAS macro %lrasch_mml uses PROC NLMIXED to estimate item parameters, and the pa-
rameters of the two-dimensional normal distribution. PROC NLMIXED fits nonlinear mixed
models (Rijmen et al. 2003; Smits et al. 2003) and is very flexible because the conditional
distribution given the random effects can be specified to be a general distribution using SAS
programming statements. The NLMIXED procedure maximizes an approximation to the likeli-
hood integrated over the random effects. Different integral approximations are available, the
principal one being adaptive Gaussian quadrature.

The macro has two required input statements:

o DATA specifying the input data set;

e ITEM_NAMES identifying the names and response formats of the items.
The macro also has four optional input statements:

e ANCHOR specifying the items that should be restricted to have the same item parameters
at the two time points (default value ALL, specifying that all items have the same
parameters, cf. Equation 11);
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e SPLIT specifying the items that should be split for local dependence, cf. Olsbjerg and
Christensen (2014) (default value NONE, indicating that no items should be split);

o ICC specifying whether or not the macro should plot item characteristic curves (default
value NO). Note that these curves should rightly be referred to as categories probability
curves.

o OUT specifying the prefix of output data sets generated by the macro (default value
LRASCH).

The assumption that item parameters do not change over time can thus be relaxed. This
makes it possible to test for item parameter drift, and to specify models where item parameter
drift is present. The SAS macro %lrasch_mml creates three output data sets:

e The data set OUT_logl contains the maximum value of the conditional log likelihood
function and the Akaike information criterion (AIC; Akaike 1974), the Bayesian infor-
mation criterion (BIC; Schwarz 1978) and the sample size corrected version of the AICC
(Burnham and Anderson 2002).

o The data set OUT_thresholds contains the item parameter estimates (using the PCM
parametrization), the standard errors of the item parameter estimates, and 95% confi-
dence intervals.

e The data set OUT_poppar contains population parameter estimates, i.e., the change in
mean u, the standard deviations o7 and o9 and the latent correlation p.

5. Example: Longitudinal HRQoL data

Patient-reported outcomes (PROs) are used to capture patients’ perception of a disease and
its impact on daily living. SCQoL is a HRQoL questionnaire developed for non-melanoma
skin cancer (NMSC; Vinding, Christensen, Esmann, Olesen, and Jemec 2013) that consists
of 9 items scored on a standard 4-point Likert scale. The data used in this example were
collected from patients with NMSC undergoing surgery at the Department of Plastic Surgery
at Roskilde Hospital.

The analyses presented here can be performed using the SAS macro %lrasch_mml.sas and
the supplementary files available along with this manuscript (or from the homepage http:
//biostat.ku.dk/~kach/index.html#lrasch_mml):

e the example data scqol.sas7bdat containing the responses to the SCQol question-
naire,

e the sample code v67c02.sas described in the following.

Participants responded to the skin cancer quality of life (SCQoL) questionnaire before the
operation and 3 months after. A total of 101 patients responded at baseline, 14 patients did
not respond at follow-up. The marginal distribution of item responses is computed using the
statements
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Time point Item 0 1 2 3

Baseline SC01 62 (61.4%) 30 (29.7%) 9 (89%) O
SC02 23 (22.8%) 38 (37.6%) 24 (23.8%) 16 (15.8%)
SC03 53 (52.5%) 30 (29.7%) 15 (14.9%) 3  (3.0%)
SC04 34 (33.7%) 35 (34.7%) 24 (23.8%) 8 (7.9%)
SCo05 92 (91.1%) 4 (4.0%) 2 (2.0%) 3 (3.0%)
SC06 67 (66.3%) 27 (26.7%) 6 (5.9%) 1 (1.0%)
SCo7 32 (31.7%) 51 (50.5%) 13 (12.9%) 5 (5.0%)
SCo8 72 (71.3%) 19 (188%) 7 (6.9%) 3  (3.0%)
SC09 35 (34.7%) 36 (35.6%) 21 (20.8%) 9 (8.9%)

