
JSS Journal of Statistical Software
October 2015, Volume 67, Issue 4. doi: 10.18637/jss.v067.i04

Statistical Disclosure Control for Micro-Data Using
the R Package sdcMicro

Matthias Templ
Vienna University of Technology

Alexander Kowarik
Statistics Austria

Bernhard Meindl
Statistics Austria

Abstract

The demand for data from surveys, censuses or registers containing sensible informa-
tion on people or enterprises has increased significantly over the last years. However,
before data can be provided to the public or to researchers, confidentiality has to be re-
spected for any data set possibly containing sensible information about individual units.
Confidentiality can be achieved by applying statistical disclosure control (SDC) methods
to the data in order to decrease the disclosure risk of data.

The R package sdcMicro serves as an easy-to-handle, object-oriented S4 class imple-
mentation of SDC methods to evaluate and anonymize confidential micro-data sets. It
includes all popular disclosure risk and perturbation methods. The package performs
automated recalculation of frequency counts, individual and global risk measures, infor-
mation loss and data utility statistics after each anonymization step. All methods are
highly optimized in terms of computational costs to be able to work with large data sets.
Reporting facilities that summarize the anonymization process can also be easily used by
practitioners. We describe the package and demonstrate its functionality with a complex
household survey test data set that has been distributed by the International Household
Survey Network.

Keywords: confidentiality, micro-data, statistical disclosure control, R.

1. Introduction

Statistical disclosure control (SDC) is an emerging field of research. More and more data
on persons and establishments are collected by statistical organizations and almost all of
these data holds confidential information. The demand for micro-data for researchers is
increasing since economic analysis or empirical analysis of the society is often only possi-
ble by investigating data containing detailed information. In addition, also the demand for
complex micro-data for training purposes seems to increase. Furthermore, public-use and

http://dx.doi.org/10.18637/jss.v067.i04

2 sdcMicro: Statistical Disclosure Control for Micro-Data in R

hhhhhhhhhhhhhhhhhMethod
Software µ-Argus sdcMicro sdcMicro sdcMicroGUI IHSN

4.2 1.0.0 > 4.3.0 > 1.1.0
Frequency counts 4 (4) 4 4 4

Individual risk 4 (4) 4 4 4

Individual risk on households 4 4 4 4

l-diversity 4 4 4

SUDA2 4 4

Global risk 4 4 4 4

Global risk with log-lin mod. 4

Recoding 4 (4) 4 4 (4)
Local suppression (4) (4) 4 4 (4)
Swapping (4) (4) 4 4

PRAM 4 4 4 4 4

Adding correlated noise 4 4 4 4

Micro-aggregation 4 (4) 4 4 4

Shuffling 4 4

Utility measures (4) 4 4 4

GUI (4) 4

CLI 4 4 4

Missing values 4 4 4 4

Cluster designs 4 4 4 4

Large data 4 4 (4)
Reporting 4 4 4

Platform independent 4 4 4 4

Free and open-source 4 4 4 4

Table 1: List of methods supported by different statistical disclosure control software. Ticks
are in brackets when only limited support is provided to a method. A comparison to version
1.0.0 of sdcMicro (released May 29, 2007; published in Templ 2008) is given to indicate the
progress of the new complete reimplementation of the package.

scientific-use files are required by researchers to run complex simulation studies to compare
methods. As examples for such simulation studies, the BLUE-ETS, AMELI, DACSEIS and
EUREDIT research projects from the Framework Programmes for Research of the European
Union can be named. As examples for releases of public-use data sets, we mention data
sets from the U.S. Census Bureau including the Current Population Survey, the Survey of
Income and Program Participation, the American Housing Survey, the Survey of Program
Dynamics, the American Community Survey and the Consumer Expenditure Survey (see,
e.g., Task Force on the Conference of European Statisticians 2007).
In any case, due to national laws on privacy, micro-data cannot be distributed to the public
or to researchers whenever re-identification of persons or establishments is possible. Software
packages are fundamental for the anonymization of data sets. Table 1 gives an overview on
methods available in four software products – the µ-Argus software (Hundepool et al. 2008)
from Statistics Netherlands, different versions and an extension of the R package sdcMicro
(Templ, Kowarik, and Meindl 2015) and C++ code that was written by the International
Household Survey Network (IHSN, see http://www.ihsn.org/home/node/32). For the sake

http://www.ihsn.org/home/node/32

Journal of Statistical Software 3

of completeness, a former version of sdcMicro (Templ 2008) is also listed as well as the point
and click graphical user interface sdcMicroGUI (Kowarik, Templ, Meindl, and Fonteneau
2013) that serves as an easy-to-handle, highly interactive tool for users who want to use
the sdcMicro package but are not familiar with the native R command line interface. µ-
Argus is a general tool for the anonymization of micro-data that has been developed by
Statistics Netherlands with support from Eurostat and the 5th Framework Programme for
Research of the European Union. sdcMicro version > 4.3.0 provides many more methods
than µ-Argus and sdcMicro version 1.0.0, but major differences can also be found in the
implementation. The main advantages of the proposed sdcMicro package consists of its user-
friendly object-oriented application, the ease of importing data (in µ-Argus an import script
which determines the hierarchical structure of data has to be written), its flexibility to use and
the efficient implementation. We cannot compare computation speed of µ-Argus to sdcMicro,
as methods cannot be applied using a command line interface, but we would like to point
out that µ-Argus is not suitable for large data sets. It becomes slow and runs out-of-memory
even with medium-sized data sets. This is also true for sdcMicro, version 1.0.0.
This contribution is structured in the following manner. First the basic concepts to anonymize
micro-data are briefly introduced in Section 2 and possible challenges related to large complex
data sets are mentioned. A work flow shows how and when methods may be applied during
the whole anonymization process. The conceptional difference regarding the distribution of
the variables is underlined. In Section 3 the main functions of sdcMicro, their general usage
and the object-oriented approach using S4 classes (Section 3.2) is explained. The next sec-
tion, Section 4, gives more details about supported SDC methods. It starts with disclosure
risk methods, followed by anonymization methods and methods to measure data utility. The
application of the related sdcMicro functions is shown for each method. More precisely, the
basic methods on measuring the disclosure risk of micro-data are explained in Section 4.1.
Afterwards, a brief description of anonymization methods is given (Section 4.2). The mea-
surement of data utility is included in Section 4.3. The reporting facilities are presented in
Section 5. These reports summarize the whole anonymization applied to a defined object.
Section 6 concludes with a summary of the main advantages of the package.

2. Concepts to anonymize micro-data
A micro-data file is a data set that holds information collected on individual units like people,
households or enterprises. In general, disclosure occurs when an intruder uses the released
data to reveal previously unknown information about an individual.

2.1. Classification of variables

For each unit/observation, a set of variables is recorded and available in the data set. These
variables can be classified into groups, which are not necessarily disjunctive:

Direct identifiers are variables that precisely identify statistical units. For example, social
insurance numbers, names of companies or persons and addresses are direct identifiers.

Key variables are a set of variables that, when considered together, can be used to identify
individual units. For example, it may be possible to identify individuals by using a
combination of variables such as gender, age, region and occupation. Key variables are

4 sdcMicro: Statistical Disclosure Control for Micro-Data in R

also called implicit identifiers or quasi-identifiers. When discussing SDC methods, it is
preferable to distinguish between categorical and continuous key variables based on the
scale of the corresponding variables.

Non-confidential variables are variables that are not direct identifiers or key variables. For
example, a variable containing information about the number of TVs in a household is
non-confidential since this information is usually not available in any public data base
and thus cannot be linked with auxiliary data.

Sensitive variables are used for specific methods such as l-diversity (see Section 4.1). In-
formation on cancer may serve as an example of a sensitive variable.

Clustering variables are variables determining a hierarchical structure (e.g., households).

Stratification variables are variables determining the application of methods on data sub-
sets. Classification variables, such as economic branches, often serve as stratification
variables and specific methods are then applied to each economic branch separately.

