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Abstract

The dbmss package for R provides an easy-to-use toolbox to characterize the spatial
structure of point patterns. Our contribution presents the state of the art of distance-based
methods employed in economic geography and which are also used in ecology. Topographic
functions such as Ripley’s K, absolute functions such as Duranton and Overman’s Kd and
relative functions such as Marcon and Puech’s M are implemented. Their confidence
envelopes (including global ones) and tests against counterfactuals are included in the
package.
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1. Introduction
Numerous researchers in various fields concern themselves with characterizing spatial dis-
tributions of objects. Amongst other questions, ecologists have been addressing the spatial
attraction between species (Duncan 1991) or the non-independence of the location of dead
trees in a forest (Haase, Pugnaire, Clark, and Incoll 1997). In addition of ecologists analyz-
ing the spatial distribution of plants, economists may be concerned with the location of new
entrants (Duranton and Overman 2008) or with the location of shops according to the types
of good sold (Picone, Ridley, and Zandbergen 2009). In epidemiology, researchers want to
identify the spatial distribution of sick individuals in comparison to the population (Diggle
and Chetwynd 1991). In these research fields, the point process theory undoubtedly helps
dealing with these questions. Exploratory statistics of point patterns widely rely on Rip-
ley’s seminal work (Ripley 1976, 1977), namely the K function. A recent review of similar
methods is given by Marcon and Puech (2014) who called them distance-based measures of
spatial concentration. We will refer to them here as spatial structures since both dispersion
and concentration can be characterized. They are considered as novel and promising tools
in spatial economics (Combes, Mayer, and Thisse 2008). The traditional approach to detect
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localization, i.e., the degree of dissimilarity between the geographical distribution of an in-
dustry and that of a reference (Hoover 1936), relies on discrete space (a country is divided
in regions for example) and measures of inequality between zones, such as the classical Gini
(1912) index or the more advanced Ellison and Glaeser (1997) index. This approach suffers
from several limitations, mainly the modifiable areal unit problem (MAUP): Results depend
on the way zones are delimited and on the scale of observation (Openshaw and Taylor 1979).
Distance-based methods have the advantage to consider space as continuous, i.e., without any
zoning, allowing detecting spatial structures at all scales simultaneously and solving MAUP
issues.
These methods estimate the value of a function of distance to each point calculated on a
planar point pattern, typically objects on a map. They all consist in counting neighbors
(up to or exactly at the chosen distance) around each reference point and transforming their
number into a meaningful statistic. There are basically three possible approaches: just count
neighbors, count neighbors per surface area or calculate the proportion of neighbors of interest
among all neighbors. These approaches define three families of functions: absolute (how many
neighbors are there?), topographic (how many neighbors per unit of area?) and relative (what
is the ratio of neighbors of interest?). The function values are not the main motivation. The
purpose is rather to test the point pattern against the null hypothesis that it is a realization of
a known point process which does not account for a property of interest. The basic purpose of
Ripley’s K is to test the observed point pattern against complete spatial randomness (CSR),
i.e., a homogeneous Poisson process, to detect dependence between point locations (the null
hypothesis supposes independent points) assuming homogeneity (i.e., the probability to find
a point is the same everywhere). Ripley-like functions, available in the proposed R (R Core
Team 2015) dbmss package (Marcon, Lang, Traissac, and Puech 2015), can be classified in
three families:

• Topographic measures such as K take space as their reference. They have been widely
used in ecology (Fortin and Dale 2005). They have been built from the point process
theory and have a strong mathematical background.

• Relative measures such as M (Marcon and Puech 2010) compare the structure of a point
type to that of another type (they can be considered as cases and controls). They have
been developed in economics, where comparing the distribution of a sector of activity
to that of the whole economic activity is a classical approach (Combes et al. 2008), but
introduced only recently in ecology (Marcon, Puech, and Traissac 2012).

• Absolute functions such as Kd (Duranton and Overman 2005) have no reference at all
but their value can be compared to the appropriate null hypothesis to test it.