Follow-up  SC01 45 (51.7%) 24 (27.6%) 14 (16.1%) 4 (4.6%)
SC02 29 (33.3%) 33 (37.9%) 18 (20.7%) 7 (8.1%)
SC03 65 (74.7%) 18 (20.7%) 4 (4.6%) O
SC04 44 (50.6%) 34 (39.1%) 6 (6.9%) 3  (3.5%)
SCo5 72 (82.8%) 8 (92%) 5 (5.8%) 2 (2.3%)
SCo6 70 (80.5%) 15 (17.2%) 2 (23%) O
SCO7 28 (32.2%) 43 (494%) 12 (13.8%) 4  (4.6%)
SC08 66 (75.9%) 17 (19.5%) 3 (3.5%) 1 (1.2%)
SC09 19 (21.8%) 28 (32.2%) 29 (33.3%) 11 (12.6%)

Table 1: The marginal distribution of item responses in the SCQoL data.

proc freq data=data.scqol;
table b_sc01-b_sc09 fu_SC01-fu_SC09 / nocum;
run;

and is shown in Table 1.

We note that the maximum response ’3’ is not observed for the item SCO01 at baseline and
for the items SC03 and SCO06 at follow-up. In order to fit the longitudinal Rasch model to
these data we have to specify the structure of the input data. We specify variable names and
response formats by defining the ITEM_NAMES data set, writing

data inames;
input item_no item_namesl $ item_names2 $ item_text $ maxl max2;
datalines;

1 b_SCO1 fu_SCO1 SCO1 2 3
2 b_SC02 fu_SC02 SCO02 3 3
3 b_SC03 fu_SCO3 SC03 3 2
4 b_SC04 fu_SC04 SC04 3 3
5 b_SC05 fu_SCO5 SCO5 3 3
6 b_SC06 fu_SC06 SCO6 3 2
7 b_SCO7 fu_SCO7 SCO7 3 3
8 b_SC08 fu_SC08 SCO8 3 3
9 b_SC09 fu_SC09 SC09 3 3

run;

the ITEM_NAMES data set contains information about the items, specifically the variable
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item_names1 contains item names of time 1 items, the variable item_names2 contains item
names of time 2 items, the variable item_text contains text for plots, and the variables max1
and max2 contain the maximum score for time 1 and time 2 items, respectively. Thus the
code specifies that the item SCO1 at baseline and the items SC03 and SC06 at follow-up are to
be considered to have only three response options. In this situation it does not make sense

to require invariance of items 1, 3 and 6.

We include the SAS macro (provided in the supplements) using the statement

%include 'lrasch_mml.sas';
or alternatively including it directly from the web via

FILENAME lrasch URL 'http://biostat.ku.dk/~kach/macro/lrasch_mml.sas';

#include lrasch;

We fit the longitudinal Rasch model using the statement

%lrasch_mml (DATA=data.scqol, ITEM_NAMES=inames,

ANCHOR=b_SC02 b_SC04 b_SC05 b_SCO07 b_SC08 b_SC09,

SPLIT=NONE, OUT=SCQOL, ICC=YES);

This statement specifies that the parameters of the items SCO02, SC04, SC05, SC07, SCO8,
and SC09 do not change over time. The log likelihood value —2log L = 2948.2 is saved in the

data set SCQOL_logl and printed in the output window.

scqol: LRASCH MML estimation loglikelihood

Descr

-2 Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

Estimates of the item parameters are saved in the data set SCQOL_thresholds and are also

printed in the output window.

scqol: LRASCH MML estimated thresholds

Label Estimate
b_SCO01|1 0.84
b_SC01|2 2.27
b_SC02|1 -0.88
b_SC021|2 0.82
b_SC0213 1.58
b_SC03|1 0.49