The goal of anonymizing micro-data is to prevent confidential information from being assigned
to a specific respondent. If linkage based on a number of identifiers is successful, the intruder
has access to all of the information related to a specific corresponding unit in the released
data. This means that a subset of critical variables can be exploited to disclose everything
about a unit in the data set.

2.2. Challenges

Methods used in statistical disclosure control borrow techniques from other fields. Multivari-
ate methods are used to modify or simulate continuous variables (see, e.g., Muralidhar and
Sarathy 2006; Templ and Meindl 2008b) and to quantify information loss (see, e.g., Domingo-
Ferrer and Torra 2001) while distribution-fitting methods are used to quantify disclosure risks
(see, e.g., Skinner and Holmes 1998; Franconi and Polettini 2004; Rinott and Shlomo 2006).
Statistical modeling methods form the basis of perturbation algorithms (see, e.g., Muralidhar
and Sarathy 2006), to simulate data (see, e.g., Drechsler 2011; Alfons, Kraft, Templ, and
Filzmoser 2011) and to quantify risks and information loss (see, e.g., Shlomo 2010). Opti-
mization methods may be used to modify data with a minimum impact on data quality (see,
e.g., Fischetti and Salazar-González 2000).
Large data sets present unique problems and challenges and place an even higher demand
on computational efficiency. Handling missing values and structural zeros can be particu-
larly challenging. Complex data structures, like those that are common in survey research,
compound these challenges.
SDC techniques can be divided into three broad topics:

• measuring disclosure risk (see Section 4.1);

• application of SDC-methods to deal with disclosure risks (see Section 4.2);

• comparing original and modified data (information loss) (see Section 4.3).

Journal of Statistical Software 5

Figure 1: Possible work flow to anonymize micro-data using various SDC methods. The
numbers 1–5 correspond to the enumerated explanations in Section 2.3.

2.3. Work flow

Figure 1 outlines common tasks, practices and steps required to obtain confidential data. The
following steps to perturbate micro-data are included in Figure 1:

1. The first step is to remove all direct identification variables from the micro-data set.

2. Second, a set of key variables used for all further risk calculations has to be selected.
This decision is subjective and involves discussions with subject matter specialists and
interpretation of related national laws. See Templ, Kowarik, and Meindl (2014) for
practical applications. For the simulation of fully synthetic data, choosing key variables
is not necessary, see for example Alfons et al. (2011).

3. After key variables have been selected, disclosure risks of individual units are measured.
This step includes the analysis of sample frequency counts as well as the application of
probability methods to estimate individual re-identification risks by taking population
frequencies into account.

4. Next, observations with high individual risks are modified. Techniques such as recoding
and local suppression, recoding and swapping or PRAM (post randomization method
Gouweleeuw, Kooiman, Willenborg, and De Wolf 1998) can be applied to categorical
key variables. It is possible to apply PRAM or swapping without recoding of key
variables beforehand. However, lower swapping rates might be possible if key variables
are modified in advance. The decision as to which method to apply also depends on
the structure of the key variables. In general, one can use recoding together with local
suppression if the amount of unique combinations of key variables is low. PRAM should
be used if the number of key variables is large and the number of unique combinations
is high; for details, see Sections 4.2 and 4.2 and for practical applications Templ et al.

6 sdcMicro: Statistical Disclosure Control for Micro-Data in R

(2014). The values of continuously scaled key variables must be perturbed as well. In
this case, micro-aggregation is always a good choice (see Section 4.2). More sophisticated
methods such as shuffling (see Section 4.2) often also provide promising results.

5. After modifying categorical and continuous key variables, information loss and disclosure
risk measures are estimated. The goal is to release a safe data set with low (individual)
risks and high data utility. If the risks are low enough and the data utility is high, the
anonymized data set can be released. If not, the entire anonymization process must be
reiterated, either with additional perturbations if (some) remaining risks are considered
too high or with actions that increase data utility.

Note that other concepts to anonymize micro-data such as the simulation of synthetic micro-
data sets exist (see Figure 1). One possibility is to simulate all variables of a micro-data
set (i.e., simulate fully synthetic data) by statistical modeling and drawing from predictive
distributions. This topic and its application in R is fully covered in Alfons et al. (2011) and
Templ and Filzmoser (2014) and can be practically carried out using R package simPopulation
(Alfons and Kraft 2013).

3. Working with sdcMicro
For each method discussed we additionally show its usage via the command line interface
of sdcMicro. The application of (most) methods is also possible using the graphical user
interface of package sdcMicroGUI, but this is not shown in this contribution.

3.1. General information about sdcMicro and performance

The first version, version 1.0.0, of the sdcMicro package was released in 2007 on the Com-
prehensive R Archive Network (CRAN, http://CRAN.R-project.org/package=sdcMicro)
and introduced in Templ (2008). However, this version only included few methods and the
package consisted of a collection of some functions that were only applicable to small data
sets. The current release, version 4.6.0, is a huge step forward. Almost all methods are imple-
mented in an object-oriented manner (using S4 classes) and have an internal implementation
in C++ or based on package data.table (Dowle and Short 2013). This allows for efficient high
performance computations. The IHSN provided C++ code for many methods which were
rewritten from scratch (except suda2 and rankSwap) and integrated into sdcMicro.
In Figure 2 the performance improvement with respect to computation time using the current
version of sdcMicro (4.6.0) as compared to the previous implementation in version 4.0.4 using
IHSN C++ code is shown. Note that these calculations are not possible for early versions
of sdcMicro (Templ 2008) due to missing functionalities. To measure the computation time,
a close-to-reality data set on household income and expenditures with 4580 observations on
14 variables was used. This data set is available in sdcMicro (?testdata). The observations
were randomly replicated to enlarge the data set up to 10,000,000 observations. For different
numbers of observations, frequency counts and risk (left plot in Figure 2) as well as (heuristic
“optimal”) local suppression (right plot in Figure 2) were applied independently to each data
set. While the IHSN C++ solutions has an exponentional increase in computation time with
respect to the number of observations, the new implementation features a “linear growth” for
local suppression. The computation time for 10,000,000 observations on four key variables is

http://CRAN.R-project.org/package=sdcMicro

Journal of Statistical Software 7

●●●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0

100

200

300

400

0 2,500,000 5,000,000 7,500,000 10,000,000
number of observations

tim
e

in
 s

ec
on

ds

method

●●

●●

IHSN C++

sdcMicro 4.1.0

frequency estimation + risk measurement

●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0

100

200

300

400

500

0 2,500,000 5,000,000 7,500,000 10,000,000
number of observations

tim
e

in
 s

ec
on

ds

method

●●

●●

IHSN C++

sdcMicro 4.1.0

optimal local suppression

Figure 2: Computation time of IHSN C++ code (equals sdcMicro version < 4.1.0) and
sdcMicro (version ≥ 4.1.0).

approx. 500 seconds with any version of sdcMicro ≥ 4.1.0. On the other hand, with previous
versions it is already out of scope to estimate the risk and apply local suppression for data
sets with about 500,000 observations.

3.2. S4 class structure

The following list gives an overview about the general aims of sdcMicro:

• sdcMicro includes the most comprehensive collection of micro-data protection methods;

• the well-defined S4 class implementation provides a user-friendly implementation and
makes it easy to exploit its functionalities using sdcMicroGUI;

• utility functions extract information from well-defined S4 class objects;

• certain slots are automatically updated after application of a method;

• an undo function allows to return to a previous state of the anonymization process
without the need to do additional calculations;

• for performance reasons, the methods are internally implemented either in C++ or by
using the data.table package (Dowle and Short 2013);

• dynamic reports about results of the anonymization process can be generated.