Relative and absolute functions have been built from descriptive statistics of point patterns,
not related to the underlying point processes, so they are seen as heuristic and ignored by
the statistical literature (Illian, Penttinen, Stoyan, and Stoyan 2008). Topographic functions
are implemented in the spatstat package (Baddeley and Turner 2005) for R but absolute and
relative functions are missing. We fill this gap by proposing the dbmss package, which is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=dbmss. It makes the computation of the whole set of distance-based methods
simple for empirical researchers by introducing measures that are not available elsewhere and

http://CRAN.R-project.org/package=dbmss
http://CRAN.R-project.org/package=dbmss


Journal of Statistical Software – Code Snippets 3

wrapping some topographic measures available in spatstat so that all can be used the same
way.

Estimated values of the functions must be tested against a null hypothesis. The usual empiri-
cal way to characterize a spatial structure consists in computing the appropriate function and
comparing it to the quantiles of a large number of simulations of the null hypothesis to reject
(Kenkel 1988). We propose extended possibilities to evaluate confidence envelopes, including
“global envelopes” (Duranton and Overman 2005), a goodness-of-fit test (Diggle 1983) and
an analytical test (Lang and Marcon 2013; Marcon, Traissac, and Lang 2013).

Definitions of all functions and formulas for their estimation can be found in Marcon and
Puech (2014) and are not repeated here, but they are summarized in Section 2 on the statis-
tical background. Their implementation is presented in Section 3 on the package content.

2. Rationale and statistical background

We consider a map of points which often represents establishments in economic geography
or trees in vegetation science. These points have two marks: a type (an industrial sector, a
species, . . . ) and a weight (a number of employees, a basal area, . . . ). We want to apply to this
point pattern a variety of exploratory statistics which are functions of distance between points
and to test the null hypothesis of independence between point locations. These functions are
either topographic, absolute or relative. They can be interpreted as the ratio between the
observed number of neighbors and the expected number of neighbors if points were located
independently from each other. If reference and neighbor points are of the same type, the
functions are univariate and allow to study concentration or dispersion. They are bivariate,
if the types differ, and allow to address the colocation of types. In the following we detail
this approach.

2.1. Topographic, homogeneous functions

Topographic, homogeneous functions are Ripley’s K and its derivative g. Their null hypoth-
esis is a Poisson homogeneous process: Rejecting it means that the process underlying the
observed pattern is either not homogeneous or not independent. These functions are applied
when homogeneity is assumed so independence only is tested by comparing the observed val-
ues of the function to their confidence envelope under CSR. Bivariate functions are tested
against the null hypothesis of random labeling (point locations are kept unchanged but marks
are redistributed randomly) or population independence (the reference point type is kept un-
changed, the neighbor point type is shifted) following Goreaud and Pélissier (2003). The
random labeling hypothesis considers that points preexist and their marks are the result of a
process to test (e.g., are dead trees independently distributed in a forest?). The population
independence hypothesis considers that points belong to two different populations with their
own spatial structure and wants to test whether they are independent from each other.

Edge effect correction is compulsory to compute topographic functions: Points located close
to boundaries have less neighbors because of the lack of knowledge outside the observation
window. The spatstat package provides corrections following Ripley (1988), which we use.
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2.2. Topographic, inhomogeneous functions

Kinhom (Baddeley, Møller, and Waagepetersen 2000) is the generalization of K to inhomo-
geneous processes: It tests independence of points assuming the intensity of the process is
known. Empirically, it generally has to be estimated from the data where assumptions on the
way to do this rely on theoretical knowledge of the process. The null hypothesis (“random
position”) is that the pattern comes from an inhomogeneous Poisson process of this intensity,
which can be simulated. Applying Kinhom to a single point type allows using the “random
location” null hypothesis, following Duranton and Overman (2005): Observed points (with
their marks) are shuffled among observed locations to test for independence. Bivariate Kinhom
null hypotheses may be random labeling or population independence as defined by Marcon
and Puech (2010): Reference points are kept unchanged, other points are redistributed across
observed locations.
Kmm (Penttinen 2006; Penttinen, Stoyan, and Henttonen 1992) generalizes K to weighted
points (weights are continuous marks of the points). Its null hypothesis in dbmss is random
location. Penttinen et al. (1992) inferred the point process from the point pattern, and used
the inferred process to simulate the null hypothesis patterns. This requires advanced spatial
statistics techniques and knowledge about the process that is generally not available. The
random location hypothesis is a way to draw null patterns simply, but ignores the stochasticity
of the point process.
The D (Diggle and Chetwynd 1991) function compares the K function of points of interest
(cases) to that of other points (controls). Its null hypothesis is random labeling.