Value

2948.2
3022.2
3023.9
3118.9

Standard
Error

O O O O O o

.28
.43
.25
.25
.32
.29

Lower

0.28

.41
.38
.32
.95
.08

Upper

.40

3.13

.38
.33

2.21

.06
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b_SC03|2 1.562 0.37 0.79 2.26
b_SC03(3 3.12 0.68 1.77 4.48
b_SC04 |1 -0.16 0.23 -0.62 0.31
b_SC04 |2 1.40 0.28 0.85 1.95
b_SC041(3 2.23 0.40 1.43 3.03
b_SC05]1 2.95 0.34 2.27 3.63
b_SC05]|2 1.68 0.52 0.66 2.70
b_SC05(3 2.06 0.64 0.79 3.32
b_SC06]1 1.09 0.29 0.52 1.66
b_SC06|2 2.62 0.50 1.63 3.62
b_SC061(3 3.61 1.13 1.37 5.85
b_SCO07|1 -0.82 0.24 -1.29 -0.36
b_SCO07|2 1.87 0.28 1.32 2.43
b_SCO0713 2.28 0.44 1.41 3.15
b_SC08]1 1.563 0.25 1.04 2.02
b_SC08(2 2.29 0.40 1.49 3.09
b_SC08(3 2.55 0.64 1.28 3.82
b_SC09]1 -0.74 0.25 -1.24 -0.24
b_SC09|2 0.54 0.25 0.05 1.04
b_SC0913 1.90 0.32 1.26 2.53
fu_SCO01|1 0.45 0.32 -0.19 1.09
fu_SC01|2 1.07 0.39 0.29 1.84
fu_SC0113 2.35 0.62 1.12 3.57
fu_SC02|1 -0.88 0.25 -1.38 -0.38
fu_SC02|2 0.82 0.25 0.32 1.33
fu_SC0213 1.58 0.32 0.95 2.21
fu_SC03|1 1.44 0.33 0.78 2.09
fu_SC03|2 2.43 0.60 1.24 3.63
fu_SC04|1 -0.16 0.23 -0.62 0.31
fu_SC04|2 1.40 0.28 0.85 1.95
fu_SC04|3 2.23 0.40 1.43 3.03
fu_SCO05|1 2.95 0.34 2.27 3.63
fu_SC05|2 1.68 0.52 0.66 2.70
fu_SC0513 2.06 0.64 0.79 3.32
fu_SC06|1 1.77 0.35 1.08 2.45
fu_SC06|2 3.04 0.79 1.46 4.61
fu_SCo7|1 -0.82 0.24 -1.29 -0.36
fu_SCO07|2 1.87 0.28 1.32 2.43
fu_SC0713 2.28 0.44 1.41 3.15
fu_SC08|1 1.563 0.25 1.04 2.02
fu_SC08|2 2.29 0.40 1.49 3.09
fu_SC08|3 2.55 0.64 1.28 3.82
fu_SC09|1 -0.74 0.25 -1.24 -0.24
fu_SC09|2 0.54 0.25 0.05 1.04
fu_SC0913 1.90 0.32 1.26 2.53

The item parameters are shown in Table 2, note that the data set SCQOL_thresholds also con-



12 %lrasch_mml: Longitudinal Polytomous Rasch Models in SAS

Item g s.e(p) Item B s.e.(p)
b_SCO1[1 0.84 0.28 fu_SCO1|1 0.45 0.32
b_SC01[2 2.27 0.43 fu_SCO01]2 1.07 0.39
fu_SCO113 235  0.62
b_SC02|1 —0.88 0.25 fu_SC02|1 —0.88 0.25
b_SC02|2 0.82 0.25 fu_SC02]2 0.82 0.25
b_SC02|3 1.58 0.32 fu_SC02|3 1.58 0.32
b_SCO03[1 0.49 0.29 fu_SC03|1 1.44 0.33
b_SC03[2 1.52 0.37 fu_SC03]|2 2.43 0.60
b_SCO3|3 312  0.68
b_SC04l1 —0.16 0.23 fu_sSC04l1 —0.16 0.23
b_SC04|2 1.40 0.28 fu_SC04|2 1.40 0.28
b_SC04|3 2.23 0.40 fu_SC04|3 2.23 0.40
b_SC05]1 2.95 0.34 fu_SCO05|1 2.95 0.34
b_SC05(2 1.68 0.52 fu_SC05]2 1.68 0.52
b_SC05|3 2.06 0.64 fu_SCO05|3 2.06 0.64
b_SC06]1 1.09 0.29 fu_SC06]1 1.77 0.35
b_SC06(2 2.62 0.50 fu_SC06]2 3.04 0.79
b_SC06|3 3.61 1.13
b_SCO7l1 —0.82 0.24 fu_sSCO7|1 —0.82 0.24
b_SCO712 1.87 0.28 fu_SCO0712 1.87 0.28
b_SC07|3 2.28 0.44 fu_SCO7|3 2.28 0.44
b_SC08]1 1.53 0.25 fu_SC08|1 1.53 0.25
b_SC08|2 2.29 0.40 fu_SC08]|2 2.29 0.40
b_SC08|(3 2.55 0.64 fu_SC08|3 2.55 0.64
b SC09/1 —0.74 025 fu SC09|1 —074  0.25
b_SC09|2 0.54 0.25 fu_SC09]|2 0.54 0.25
b_SC09(3 1.90 0.32 fu_SC09|3 1.90 0.32