To define an object of class ‘sdcMicroObj’, the function createSdcObj() can be used. Pa-
rameters for this function are for example categorical and continuous key variables, the vector
of sampling weights and optionally stratification and cluster IDs. The following code shows
how to generate such an object using a test data set of the International Income Distribution

8 sdcMicro: Statistical Disclosure Control for Micro-Data in R

Data Set (I2D2), which is distributed over the International Household Survey Network and
which is also included in sdcMicro.

R> library("sdcMicro")
R. data("testdata", package = "sdcMicro")
R> sdc <- createSdcObj(testdata,
+ keyVars = c("urbrur", "water", "sex", "age"),
+ numVars = c("expend", "income", "savings"), pramVars = "walls",
+ w = "sampling_weight", hhId = "ori_hid")

This shows how to define the categorical and continuous key variables, the index of variables
that are selected for PRAM (see Section 4.2), the vector of weights and the household IDs.
The following slots of an object of class ‘sdcMicroObj’ are pre-filled:

R> slotNames(sdc)

[1] "origData" "keyVars" "pramVars"
[4] "numVars" "weightVar" "hhId"
[7] "strataVar" "sensibleVar" "manipKeyVars"

[10] "manipPramVars" "manipNumVars" "manipStrataVar"
[13] "originalRisk" "risk" "utility"
[16] "pram" "localSuppression" "options"
[19] "additionalResults" "set" "prev"
[22] "deletedVars"

Slot origData contains the original data, keyVars the index of categorical key variables.
pramVars contains an index indicating variables that are pramed (see Section 4.2 for details),
slot numVars specifies indices of continuous key variables and the vector defining sampling
weights is contained in slot weightVar. A possible index determining the cluster variable (slot
hhId), the stratification variable (slot strataVar) and sensible variables (slot sensibleVar)
can also be used. In addition, manipulated variables are saved in the slots beginning with
manip. All risk measures (see Section 4.1) are stored in slots originalRisk (for the original
unmodified data) and risk (for the manipulated data). Slot utility collects all information
on data utility; further information on pramed variables and local suppressions are stored in
slots pram and localSuppression while additional results (e.g., self-defined utility measures)
are saved in slot additionalResults. Optionally, in the slot prev previous results are saved.
Wrapper functions to extract relevant information from the ‘sdcMicroObj’ object are available
(see Section 3.3). For more details on the structure of the ‘sdcMicroObj’ object have a look
at the help file (help("createSdcObj")).
The show (print) method shows some basic properties of objects of class ‘sdcMicroObj’:

R> sdc

Data set with 4580 rows and 14 columns.
Weight variable: sampling_weight

Categorical key variables: urbrur, water, sex, age

Journal of Statistical Software 9

Reported is the
number | mean size and | size of smallest category

urbrur .. 2 | 2290 | 646

water ... 8 | 572 | 26

sex 2 | 2290 | 2284

age 88 | 52 | 1

Number of observations violating

- 2-anonymity: 330
- 3-anonymity: 674

Percentage of observations violating
- 2-anonymity: 7.21 %
- 3-anonymity: 14.72 %

Numerical key variables: expend, income, savings
Disclosure Risk is between:
[0% ; 100%] (current)
- Information Loss:

IL1: 0
- Difference Eigenvalues: 0 %

Methods are applied to the ‘sdcMicroObj’ object and all related computations are done
automatically. E.g., individual risks are re-estimated whenever a protection method is applied
and the related slots of the ‘sdcMicroObj’ object are updated. A method for an ‘sdcMicroObj’
object can be applied by method(sdcMicroObj), where method is a placeholder for a specific
method sdcMicroObj for an object of class ‘sdcMicroObj’. We note that sdcMicro also
supports the straightforward application of methods to micro-data. For example, micro-
aggregation of three continuous key variables (expend, income and savings) on the data set
testdata can be achieved with:

R> microaggregation(testdata[, c("expend", "income", "savings")])

This code is equivalent to microaggregation(sdc) where sdc is a ‘sdcMicroObj’ object
and the three variables defined as numeric variables in slot numVars. In Table 2 we list
the package’s current methods, function calls, function description, and slots updated in the
‘sdcMicroObj’ object by each method. For example, the application of localSuppression()
on an ‘sdcMicroObj’ object suppresses certain values in the data set and afterwards it updates
the slots risk and localSuppression. In the slot risk all relevant list elements are replaced

10 sdcMicro: Statistical Disclosure Control for Micro-Data in R

Function Aim Updates the slots
freqCalc() sample and population

frequency estimation (used
by measureRisk())

–

suda2() frequency calculation on subsets @risk$suda2
ldiversity() l-diversity @risk$ldiversity
measureRisk() individual, household and global

risk estimation
@risk*

LLmodGlobalRisk() global risk estimation using log-
linear models

@risk$model

dRisk() disclosure risk for continuous
scaled variables

@risk$numeric

dRiskRMD() advanced disclosure risk measures
for continuous scaled variables

@risk$numericRMD (risk on cont.
variables)

dUtility() data utility measures @utility$*
globalRecode() anonymization of categorical key

variables
@risk$*, @manipKeyVars, @prev

groupVars() anonymization of categorical key
variables

@risk$*, @manipKeyVars, @prev

localSupp() univariate local suppression of
high risky values

@risk$*, @localSuppression,
@manipKeyVars, @prev

localSuppression() local suppression to achieve k-
anonymity

@risk$*, @localSuppression,
@manipKeyVars, @prev

pram() swapping values using the post
randomization method

@pram, @manipPramVars, @prev

microaggrGower() micro-aggregation on categorical
and continuous key variables

@risk$*, @utility$*,
@manipNumVars, @prev

topBottomCoding() top and bottom coding @risk$*, @utility$*,
@manipNumVars, @prev

addNoise() perturbation of continuous
variables

@risk$numeric), @utility$*,
@manipNumVars, @prev

rankSwapp() perturbation of continuous
variables

@risk$numeric), @utility$*,
@manipNumVars, @prev

mafast() perturbation of continuous
variables

@risk$numeric , @utility$*,
@manipNumVars, @prev

microaggregation()perturbation of continuous
variables, wrapper for various
methods

@risk$numeric , @utility$*,
@manipNumVars, @prev

shuffle() perturbation of continuous
variables

@risk$numeric, @utility$*,
@manipNumVars, @prev

Table 2: Functions in sdcMicro including various SDC methods.

with new estimates and in the slot localSuppression the information of suppressed values
gets updated. Another example is to apply microaggregation.

R> sdc <- microaggregation(sdc)

Journal of Statistical Software 11

Function Description
show() Print method for objects of class ‘sdcMicroObj’.
print() Print methods showing information on k-anonymity, l-diversity,

local suppressions, recoding, disclosure risk, SUDA2 and
PRAM

get.sdcMicroObj() Directly returns slots from ‘sdcMicroObj’ objects.
generateStrata() Generates a single variable defining strata from multiple vari-

ables.
undolast() Reverts the last modification of an object of class

‘sdcMicroObj’.
extractManipData() Extracts manipulated data from ‘sdcMicroObj’ objects.
calcRisks() Recomputes the disclosure risk on objects of class

‘sdcMicroObj’.
varToFactor() and
varToNumeric()

Changes a key variable of an object of class ‘sdcMicroObj’ from
numeric to factor or from factor to numeric.

Table 3: Utility functions.

In the above code, method micro-aggregation is applied using default values (to change these,
see help("microaggregation")) to an object sdc of class ‘sdcMicroObj’. Since function
microaggregation() is only suitable for continuous scaled variables (use microaggrGower()
for other cases), the categorical variables remain untouched and micro-aggregation is applied
on all continuous key variables. Finally, slot risk$numeric (disclosure risk for continu-
ous key variables) and slot ytility$* (data utility for continuous key variables) and slot
manipNumVars (the perturbed variables) are updated or filled. In addition, information on
the previous state of the anonymization is saved in slot prev.