2.3. Absolute functions

In their seminal paper, Duranton and Overman (Duranton and Overman 2005) study the
distribution of industrial establishments in Great Britain. Every establishment, represented
by a point, is characterized by its position (geographic coordinates), its sector of activity
(point type) and its number of employees (point weight). The Kd function (Duranton and
Overman 2005) is the probability density to find a neighbor a given distance apart from a
point of interest in a finite point process. The Kemp function integrates the weights of points:
It is the density probability to find an employee r apart from an employee of interest.
Kd and Kemp are absolute measures since their value is not normalized by the measure of
space or any other reference: For a binomial process, Kd increases proportionally to r if
the window is large enough to ignore edge effects (the probability density is proportional to
the perimeter of the circle of radius r, Bonneu and Thomas-Agnan 2015), then edge effects
make it decrease to 0 when r becomes larger than the window’s size: It is a bell-shaped
curve. Kd values are not interpreted but compared to the confidence envelope of the null
hypothesis, which is random location. The null hypothesis of bivariate functions is random
labeling, following Duranton and Overman (2005), i.e., point types are redistributed across
locations while weights are kept unchanged, or population independence (as for Kinhom).
It is not corrected for edge effects. Kd was designed to characterize the spatial structure
of an economic sector, comparing it to the distribution of the whole activity. From this
point of view, it has been considered as a relative function (Marcon and Puech 2010). We
prefer to be more accurate and distinguish it from strict relative functions which directly
calculate a ratio or a difference between the number of points of the type of interest and
the total number of points. What makes it relative is only its null hypothesis: Changing
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it for random location (that of univariate Kinhom) would make univariate Kd behave as a
topographic function (testing independence of the distribution supposing its intensity is that
of the whole activity).
Kd is a leading tool in spatial economics. A great number of its applications can be found
in the literature that confirms the recent interest for distance-based methods in spatial eco-
nomics. A recent major study can be found in Ellison, Glaeser, and Kerr (2010).

2.4. Relative functions
The univariate and bivariate M function (Marcon and Puech 2010) is the ratio of neighbors
of interest up to distance r normalized by its value over the whole domain. Their null
hypotheses are the same as Kd’s. They do not suffer from edge effects. Marcon and Puech
(2010) show that theM function respects most of the axioms generally accepted as the “good
properties” to evaluate geographic concentration in spatial economics (Combes and Overman
2004; Duranton and Overman 2005).

2.5. Unification
Empirically, all estimators can be seen as variations in a unique framework: Neighbors of each
reference point are counted, their number is averaged and divided by a reference measure.
Finally, this average local result is divided by its reference value, calculated over the whole
point pattern instead of around each point.
Choosing reference and neighbor point types allows defining univariate or bivariate functions,
counting neighbors up to or at a distance defines cumulative or density functions, taking an
area or a number of points as the reference measure defines topographic or relative functions.
These steps are detailed for two functions to clarify them: We focus on Ripley’s g and Marcon
and Puech’s M bivariate function. See Marcon and Puech (2014) for a full review.
Reference points are denoted xi, neighbor points are xj . For density functions such as g,
neighbors of xi are counted at a chosen distance r:

n (xi, r) =
∑

j, i6=j

k (‖xi−xj‖ , r) c (i, j) (1)

k (‖xi−xj‖ , r) is a kernel estimator, necessary to evaluate the number of neighbors at distance
r, and c (i, j) is an edge-effect correction (points located close to boundaries have less neighbors
because of the lack of knowledge outside the observation window).
To compute the bivariate M function, reference points are of a particular type in a marked
point pattern: xi ∈ R, where R is the set of points of the reference type. Neighbors of the
chosen type are denoted xj ∈ N . In cumulative functions such as M, neighbors are counted
up to r:

n (xi, r) =
∑

xj∈N ,i 6=j

1 (‖xi−xj‖ ≤ r)w (xj). (2)

Points can be weighted, i.e., w (xj) is the neighbor’s weight.
The number of neighbors is then averaged. n is the number of reference points:

n̄ (r) = 1
n

n∑
i=1

n (xi, r). (3)
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The average number of neighbors is compared to a reference measure. It may be a measure
of space (the perimeter of the circle of radius r for g), defining topographic functions:

m (r) = 2πr. (4)