Table 2: The estimated item parameters from the SCQoL data.

tains 95% confidence intervals for the item parameter estimates. The data set SCQOL_POPPAR
contains estimates of the average change in latent variable (u = —0.047, 95% CI: —0.348 to
0.253), estimated variances, and estimated latent correlation (p = 0.653, 95% CI: 0.475 to
0.831). This data set is also printed in the output window.

scqol: LRASCH estimated change in latent mean (mu), variances, and latent
correlation (rho)

Standard
Parameter Estimate Error Lower Upper
mu -0.047 0.152 -0.348 0.253
rho 0.653 0.090 0.475 0.831
sigmal 1.319 0.138 1.045 1.594

sigma?2 1.141 0.136 0.871 1.412
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Figure 1: Item characteristic curves (ICCs) for an anchored item (plotted with the option

ICC = YES).
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Figure 2: Item characteristic curves (ICCs) for an unanchored item (plotted with the option

ICC = YES).

The ICCs for selected items are shown in Figures 1 and 2.
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5.1. Item parameter drift

To test that the parameters do not change over time we specify, e.g.,

%lrasch_mml (DATA=data.scqol, ITEM_NAMES=inames,
ANCHOR=b_SC04 b_SCO05 b_SC07 b_SC08 b_SC09,
SPLIT=NONE, OUT=AN2);

where the item SC02 is no longer anchored. The log likelihood value is —2log L = 2941.8.

AN2: LRASCH MML estimation loglikelihood

Descr Value
-2 Log Likelihood 2941.9
AIC (smaller is better) 3021.9
AICC (smaller is better) 3023.8
BIC (smaller is better) 3126.5

Compared to the previously fitted model, where § = (—0.88,0.82,1.58) at both time points
this model has § = (—1.25,0.73,1.44) at time 1 and § = (—0.41,1.06,1.98) at time 2.

AN2: LRASCH MML estimated thresholds

Standard

Label Estimate Error Lower Upper
b_SCO1|1 0.84 0.29 0.28 1.41
b_SC01|2 2.31 0.44 1.44 3.18
b_SC02(1 -1.25 0.33 -1.91 -0.58
b_SC02|2 0.73 0.32 0.10 1.35
b_SC02|3 1.44 0.38 0.69 2.20
b_SCO03[1 0.49 0.29 -0.09 1.06
b_SC03|2 1.55 0.37 0.82 2.29
b_SC03|3 3.17 0.68 1.82 4.53
b_SC04[1 -0.09 0.24 -0.56 0.38
b_SC04|2 1.47 0.28 0.92 2.03
b_SC04|3 2.30 0.41 1.49 3.10
b_SCO5(1 3.02 0.34 2.34 3.70
b_SCO05|2 1.75 0.52 0.72 2.78
b_SCO05(3 2.12 0.64 0.86 3.39
b_SC06|1 1.10 0.29 0.53 1.68
b_SC06|2 2.66 0.50 1.67 3.66
b_SC06|3 3.67 1.13 1.42 5.91
b_SCO7|1 -0.76 0.24 -1.23 -0.28
b_SCO7|2 1.94 0.28 1.38 2.51
b_SC0713 2.35 0.44 1.47 3.22
b_SC08|1 1.60 0.25 1.10 2.10
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b_SC08|2 2.36 0.41 1.56 3.17
b_SC08|(3 2.62 0.64 1.34 3.89
b_SC09]1 -0.68 0.26 -1.18 -0.17
b_SC09|2 0.61 0.25 0.11 1.12
b_SC091(3 1.97 0.32 1.32 2.61
fu_SCO01|1 0.59 0.33 -0.06 1.24
fu_SC01|2 1.19 0.40 0.41 1.98
fu_SC0113 2.46 0.62 1.23 3.69
fu_SC02|1 -0.41 0.34 -1.08 0.26
fu_SC02|2 1.06 0.36 0.35 1.77
fu_SC02/3 1.98 0.50 0.99 2.98
fu_SC03|1 1.57 0.34 0.90 2.24
fu_SC03|2 2.55 0.60 1.35 3.74
fu_SC04|1 -0.09 0.24 -0.56 0.38
fu_SC04|2 1.47 0.28 0.92 2.03
fu_SC0413 2.30 0.41 1.49 3.10
fu_SCO05|1 3.02 0.34 2.34 3.70
fu_SC05]2 1.75 0.52 0.72 2.78
fu_SC0513 2.12 0.64 0.86 3.39
fu_SCo6|1 1.90 0.35 1.20 2.59
fu_SC06|2 3.15 0.80 1.57 4.73
fu_SCo7|1 -0.76 0.24 -1.23 -0.28
fu_SCO0712 1.94 0.28 1.38 2.51
fu_SC0713 2.35 0.44 1.47 3.22
fu_SC08|1 1.60 0.25 1.10 2.10
fu_SC08|2 2.36 0.41 1.56 3.17
fu_SC08|3 2.62 0.64 1.34 3.89
fu_SC09|1 -0.68 0.26 -1.18 -0.17
fu_SC09]2 0.61 0.25 0.11 1.12
fu_SC0913 1.97 0.32 1.32 2.61