3.3. Utility functions

Available helper functions in sdcMicro are listed in Table 3. Functions to extract information
from different slots are implemented. Helpful (especially when working with sdcMicroGUI),
is the undolast() function that allows to undo the last step(s) of the anonymization.
The slots of the ‘sdcMicroObj’ object can be accessed using function get.sdcMicroObj()
and the current state of the data (with all anonymizations done so far) can be extracted, see
the following code where the data utility, the categorical key variables and the manipulated
data are accessed:

R> ut <- get.sdcMicroObj(sdc, "utility")
R> cat <- get.sdcMicroObj(sdc, "keyVars")
R> dat <- extractManipData(sdc)
R> str(dat)

'data.frame': 4580 obs. of 14 variables:
$ urbrur : Factor w/ 2 levels "1","2": 2 2 2 2 2 2 2 2 2 2 ...
$ roof : int 4 4 4 4 4 4 4 4 4 4 ...
$ walls : int 3 3 3 3 2 2 2 2 2 2 ...
$ water : Factor w/ 8 levels "1","2","3","4",..: 3 3 3 3 3 3 3 ...

12 sdcMicro: Statistical Disclosure Control for Micro-Data in R

$ electcon : int 1 1 1 1 1 1 1 1 1 1 ...
$ relat : int 1 2 3 3 1 2 3 3 3 3 ...
$ sex : Factor w/ 2 levels "1","2": 1 2 1 1 1 2 2 2 1 2 ...
$ age : Factor w/ 88 levels "0","1","2","3",..: 47 42 10 7 53 48
14 20 10 17 ...
$ hhcivil : int 2 2 1 1 2 2 1 1 1 1 ...
$ expend : num 89216447 26627836 23178458 16100539 9097752 ...
$ income : num 56066667 25933333 67700000 81433333 88200000 ...
$ savings : num 198935 478764 5579820 8634905 282855 ...
$ ori_hid : int 1 1 1 1 2 2 2 2 2 2 ...
$ sampling_weight: int 100 100 100 100 100 100 100 100 100 100 ...

Print methods are available to show relevant informations. The following code prints re-
sults about risk currently stored in object sdc. For explanations about risk measures, see
Section 4.1.

R> print(sdc, "risk")

0 obs. with higher risk than the main part
Expected no. of re-identifications:
24.78 [0.54 %]

Hierarchical risk

Expected no. of re-identifications:
117.2 [2.56 %]

Other print methods report the number and percentage of observations violating 2- and 3-
anonymity, the number of local suppressions, information on recodings, the individual and
cluster risk, the risk on continuous key variables and information on pramed variables (output
is suppressed):

R> print(sdc)
R> print(sdc, "ls")
R> print(sdc, type = "recode")
R> print(sdc, type = "risk")
R> print(sdc, type = "numrisk")
R> print(sdc, type = "pram")

More information on sdcMicro and its facilities can be found in the manual of sdcMicro, see
Templ et al. (2015). The development version is hosted on https://github.com/alexkowa/
sdcMicro and includes test batteries to ensure that the package keeps stable when modifying
parts of the package. From time to time, a new version is uploaded to CRAN.

https://github.com/alexkowa/sdcMicro
https://github.com/alexkowa/sdcMicro

Journal of Statistical Software 13

4. Methods
In this chapter, a brief review of methods for statistical disclosure control is given. First,
different kinds of disclosure risk methods are briefly discussed in Section 4.1 followed by a
discussion on anonymization methods in Section 4.2. Concepts of data utility are briefly
described in Section 4.3. More in-depth reviews of the procedures mentioned can be found,
e.g., in Skinner (2009); Matthews and Harel (2011).

4.1. Measuring the disclosure risk

Measuring risk in micro-data is a key task and is essential to determine if the data set is secure
enough to be released. To assess disclosure risks, realistic assumptions about the information
data users might have at hand to match against the micro-data set must be made. These
assumptions are denoted disclosure risk scenarios. Based on a specific disclosure risk scenario,
a set of key variables (i.e., identifying variables) must be defined that are used as input for
the risk evaluation procedure.
Based on these key variables, the frequencies of combinations of categories in the key vari-
ables are calculated for the sample data and are also estimated on population level. In the
following, we focus on the analysis of these frequencies. Some methods only take available
frequencies in the sample into account (k-anonymity, l-diversity, SUDA2). More sophisticated
methods estimate the risk on estimated/modeled population frequency counts (individual risk
approach, log-linear model approach). In any case it is the goal to obtain information on the
risk for each individual unit and to summarize it to a global risk measure which evaluates the
disclosure risk of the entire data set. Also, different methods can be applied to continuous
key variables. These methods focus on the evaluation if perturbed (masked) values are too
close to the original values.

Population frequencies and the individual risk approach

Typically, risk evaluation is based on the concept of uniqueness in the sample and/or in
the population. The focus is on individual units that possess rare combinations of selected
key variables. It is assumed that units having rare combinations of key variables can be
more easily identified and thus have a higher risk of re-identification. It is possible to cross-
tabulate all identifying variables and view their cast. Keys possessed by only few individuals
are considered risky, especially if these observations also show small sampling weights. This
means that the expected number of individuals having such keys is also expected to be low
in the population.
To assess if a unit is at risk, a threshold approach is typically used. If the re-identification
risk of a unit is above a certain value, this unit is said to be at risk. To compute individual
risks, the frequency of a given key pattern in the population must be estimated. To illustrate
this approach, we consider a random sample of size n drawn from a finite population of size
N . Let πj , j = 1, . . . , N be the (first order) inclusion probabilities. πj is the probability that
element uj of a population of the size N is chosen in a sample of size n.
All possible combinations of categories in the key variables (i.e., keys or patterns) can be
calculated by cross-tabulating these variables. Let M be the number of unique keys. For
each key, the frequency of observations with the corresponding pattern can be calculated,
which results in M frequency counts. Each observation corresponds to one pattern and

14 sdcMicro: Statistical Disclosure Control for Micro-Data in R

the frequency of this pattern. Denote fi, i = 1, . . . , n to be the sample frequency count
and let Fi be the population frequency count corresponding to the same pattern for the ith
observation. If fi = 1 applies, the corresponding observation is unique in the sample given
the key variables. If Fi = 1, then the observation is unique in the population and the sample.
We note, that Fi is usually not known and has to be estimated. A very basic approach to
estimate Fi would be to sum up the sampling weights for observations belonging to the same
combination of key variables because the weights contain the information on expected units in
the population. More sophisticated methods estimate these frequencies based on (log-linear)
models, as discussed in a subsequent paragraph.
In the following the methods are applied to the test data set. Before starting, the undolast()
function is used to undo the last action (micro-aggregation applied in Section 3.2)

R> sdc <- undolast(sdc)

When creating a ‘sdcMicroObj’ object the frequency calculations are done automatically. The
general extractor function get.sdcMicroObj can be used to extract sample and population
frequencies from the current object:

R> head(get.sdcMicroObj(sdc, type = "risk")$individual)

risk fk Fk hier_risk
[1,] 0.0016638935 7 700 0.004330996
[2,] 0.0016638935 7 700 0.004330996
[3,] 0.0005552471 19 1900 0.004330996
[4,] 0.0004543389 23 2300 0.004330996
[5,] 0.0024937656 5 500 0.009682082
[6,] 0.0033222591 4 400 0.009682082

Without creating an object of class ‘sdcMicroObj’, one can use the function freqCalc() for
frequency estimation. It basically includes three parameters (for benchmarking issues a fourth
parameter is provided) determining the data set, the key variables and the vector of sampling
weights (for details, see ?freqCalc). However, it can be shown that risk measures based
on such estimated population frequency counts almost always overestimate small population
frequency counts (see, e.g., Templ and Meindl 2010, and Section 4.1).