It may also be the number of neighbors of all types in a relative function such as M :

m (r) =
∑

j,i6=j

1 (‖xi−xj‖ ≤ r)w (xj). (5)

Finally, n̄(r)
m(r) is compared to the same ratio computed on the whole window. For g, this gives:

n̄0
m0

=n− 1
A

. (6)

A is the area of the window, n̄0 and m0 are the limit values of n̄ (r) and m (r) when r gets
larger than the window’s size. For M, it becomes:

n̄0
m0

= 1
n

n∑
i=1

WN
W − w (xi)

(7)

WN is the total weight of neighbor points, W that of all points. Finally, despite the functions
being quite different (density vs. cumulative, topographic vs. relative, univariate vs. bivariate),
both estimators can be written as n̄

m/
n̄0
m0

. Their value (except for absolute functions) can be
interpreted as a location quotient: g (r) = 2 orM (r) = 2 means that twice more neighbors are
observed at (or up to) distance r than expected on average, i.e., ignoring the point locations
in the window. The appropriate function will be chosen from the toolbox according to the
question raised.

3. Package content
The dbmss package contains a full (within the limits of the literature reviewed in Section 2)
set of functions to characterize the spatial structure of a point pattern, including tools to
compute the confidence interval of the counterfactual. It allows addressing big datasets thanks
to C++ code used to calculate distances between pairs of points (using Rcpp infrastructure,
Eddelbuettel and François 2011). Computational requirements actually are an issue starting
from say 10,000 points (see Ellison et al. 2010, for instance). Memory requirement is O(n),
i.e., proportional to the number of points to store their location and type. We use loops
to calculate distances and increment summary statistics rather than store a distance matrix
which is O(n2), following Scholl and Brenner (2013). Computation time is O(n2) because
n(n− 1)/2 pair distances must be calculated. A 100,000-point set requires around 4 minutes
to calculate M on a laptop computer with an i5 Intel CPU. An confidence envelope built from
1000 simulations requires about 3 days.
We consider planar point patterns (sets of points in a 2-dimensional space) with marks of a
special kind: Each point comes with a continuous mark (its weight) and a discrete one (its
type). We call this special type of point pattern “weighted, marked, planar point patterns”
and define objects of class ‘wmppp’, which inherits from class ‘ppp’ as defined in spatstat.
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Marks are a dataframe with two columns, PointWeight containing the weights of points, and
PointTypes containing the types, as factors.
A ‘wmppp’ object can be created by the wmppp() function which accepts a dataframe as argu-
ment, or converted from a ‘ppp’ object by as.wmppp(). Starting from a CSV file containing
point coordinates, their type and their weight in four columns, a ‘wmppp’ object can be created
by just reading the file with read.csv() and applying wmppp() to the result. Options are
available to specify the observation window or guess it from the point coordinates and set
default weights or types to points when they are not in the dataframe, see the package help
for details. The simplest code to create a ‘wmppp’ object with 100 points is as follows. It
draws point coordinates between 0 and 1, and creates a ‘wmppp’ object with a default window,
all points are of the same type named “All” and their weight is 1.

R> Pattern <- wmppp(data.frame(X = runif(100), Y = runif(100)))
R> summary(Pattern)

Marked planar point pattern: 100 points
Average intensity 106 points per square unit
Mark variables: PointWeight, PointType
Summary:

PointWeight PointType
Min. :1 All:100
1st Qu.:1
Median :1
Mean :1
3rd Qu.:1
Max. :1

Window: rectangle = [2.96e-05, 0.968919] x [0.0267366, 0.9794786] units
Window area = 0.923102 square units

3.1. Distance-based functions

All functions are named Xhat where X is the name of the function: Ripley’s g and K ; K ’s
normalization; Besag’s L (1977); Penttinen’s Kmm and Lmm ; Diggle and Chetwynd’s D;
Baddeley et al.’s Kinhom and its derivative ginhom ; Marcon and Puech’s M and Duranton and
Overman’s Kd (including its weighted version Kemp). The suffix hat has been used to avoid
confusion with other functions in R, e.g., D already exists in the stats package. Arguments
are:

• A weighted, marked planar point pattern (a ‘wmppp’ class object). The window can be
a polygon or a binary image, as in spatstat.