Thus this model has three additional parameters. This yields a likelihood ratio test statistic
of —2log L = 2948.2 — 2941.9 = 6.3, which on three degrees of freedom is not significant. We
note that the population parameters in AN2_POPPAR do not differ much from those estimated
under the previous model.

AN2: LRASCH estimated change in latent mean (mu), variances, and latent
correlation (rho)

Standard
Parameter Estimate Error Lower Upper
mu 0.090 0.162 -0.232 0.412
rho 0.653 0.090 0.476 0.831
sigmal 1.353 0.143 1.069 1.637
sigma2 1.124 0.136 0.855 1.393

This likelihood ratio test can be computed using the SAS code
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data 1rt;
merge  SCQOL_logl (rename=(value=logl_0))
AN2_logl (rename=(value=logl)) ;
where Descr='-2 Log Likelihood';
1rt=logl_0-logl;
df=3;
p=1-probchi(lrt,df);

run;
proc print noobs;
run;
Descr logl O logl 1rt df p
-2 Log Likelihood 2948.2 2941.9 6.32293 3 0.096914

The insignificant result means that for the item SC02 there is no evidence of item parameter
drift. Similar tests should be carried out for the other items in the scale.
5.2. Local dependence across time points

The macro %lrasch_mml makes it possible to split items and to test the assumption local
independence across time points we thus specify

%lrasch_mml (DATA=data.scqol, ITEM_NAMES=inames,
ANCHOR=b_SC02 b_SC04 b_SCO5 b_SC07 b_SC08 b_SC09,
SPLIT=b_SC02, OUT=SP2);

where the item SC02 is split. The log likelihood value is —2log L = 2933.1.

SP2: LRASCH MML estimation loglikelihood

Descr Value
-2 Log Likelihood 2933.1
AIC (smaller is better) 3031.1
AICC (smaller is better) 3034.1
BIC (smaller is better) 3159.2

As described above splitting means that four versions of SC02 are included at time 2 depending
on the observed value of SC02 at time 1. These consist of: an item with 8 = (0.52,1.47,0.51)
for respondents with b_SC02 = 0, an item with g = (—0.70,1.37,2.64) for respondents with
b_SC02 = 1, an item with § = (—0.13,0.42,1.93) for respondents with b_SC02 = 2, and an
item with § = (—1.96,1.21,2.02) for respondents with b_SC02 = 3.

SP2: LRASCH MML estimated thresholds

Standard
Label Estimate Error Lower Upper
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fu_SCO05|1 3.02 0.34 2.33 3.70
fu_SC05|2 1.74 0.52 0.72 2.77
fu_SC0513 2.12 0.64 0.85 3.38
fu_SC06|1 1.89 0.35 1.20 2.59
fu_SC06|2 3.14 0.80 1.56 4.72
fu_SCo7|1 -0.76 0.24 -1.23 -0.28
fu_SC07|2 1.94 0.28 1.37 2.50
fu_SC0713 2.34 0.44 1.47 3.22
fu_Sco8|1 1.59 0.25 1.09 2.09
fu_SC08|2 2.36 0.41 1.55 3.16
fu_SC08|3 2.61 0.64 1.34 3.89
fu_SC09|1 -0.67 0.25 -1.18 -0.17
fu_SC09|2 0.61 0.25 0.11 1.11
fu_SC0913 1.96 0.32 1.32 2.60

The population parameters are of the same magnitude as in the two previous models.