The concept of k-anonymity

Based on a set of key variables, a desired characteristic of a protected micro-data set is often to
achieve k-anonymity (Samarati and Sweeney 1998; Sweeney 2002). This means that for each
possible key at least k units in the data set are assigned. This is equal to fi ≥ k, i = 1, . . . , n.
A typical value is k = 3. The default print method of an object of class ‘sdcMicroObj’ can
be used to see if the current ‘sdcMicroObj’ object already features 2- or 3-anonymity:

R> print(sdc)

Number of observations violating

Journal of Statistical Software 15

Key 1 Key 2 Sensible variable fk l-diversity
1 1 1 50 3 2
2 1 1 50 3 2
3 1 1 42 3 2
4 1 2 42 1 1
5 2 2 62 2 1
6 2 2 62 2 1

Table 4: k-anonymity and l-diversity on a toy data set.

- 2-anonymity: 330
- 3-anonymity: 674

Percentage of observations violating
- 2-anonymity: 7.21 %
- 3-anonymity: 14.72 %

k-anonymity is typically achieved by recoding categorical key variables into fewer categories
and by suppressing specific values of key variables for some units (see Sections 4.2 and 4.2).

l-diversity
An extension of k-anonymity is l-diversity (Machanavajjhala, Kifer, Gehrke, and Venkitasub-
ramaniam 2007). Consider a group of observations with the same pattern in the key variables
and let the group fulfill k-anonymity. A data intruder can therefore by definition not identify
an individual within this group. If, however, all observations have the same entries in an
additional sensitive variable (e.g., cancer in the variable medical diagnosis), an attack will
be successful if the attacker can identify at least one individual of the group, as the attacker
knows that this individual has cancer with certainty. The distribution of the target-sensitive
variable is referred to as l-diversity.
Table 4 considers a small example data set that shows the calculation of l-diversity and points
out the slight difference of this measure as compared to k-anonymity. The first two columns
of Table 4 contain the categorical key variables. The third column of the data defines a
variable containing sensitive information. Sample frequency counts fi appear in the fourth
column. They equal 3 for the first three observations; the fourth observation is unique and
frequency counts fi are 2 for the last two observations. Only the fourth observation violates
2-anonymity. Looking closer at the first three observations, we see that only two different
values are present in the sensitive variable. Thus the l-(distinct) diversity is just 2. For
the last two observations, 2-anonymity is achieved, but the intruder still knows the exact
information of the sensitive variable. For these observations, the l-diversity measure is 1,
indicating that sensitive information can be disclosed since the value of the sensitive variable
equals 62 for both of these observations.
Differences in values of the sensitive variable can be measured differently. We present here
the distinct diversity that counts how many different values exist within a pattern/key. The
l-diversity measure is automatically measured in sdcMicro for (and stored in) objects of class
‘sdcMicroObj’ as soon as a sensible variable is specified (using createSdcObj). Note that

16 sdcMicro: Statistical Disclosure Control for Micro-Data in R

the measure can be calculated at any time using ldiversity(sdc) with optional function
parameters to select another sensible variable, see ?ldiversity. However, it can also be
applied to data frames, where key variables (argument keyVars) and the sensitive variables
(argument ldiv_index) must be specified as shown below:

R> res1 <- ldiversity(testdata, keyVars = c("urbrur", "water", "sex", "age"),
+ ldiv_index = "income")
R> print(res1)

L-Diversity Measures

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 4.00 8.00 10.85 17.00 35.00

Additional methods such as entropy, recursive and multi-recursive measures of l-diversity are
also implemented. For more information, see the help files of sdcMicro.

Sample frequencies on subsets: SUDA2

SUDA (i.e., special uniques detection algorithm) estimates disclosure risks for each unit.
SUDA2 (Manning, Haglin, and Keane 2008) is a recursive algorithm to find minimal sample
uniques. The algorithm generates all possible variable subsets of selected (categorical) key
variables and scans for unique patterns within subsets of these variables. The risk of an
observation finally depends on two aspects:

(a) The lower the number of variables needed to receive uniqueness, the higher the risk (and
the higher the SUDA score) of the corresponding observation.

(b) The larger the number of minimal sample uniqueness contained within an observation,
the higher the risk of this observation.

Item (a) is calculated for each observation i by li =
∏m−1

k=MSUmini
(m− k), i = 1, . . . , n. In this

formula, m corresponds to the depth, which is the maximum size of variable subsets of the key
variables, MSUmini is the number of minimal sample uniques (MSU) of observation i and n
is the number of observations in the data set. Since each observation is treated independently,
the specific values li belonging to a specific pattern are summed up. This results in a common
SUDA score for all observations having this pattern; this summation is the contribution of
Item (b).
The final SUDA score is calculated by normalizing these SUDA scores by dividing them by p!,
with p being the number of key variables. To receive the so-called data intrusion simulation
(DIS) score, loosely speaking, an iterative algorithm based on sampling of the data and
matching of subsets of the sampled data with the original data is applied. This algorithm
calculates the probabilities of correct matches given unique matches. It is, however, out
of scope to precisely describe this algorithm here, see Elliot (2000) for details. The DIS
SUDA score is calculated from the SUDA and DIS scores and is available in sdcMicro as
disScore. Note that this method does not consider population frequencies in general, but
considers sample frequencies on subsets. The DIS SUDA scores approximate uniqueness by

Journal of Statistical Software 17

simulation based on the sample information population but – to our knowledge – generally
do not consider sampling weights. Thus, biased estimates may result.
SUDA2 is implemented in sdcMicro as function suda2() based on C++ code from the IHSN.
Additional output, such as the contribution percentages of each variable to the score, are also
available as an output of this function. The contribution to the SUDA score is calculated by
assessing how often a category of a key variable contributes to the score. After an object of
class ‘sdcMicroObj’ has been created, no information about SUDA (DIS) scores are stored.
However, after applying SUDA on such an object, they are available, see the following code
where also the print method is used:

R> sdc <- suda2(sdc)
R> get.sdcMicroObj(sdc, type = "risk")$suda

Dis suda scores table:
- - - - - - - - - - -

thresholds number
1 > 0 4330
2 > 0.1 250
3 > 0.2 0
4 > 0.3 0
5 > 0.4 0
6 > 0.5 0
7 > 0.6 0
8 > 0.7 0
- - - - - - - - - - -

The individual SUDA scores and DIS scores are accessible in slots risk$suda2$score and
risk$suda2$disScore as well as the contribution of each key variable to the SUDA score for
each observation in slot risk$suda2$contributionPercent.

The individual and cluster risk approach

An approach that considers sampling weights is the individual risk approach. It uses so-called
super-population models. In such models population frequency counts are modeled given a
certain distribution. The estimation procedure of sample counts given the population counts
can be modeled for example by assuming a negative binomial distribution (see Rinott and
Shlomo 2006) and is implemented in sdcMicro in function measure_risk() (for details, see
Templ and Meindl 2010). This function can be explicitly used for data frames. For objects
of class ‘sdcMicroObj’ this function is internally applied when creating the object and each
time when categorical key variables are modified to update the risk slot in the object.
Micro-data sets often contain hierarchical cluster structures, e.g., individuals that are clus-
tered in households. The risk of re-identifying an individual within a household may also
affect the probability of disclosure of other members in the same household. Thus, the house-
hold or cluster structure of the data must be taken into account when calculating risks. It is
commonly assumed that the risk of re-identification of a household is the risk that at least one
member of the household can be disclosed. Thus this probability can be simply estimated

18 sdcMicro: Statistical Disclosure Control for Micro-Data in R

from individual risks as 1 minus the probability that no member of the household can be
identified.
This is also the implementation strategy in sdcMicro. The individual and cluster/hierarchical
risks are stored together with sample (fk) and population counts (Fk) in slot risk$individual
and can be extracted by function get.sdcMicroObj as shown below:

R> head(get.sdcMicroObj(sdc, "risk")$individual)

risk fk Fk hier_risk
[1,] 0.0016638935 7 700 0.004330996
[2,] 0.0016638935 7 700 0.004330996
[3,] 0.0005552471 19 1900 0.004330996
[4,] 0.0004543389 23 2300 0.004330996
[5,] 0.0024937656 5 500 0.009682082
[6,] 0.0033222591 4 400 0.009682082

Measuring the global risk

In the previous section, the theory of individual risks and the extension of this approach to
clusters such as households were discussed. In many applications it is preferred to estimate
a measure of global risk. Any global risk measure will result in a single number that can be
used to assess the risk of an entire micro-data set.