• A vector of distances.

• Optionally a reference and a neighbor point type to calculate bivariate functions, or
equivalently the types of cases and controls for the D function.

• Some optional arguments, specific to some functions.
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a b

Figure 1: Map of emergencies in the urban area of Toulouse, France, during year 2004 (about
33 km from south to north). (a) 20,820 emergencies have been recorded and mapped (many
points are confused at the figure scale). (b) Locations of the 10 percent most serious ones.

Topographic functions require edge-effect corrections, provided by spatstat: The best cor-
rection is systematically used. Relative functions ignore the window. Technical details are
provided in the help files.
These functions return an ‘fv’ object, as defined in spatstat, which can be plotted.

3.2. Confidence envelopes

The classical confidence intervals, calculated by Monte Carlo simulations (Kenkel 1988) are
obtained by the XEnvelope function, where X is the function’s name. Arguments are the
number of simulations to run, the risk level, those of the function and the null hypothesis to
simulate. These functions return a ‘dbmssEnvelope’ object which can be plotted.
Null hypotheses have been discussed by Goreaud and Pélissier (2003) for topographic func-
tions such as K and by Marcon and Puech (2010) for relative functions. The null hypothesis
for univariate functions is random position (points are drawn from a Poisson process for to-
pographic functions) or random location (points are redistributed across actual locations for
relative functions). Bivariate functions support random labeling and population indepen-
dence as null hypotheses. The possible values of arguments are detailed in the help file of
each function.
Building a confidence envelope in this way is problematic because the test is repeated at
each distance. The underestimation of the risk has been discussed by Loosmore and Ford
(2006). Duranton and Overman (2005) proposed a global envelope computed by the repeated
elimination of simulations reaching an extreme value at any distance until the desired level is
reached. The argument Global = TRUE is used to obtain it instead of the local one.

3.3. Examples

We illustrate the main features of the package by two examples. The first one comes from
the economic literature (Bonneu 2007)1. A point pattern is induced by data about 20,820

1The dataset can be downloaded from: http://publications-sfds.fr/index.php/csbigs/article/
downloadSuppFile/376/69.

http://publications-sfds.fr/index.php/csbigs/article/downloadSuppFile/376/69
http://publications-sfds.fr/index.php/csbigs/article/downloadSuppFile/376/69
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Figure 2: Representation of Kd(r) values of the 10% most serious emergencies in year 2004
in the Toulouse urban area, showing their significant dispersion at all distances up to approx-
imately 8 km. The solid, black curve is Kd. The dotted red curve is the average simulated
value and the shaded area is the confidence envelope under the null hypothesis of random
location. The risk level is 5%, 1000 simulations have been run. Distances are in meters.

emergencies involving the fire department of the urban area around Toulouse, France, during
the year 2004 (Figure 1). The workload associated to each emergency (the number of men ×
hours it required) is known. The original study tested the dependence between workload and
location of emergencies: It did not exclude the null hypothesis of random labeling. We have
a complementary approach here: We consider the 10 percent more serious emergencies, i.e.,
those which caused the highest workload. Kd may detect concentration (or dispersion) if, at
a distance r from a serious emergency, the probability to find another serious emergency is
greater (or lower) than that of finding an emergency regardless of its workload:

R> load("CSBIGS.Rdata")
R> Category <- cut(Emergencies$M, quantile(Emergencies$M, c(0, 0.9, 1)),
+ labels = c("Other", "Biggest"), include.lowest = TRUE)
R> X <- wmppp(data.frame(X = Emergencies$X, Y = Emergencies$Y,
+ PointType = Category), win = Region)
R> KdE <- KdEnvelope(X, r = seq(0, 10000, 100), NumberOfSimulations = 1000,
+ ReferenceType = "Biggest", Global = TRUE)
R> plot(KdE)