SP2: LRASCH estimated change in latent mean (mu), variances, and latent
correlation (rho)

Standard
Parameter Estimate Error Lower Upper
mu 0.092 0.164 -0.234 0.418
rho 0.624 0.096 0.433 0.814
sigmal 1.347 0.142 1.064 1.629
sigma?2 1.107 0.135 0.839 1.374

Compared to the model where 8 at time 2 is equal to 3 at time 1 this model has 12 additional
parameters. This yields a likelihood ratio test statistic of —2log L = 2948.2 — 2933.1 = 15.1,
which on 12 degrees of freedom is not significant. This likelihood ratio test can be computed
using the SAS code

data 1rt;

merge  SCQOL_logl (rename=(value=logl_0))
SP2_logl (rename=(value=logl));

where Descr='-2 Log Likelihood';
lrt=logl_O-logl;
df=12;
p=1-probchi(lrt,df);

run;

proc print;

run;

Descr logl_ 0O logl 1rt daf p

-2 Log Likelihood 2948.2 2933.1 15.0844 12 0.23685
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The insignificant result means that for the item SC02 there is no evidence of local dependence
across time points. The observed correlation is explained solely by the latent variables 8, and
f5. Similar tests should be carried out for the other items in the scale. This can be done in
steps: by first testing local dependence across time points for each item against the simple
longitudinal Rasch model, and then evaluating the combined evidence. The flexibility of the
proposed macro then makes it possible to add local dependence across time for a single item
yielding an extended model. Local dependence across time points for the remaining items
can then be tested against this extended model.

6. Discussion

The proprietary software packages RUMM (Andrich et al. 2010) and WINSTEPS (Linacre
2011) for fitting Rasch models are widely used. All of these fit unidimensional models only,
even though many applications deal with multidimensional or longitudinal data. The two-
dimensional Rasch model as originally discussed by Andersen (1985) and Embretson (1991)
was formulated for longitudinal data. To obtain consistent item parameter estimates MML
estimation (Bock and Aitkin 1981; Thissen 1982; Zwinderman and Wollenberg 1990) is used.
This approach to item parameter estimation assumes that the latent variables are sampled
from a population and introduces an assumption about the distribution of the latent variable.

A weakness of the proposed macro is that fit indices, like INFIT or OUTFIT, are not imple-
mented. However, since these fit test statistics are implemented in the SAS macros for uni-
dimensional Rasch models AnaQol (Hardouin and Mesbah 2007), GLIMMIX_ Rasch (Chen
et al. 2013), and %rasch_mml (Christensen and Olsbjerg 2013) testing the fit of the Rasch
model at each time point is feasible. While tests of item fit in the longitudinal model are not
implemented, some of the features of the longitudinal model structure can be tested using
SAS macros for unidimensional Rasch models. Indeed, because local dependence across time
points can be modeled using item splitting (as implemented using the SPLIT option), a SAS
macro for unidimensional Rasch models that can accommodate missing data can be used to
test the fit of locally dependent items in a longitudinal Rasch model. Another weakness of
the proposed macro is that the implemented graphical display only shows curves of the ex-
pected categories probabilities, but that no comparison with observed data is possible. Again
SAS macros for unidimensional Rasch models like %AnaQol (Hardouin and Mesbah 2007),
%rasch_mml (Christensen and Olsbjerg 2013), and %rasch_cml (Christensen 2013) can be
used for this.

The general implementation allows the user to specify models where the item parameters
do change over time. The macro can be used to test the assumption of item parameter
invariance using likelihood ratio tests, thus adding to existing methods for detection of item
parameter drift (Donoghue and Isham 1998; DeMars 2004; Galdin and Laurencelle 2010).
The macro also makes it possible to study local dependence across time points, by splitting
of the item at follow-up into new items according to the responses given at baseline (Olsbjerg
and Christensen 2014). The macro %lrasch_mml makes it possible to include splitted items
and to test the assumption of local independence across time points using likelihood ratio
tests, thus adding to existing tests of this assumption (Olsbjerg and Christensen 2013).

19
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