Measuring the global risk using individual risks

Two approaches can be used to determine the global risk for a data set using individual risks:

Benchmark: This approach counts the number of observations that can be considered risky
and also have higher risk as the main part of the data. For example, we consider units
with individual risks being ≥ 0.1 and twice as large as the median of all individual risks
+ 2 · median absolute deviation (MAD) of all unit risks.

Global risk: The sum of the individual risks in the data set gives the expected number of
re-identifications (see Hundepool et al. 2008).

The benchmark approach indicates whether the distribution of individual risk occurrences
contains extreme values. This relative measure depends on the distribution of individual
risks. It is not valid to conclude that units with higher risk than this benchmark have high
risk. The measure evaluates if some unit risks behave differently compared to most of the other
individual risks. The global risk approach is based on an absolute measure of risk. Beneath
is the print output of the corresponding function from sdcMicro showing both measures:

R> print(sdc, "risk")

0 obs. with higher risk than the main part
Expected no. of re-identifications:

Journal of Statistical Software 19

24.78 [0.54 %]

Hierarchical risk

Expected no. of re-identifications:
117.2 [2.56 %]

If a cluster (e.g., households) has been defined, a global risk measurement taking into account
this hierarchical structure is also reported.

Measuring the global risk using log-linear models

Sample frequencies, considered for each pattern m out of M patterns, fm, m = 1, . . . ,M , can
be modeled using a Poisson distribution. In this case, a global risk measure can be defined
as:

τ1 =
M∑

m=1
exp

(
−µm(1− πm)

πm

)
, with µm = πmλm, (1)

where πm are inclusion probabilities corresponding to a pattern m and λm correspond to
means of Poisson random variables. This risk measure aims at calculating the number of
sample uniques that are also population uniques taking into account a probabilistic Poisson
model. For details and derivation of the formula we refer to Skinner and Holmes (1998).
For simplicity, all (first order) inclusion probabilities are assumed to be equal, πm = π,
m = 1, . . . ,M . τ1 can be estimated by log-linear models that include both the primary effects
and possible interactions. This model is defined as:

log(πmλm) = log(µm) = xmβ.

To estimate the µms, the regression coefficients β have to be estimated using, e.g., iterative
proportional fitting. The quality of this risk measurement approach depends on the number
of different keys that result from cross-tabulating all key variables. If the cross-tabulated key
variables are sparse in terms of how many observations have the same patterns, predicted
values might be of low quality. It must also be considered that if the model for prediction
is weak, the quality of the prediction of the frequency counts is also weak. Thus, the risk
measurement with log-linear models may lead to acceptable estimates of global risk only if
not too many key variables are selected and if good predictors are available in the data set.
In sdcMicro, global risk measurement using log-linear models can be achieved with function
LLmodGlobalRisk(). This function is experimental and needs further testing. Thus, it should
be used by expert users only. In the following function call an object of class ‘sdcMicroObj’ is
used as input for function LLmodGlobalRisk(). In addition, a model/predictors (using func-
tion argument form) can be specified to estimate frequencies of the categorical key variables.
The reported global risk corresponds to Equation 1.

R> sdc <- LLmodGlobalRisk(sdc, form = ~ urbrur + water + sex + age)
R> get.sdcMicroObj(sdc, "risk")$model$gr1

[1] 0.03764751

20 sdcMicro: Statistical Disclosure Control for Micro-Data in R

Note that get.sdcMicroObj(sdc, "risk")$model$gr2 gives access to a more sophisticated
risk measure, τ2, which may be interpreted as the expected number of correct matches for
sample uniques. We refer to Skinner and Holmes (1998) and Rinott and Shlomo (2006) for
more details.

Measuring risk for continuous key variables
The concepts of uniqueness and k-anonymity cannot be directly applied to continuous key
variables because many units in the data set would be identified as unique and the naive
approach will fail. The next sections present methods how to measure risks in this case.
If detailed information about a value of a numerical variable is available, attackers may be able
to identify and eventually obtain further information about an individual. Thus, an intruder
may identify statistical units by applying, for example, linking or matching algorithms. The
anonymization of continuous key variables should avoid the possibility of successfully merging
the underlying micro-data with other external data sources.
We assume that an intruder has information about a statistical unit included in the micro-
data and this information overlaps on some variables with the information in the data. In
simpler terms, we assume that the information the intruder possesses can be merged with
micro-data that should be secured. In addition, we also assume that the intruder is sure that
the link to the data is correct, except for micro-aggregated data (see Section 4.2). In this
case, an attacker cannot be sure if the link is valid because at least k observations have the
same value for each continuous variable.
The underlying idea of distance-based record linkage methods is to find the nearest neighbors
between observations of two different data sets. Mateo-Sanz, Sebe, and Domingo-Ferrer (2004)
introduced distance-based record linkage and interval disclosure. In the first approach, they
look for the nearest neighbor from each observation of the masked data value to the original
data points. Then they mark those units for which the nearest neighbor is the corresponding
original value. In the second approach - which is also the default risk of sdcMicro – they check
if the original value falls within an interval centered on the masked value. In this case, the
intervals are calculated based on the standard deviation of the variable under consideration.
Distance-based risks for continuous key variables are automatically estimated for objects of
class ‘sdcMicroObj’ using function dRisk(). Current risks can be printed with:

R> print(sdc, "numrisk")

Disclosure Risk is between:
[0% ; 100%] (current)
- Information Loss:

IL1: 0
- Difference Eigenvalues: 0 %

This reports the percentage of observations falling within an interval centered on its masked
value where the upper bound corresponds to a worst case scenario where an intruder is sure
that each nearest neighbor is indeed the true link. For a more detailed discussion we refer
to Mateo-Sanz et al. (2004). Since no anonymization has been applied to the continuous key
variables, the disclosure risk can be high (up to 100%) and the information loss (discussed
later in Section 4.3), is 0.

Journal of Statistical Software 21

Almost all data sets used in official statistics contain units whose values in at least one
variable are quite different from the general observations and are asymmetrically distributed.
Examples of such outliers might be enterprises with very high values for turnover or persons
with extremely high income. Also, multivariate outliers exist (see Templ and Meindl 2008a).
Unfortunately, intruders may want to disclose a large enterprise or an enterprise with specific
characteristics. Since big enterprises are often sampled with certainty, intruders can often be
very confident that the enterprise they want to disclose has been sampled. In contrast, an
intruder may not be as interested to disclose statistical units that exhibit the same behavior as
most other observations. For these reasons it is good practice to define measures of disclosure
risk that take the outlyingness of a unit into account, for details, see Templ and Meindl
(2008a). The key idea is to assume that outliers should be much more perturbed than
non-outliers because these units are easier to re-identify even when the distance from the
masked observation to its original observation is relatively large. One key aspect is therefore
outlier detection using robust Mahalanobis distances (see, e.g., Maronna, Martin, and Yohai
2006). In this approach it is also considered that micro-aggregation provides anonymization
differently, see Templ and Meindl (2008a) for details.
The methods just discussed are also available in sdcMicro in function dRiskRMD(). While
dRisk() is automatically applied to objects of class ‘sdcMicroObj’, dRiskRMD() has to be
called once to fill the corresponding slot:

R> sdc <- dRiskRMD(sdc)

The reason of not automatically estimating this risk is that robust estimations are compu-
tationally expensive for large data sets since the estimation is based on a robust fit of a
covariance matrix using the minimum covariance estimator (mcd). Whenever this risk mea-
sure is estimated, the results are saved in slot risk$numericRMD or can alternatively extracted
using get.sdcMicroObj(sdc, "risk")$numericRMD.