The Emergencies data frame contains point coordinates (in meters) in columns X and Y
and workload in column M. The second line of the code creates a vector containing a factor
describing the workload to separate the 10% highest values. A ‘wmppp’ object is created then,
containing the points and their mark. The KdEnvelope function is run from 0 to 10 km by
steps of 100 m for the most serious emergencies. Figure 2 shows that the 10% most serious
emergencies are more dispersed than the distribution of all emergencies. This opens the way
to discuss on the optimal location of fire stations.
The second example uses the paracou16 point pattern (Figure 3) provided in the package.
It represents the distribution of trees in a 4.1-ha tropical forest plot in the Paracou field
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Figure 3: paracou16 point pattern. Circles are centered on trees in a 4.1-ha forest plot (the
containing rectangle is 200 m wide by 250 m long). Circle sizes are proportional to the basal
areas of trees.

station in French Guiana (Gourlet-Fleury, Guehl, and Laroussinie 2004). It contains 2426
trees, where the species is either Qualea rosea, Vouacapoua americana or Other (one of more
than 300 species). Weights are basal areas (the area of the stems virtually cut 1.3 meter
above ground), measured in square centimeters.

R> data("paracou16", package = "dbmss")
R> plot(paracou16)

The question to test is dependence between the distributions of the two species of interest.
BivariateM(r) is calculated for r between 0 and 30 meters. 1000 simulations are run to build
the global confidence envelope.

R> Envelope <- MEnvelope(paracou16, r = seq(0, 30, 2),
+ NumberOfSimulations = 1000, Alpha = 0.05,
+ ReferenceType = "V. Americana", NeighborType = "Q. Rosea",
+ SimulationType = "RandomLabeling", Global = TRUE)
R> plot(Envelope)

The calculated function (Figure 4) is M, showing the repulsion between V. Americana and Q.
rosea up to 30 m. Significance is unclear, since the observed values of the function are very
close to the lower bound of the envelope. The complete study, with a larger dataset giving
significant results, can be found in Marcon et al. (2012).

3.4. Goodness-of-fit test

A goodness-of-fit test for K has been proposed by Diggle (1983), applied to K by Loosmore
and Ford (2006) and to M by Marcon et al. (2012). It calculates the distance between
the actual values of the function and its average value obtained in simulations of the null
hypothesis. The same distance is calculated for each simulated point pattern, and the returned
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Figure 4: Representation ofM(r) values of Qualea rosea around Vouacapoua Americana trees
in the paracou16 point pattern. The solid, black curve is M. The dotted red curve is the
average simulated value. The shaded area is the confidence envelope. M = 1 is expected if
points are independently distributed. The risk level is 5%, 1000 simulations have been run.
Distances are in meters.

p value of the test by the ratio of simulations whose distance is larger than that of the
real point pattern. The test is performed by the GoFtest function whose argument is the
envelope previously calculated (actually, the function uses the simulation values). Applied to
the example of Paracou trees, the p value is:

R> GoFtest(Envelope)

[1] 0.273

3.5. Ktest

The Ktest has been developed by Lang and Marcon (Lang and Marcon 2013; Marcon et al.
2013). It does not rely on simulations and returns the p value to erroneously reject CSR given
the values of K. It relies on the exact variance of K calculated with edge-effect corrections.
It only works in a rectangular window.
The following example tests a 1.5-ha subset of paracou16 (100 m by 150 m, origin at the
South Western corner). It rejects CSR (p = 0.0027).

R> data("paracou16", package = "dbmss")
R> RectWindow <- owin(c(300, 400), c(0, 150))
R> X <- paracou16[RectWindow]
R> plot(X)
R> Ktest(X, seq(5, 50, 5))

[1] 0.002682576
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4. Conclusion
We built this package to provide an easy-to-use toolbox for users of spatial statistics mainly
in economic geography and ecology. We wrapped up some spatstat functions to allow using
them similarly to our original functions to build a rather complete set of tools, including to-
pographic, absolute and relative functions. The analysis is limited to testing a point pattern
against an appropriate null hypothesis, according to the framework developed in the eco-
nomic literature (Combes et al. 2008) but we believe dbmss is a useful extension of spatstat
for researchers who are motivated by empirical results more than by the tools themselves,
regardless of their scientific field. Full features for point pattern analysis can be found in
spatstat for those who wants to go further, including the simulation of many point processes
as alternate null hypotheses and model fitting beyond exploratory statistics.
Future developments include the use of distance matrices as input of the distance-based
functions to allow addressing road distance or geographic coordinates. We will also develop
subsampling techniques to be able to manage huge datasets (several million points) whose
distances cannot all be calculated in a reasonable time.
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