4.2. Anonymization methods

Generally, two kinds of anonymization methods can be distinguished: deterministic and prob-
abilistic. For categorical variables, recoding and local suppression are deterministic procedures
while swapping and PRAM (Gouweleeuw et al. 1998) are based on randomness and consid-
ered probabilistic methods. For continuous variables, micro-aggregation is a deterministic
method while adding correlated noise (Brand 2002) and shuffling (Muralidhar, Parsa, and
Sarathy 1999) are probabilistic procedures. Whenever probabilistic methods are applied, the
random seed of the underlying pseudo-random number generator should be fixed to ensure
reproducibility of the results.

Recoding

Global recoding is a non-perturbative method that can be applied to categorical and contin-
uous key variables. The basic idea of recoding a categorical variable is to combine several
categories into a new, less informative category. If the method is applied to a continuous vari-
able, it means to discretize the variable. The goal in both cases is to reduce the total number
of possible outcomes of a variable. Typically, recoding is applied to categorical variables to
reduce the number of categories with only few observations.

22 sdcMicro: Statistical Disclosure Control for Micro-Data in R

The categorical key variable age selected before has a lot of categories and some categories
are sparse. Recoding age into age classes will cause that the number of observations in the
keys increase and less observations are violating the 2- and 3-anonymity assumption. This
can be easily seen when comparing the result of print(sdc) to the previous print(sdc) call
in Section 4.1. The actual values and percentage of observations violating 2 and 3-anonymity
as well as the original values and percentages are reported so that the user gets information
about the effect of the applied anonymization method.

R> sdc <- globalRecode(sdc, column = "age",
+ breaks = c(1, 9, 19, 29, 39, 49, 59, 69, 100), labels = 1:8)
R> print(sdc)

Number of observations violating

- 2-anonymity: 10 (orig: 330)
- 3-anonymity: 24 (orig: 674)

Percentage of observations violating
- 2-anonymity: 0.22 % (orig: 7.21 %)
- 3-anonymity: 0.52 % (orig: 14.72 %)

A special case of global recoding is top and bottom coding, which can be applied to ordinal
or continuous variables. The idea for this approach is that all values above (i.e., top coding)
and/or below (i.e., bottom coding) a pre-specified threshold value are combined into a new
category. Function globalRecode() can be applied in sdcMicro to perform both global re-
coding and top/bottom coding. A help file with examples is accessible using ?globalRecode.
We note that sdcMicroGUI offers a more user-friendly way of applying global recoding.

Local suppression

Local suppression is a non-perturbative method. It is typically applied to categorical vari-
ables to suppress certain values in at least one variable. Input variables are usually part of
the categorical key variables that are also used to calculate individual risks as described in
Section 4.1. Individual values are suppressed in a way that the set of variables with a specific
pattern are increased. Local suppression is often used to achieve k-anonymity, as described
in Section 4.1. Using function localSupp() of sdcMicro, it is possible to suppress values of a
key variable for all units with individual risks above a pre-defined threshold, given a disclosure
scenario. This procedure requires user intervention by setting the threshold. To automatically
suppress a minimum amount of values in the key variables to achieve k-anonymity, one can
use function localSuppression().

R> sdc <- localSuppression(sdc)
R> print(sdc, "risk")

0 (orig: 0) obs. with higher risk than the main part

Journal of Statistical Software 23

Expected no. of re-identifications:
1.27 [0.03 %] (orig: 24.78 [0.54 %])

Hierarchical risk

Expected no. of re-identifications:
6.53 [0.14 %] (orig: 117.2 [2.56 %])

R> print(sdc, "ls")

urbrur .. 0 [0 %]

water ... 9 [0.197 %]

sex 0 [0 %]

age 188 [4.105 %]

In this implementation, a heuristic algorithm is called to suppress as few values as possible. It
is possible to specify a desired ordering of key variables (have a look at the function arguments
in localSuppression()) in terms of importance, which the algorithm takes into account. It
is even possible to specify key variables that are considered of such importance that almost
no values for these variables are suppressed.
By specifying the importance of variables as a parameter in localSuppression(), for key
variables with high importance, suppression will only take place if no other choices are possible
which is for example useful if a scientific use file with specific requirements must be produced.
Still, it is possible to achieve k-anonymity for selected key variables in almost all cases.

Post-randomization

PRAM (Gouweleeuw et al. 1998) is a perturbation, probabilistic method that can be applied
to categorical variables. The idea is to recode values of a categorical variable in the original
micro-data file into other categories by taking into account pre-defined transition probabilities.
The process is modeled using a known transition matrix. For each category of a categorical
variable, the matrix lists probabilities to change into other possible outcomes.
As an example, consider a variable with only 3 categories: A1, A2 and A3. The transition
of a value from category A1 to category A1 is, for example, fixed with probability p1 = 0.85,
which means that only with probability p1 = 0.15 can a value of A1 be changed to either A2
or A3. The probability of a change from category A1 to A2 might be fixed with probability
p2 = 0.1 and changes from A1 to A3 with p3 = 0.05. Probabilities to change values from
class A2 to other classes and also from A3, to others must be specified beforehand. All
transition probabilities must be stored in a matrix that is the main input to function pram()
in sdcMicro. This following example uses the default parameters of pram() rather than a
custom transition matrix. The default parameters are 0.8 for the minimum diagonal entries
for the generated transition matrix and 0.5 for the amount of perturbation for the invariant
PRAM method. We can observe from the following output that exactly one value changed

24 sdcMicro: Statistical Disclosure Control for Micro-Data in R

the category. One observation having A3 in the original data has value A1 in the masked
data.

R> set.seed(1234)
R> A <- as.factor(rep(c("A1", "A2", "A3"), each = 5))
R> A

[1] A1 A1 A1 A1 A1 A2 A2 A2 A2 A2 A3 A3 A3 A3 A3
Levels: A1 A2 A3

We apply pram() on vector A and print the result:

R> Apramed <- pram(A)
R> Apramed

Number of changed observations:
- - - - - - - - - - -
x != x_pram : 1 (6.67%)

The summary provides more detail. It shows a table of original frequencies and the corre-
sponding table after applying PRAM. All transitions that took place are also listed:

R> summary(Apramed)

original frequencies:

A1 A2 A3
5 5 5

frequencies after perturbation:

A1 A2 A3
6 5 4

transitions:
transition Frequency

1 1 5
2 2 5
3 3 5

PRAM is applied to each observation independently and randomly. This means that different
solutions are obtained for every run of PRAM if no seed is specified for the pseudo-random
number generator. A main advantage of the PRAM procedure is the flexibility of the method.
Since the transition matrix can be specified freely as a function parameter, all desired effects

Journal of Statistical Software 25

can be modeled. For example, it is possible to prohibit changes from one category to another
by setting the corresponding probability in the transition matrix to 0.
In sdcMicro, pram() allows PRAM to be performed. The corresponding help file can be
accessed by typing ?pram into an R console. When using the function it is possible to apply
PRAM to sub-groups of the micro-data set independently. In this case, the user needs to
select the stratification variable defining the sub-groups. If the specification of this variable
is omitted, the PRAM procedure is applied to all observations in the data set.

R> sdc <- pram(sdc)
R> print(sdc, "pram")

Number of changed observations:
- - - - - - - - - - -
walls != walls_pram : 439 (9.59%)

Number of changed observations:
- - - - - - - - - - -

variable nrChanges percChanges
1 walls 439 9.59

Micro-aggregation

Micro-aggregation is a perturbative method that is typically applied to continuous variables.
The idea is that records are partitioned into groups; within each group, the values of each
variable are aggregated. Typically, the arithmetic mean is used to aggregate the values, but
other methods to calculate the mean are also possible (e.g., the median). Individual values of
the records for each variable are replaced by the group aggregation value. Depending on the
method chosen in function microaggregation(), additional parameters can be specified. For
example, it is possible to specify the number of observations that should be aggregated as well
as the statistic used to calculate the aggregation. This statistic defaults to be the arithmetic
mean. It is also possible to perform micro-aggregation independently to pre-defined clusters,
see the following code. The new values of the disclosure risk are printed again to see the effect
of micro-aggregation.

R> sdc <- microaggregation(sdc, aggr = 4, strata_variables = "age",
+ method = "mdav")
R> print(sdc, "numrisk")

Disclosure Risk is between:
[0% ; 2.77%] (current)

(orig: ~100%)
- Information Loss:

IL1: 0.42
- Difference Eigenvalues: 1.5 %

(orig: Information Loss: 0)

26 sdcMicro: Statistical Disclosure Control for Micro-Data in R

We can observe that the disclosure risk decreased considerably (∼ only 2.77% of the original
values do not fall within intervals calculated around the perturbed values, compare Section 4.1
on distance-based risk estimation). We can also see that the information loss criteria increased
slightly. All of the previous settings (and many more) can be applied in sdcMicro. The
corresponding help file can be viewed with command ?microaggregation.
Not very commonly used is the micro-aggregation of categorical and continuous variables.
This can be achieved with function microaggrGower that uses the Gower distance (Gower
1971) to measure the similarity between observations. For details have a look at the help
function ?microaggrGower in R.

Adding noise

Adding noise is a perturbative protection method for micro-data which is typically applied to
continuous variables. This approach can protect data against exact matching with external
files if, for example, information on specific variables is available from registers. While this
approach sounds simple in principle, many different algorithms can be used to overlay data
with stochastic noise. It is possible to add uncorrelated random noise. In this case, the noise is
usually normally distributed and the variance of the noise term is proportional to the variance
of the original data vector. Adding uncorrelated noise preserves means but variances and
correlation coefficients between variables cannot be preserved. The later statistical property
is respected, however, if correlated noise method(s) are applied.
For the correlated noise method (Brand 2002), the noise term is derived from a distribution
having a covariance matrix that is proportional to the co-variance matrix of the original micro-
data. In the case of correlated noise addition, correlation coefficients are preserved and the
covariance matrix can at least be consistently estimated from the perturbed data. However,
the data structure may differ a great deal if the assumption of normality is violated. Since
this is virtually always the case when working with real-world data sets, a robust version of
the correlated noise method is included in sdcMicro. This method allows departures from
model assumptions and is described in detail in Templ and Meindl (2008b).
We now want to apply a method for adding correlated noise based on non-perturbed data
after we undo micro-aggregation:

R> sdc <- undolast(sdc)
R> sdc <- addNoise(sdc, method = "correlated2")
R> print(sdc, "numrisk")

Disclosure Risk is between:
[0% ; 32.84%] (current)

(orig: ~100%)
- Information Loss:

IL1: 0.11
- Difference Eigenvalues: 0.88 %

(orig: Information Loss: 0)

We see that the data utility measure is comparable with the micro-aggregation on strata

Journal of Statistical Software 27

in the previous code chunk (see the print(sdc, "numrisk") output above) but the risk is
higher when adding correlated noise.
In sdcMicro, many algorithms are implemented that can be used to add noise to continuous
variables. For example, it is possible to add noise only to outlying observations. In this case it
is assumed that such observations possess higher risks than non-outlying observations. Other
methods ensure that the amount of noise added takes into account the underlying sample size
and sampling weights. Noise can be added to variables using function addNoise() and the
corresponding help file can be accessed with ?addNoise.

Shuffling

Various masking techniques based on linear models have been developed in the literature, such
as multiple imputation (Rubin 1993), general additive data perturbation (Muralidhar et al.
1999) and the information preserving statistical obfuscation synthetic data generators (Bur-
ridge 2003). These methods are capable of maintaining linear relationships between variables
but fail to maintain marginal distributions or non-linear relationships between variables.
Shuffling (Muralidhar and Sarathy 2006) simulates a synthetic value of the continuous key
variables conditioned on independent, non-confidential variables. After the simulation of the
new values for the continuous key variables, reverse mapping (shuffling) is applied. This means
that ranked values of the simulated values are replaced by the ranked values of the original
data (columnwise). In the implementation of sdcMicro, a model of almost any form and
complexity can be specified (see ?shuffling for details) and different methods are available.
In the following code we do not use default values because we want to show how to specify
the form of the model. We first restore the previous results and remove the effect of adding
noise using undolast().

R> sdc <- undolast(sdc)
R> form <- formula(expend + income + savings ~ age + urbrur + water +
+ electcon + age + sex, data = testdata)
R> sdc <- shuffle(sdc, form)
R> print(sdc, "numrisk")

Disclosure Risk is between:
[0% ; 0.22%] (current)

(orig: ~100%)
- Information Loss:

IL1: 1.64
- Difference Eigenvalues: 3.51 %

(orig: Information Loss: 0)

Finding a good model is essential for providing good results. If we added for example variable
walls to the model, the results would no longer be of high quality.

28 sdcMicro: Statistical Disclosure Control for Micro-Data in R

4.3. Measuring data utility

Measuring data utility of the micro-data set after disclosure limitation methods have been
applied is encouraged to assess the impact of these methods.

Generally applicable methods

Anonymized data should have the same structure as the original data and should allow any
analysis with high precision. To evaluate the precision, various classical estimates such as
means and covariances can be used. With function dUtility() it is possible to calculate
different measures based on classical or robust distances for continuous scaled variables. Es-
timates are computed for both the original and perturbed data and then compared. We now
discuss two important information loss measures:

• IL1 is a measures introduced by Mateo-Sanz et al. (2004). This measure is given as

IL1 = 1
p

p∑
j=1

n∑
i=1

|xij − x
′
ij |√

2Sj

with xij and x′
ij the values of the original data set X and perturbed data set X′ of sizes

n × p, and Sj the standard deviation of variable Xj . It can be interpreted as scaled
distances between original and perturbed values for all p continuous key variables;

• eigen is a measure calculating relative absolute differences between eigenvalues of the
covariances from standardized continuous key variables of the original and perturbed
variables. Eigenvalues can be estimated from a robust or classical version of the covari-
ance matrix.

Note that these measures are automatically estimated in sdcMicro when an object of class
‘sdcMicroObj’ is generated or whenever continuous key variables are modified in such an
object. Thus, no user input is needed. The data utility measures are shown when printing
the risk (see previous chunks) but they can also be explicitly extracted:

R> get.sdcMicroObj(sdc, "utility")

$il1
[1] 1.635679

$eigen
[1] 0.03509664

A note on other measures of data utility

In practice it is not possible to create an anonymized file with the same structure as the
original file. An important goal, however, should always be that the difference in results of
the most important statistics based on anonymized and original data should be very small or
even zero. Thus, the goal is to measure data utility based on benchmarking indicators (Ichim

Journal of Statistical Software 29

and Franconi 2010; Templ 2011b), which is in general a better approach to assess data quality
than applying general tools.
The first step in quality assessment is to evaluate what users of the underlying data are
analyzing and then try to determine the most important estimates or benchmarking indicators
(see, e.g., Templ 2011a,b). Special emphasis should be put on benchmarking indicators that
take into account the most important variables of the micro-data set. Indicators that refer
to the most sensitive variables within the micro-data should also be calculated. The general
procedure is quite simple and can be described in the following steps:

• selection of a set of benchmarking indicators;

• choice of a set of criteria as to how to compare the indicators;

• calculation of all benchmarking indicators of the original micro data;

• calculation of the benchmarking indicators on the protected micro-data set;

• comparison of statistical properties such as point estimates, variances or overlaps in
confidence intervals for each benchmarking indicator;

• assessment as to whether the data utility of the protected micro data set is good enough
to be used by researchers.

If the quality assessment in the last step of the sketched algorithm is positive, the anonymized
micro-data set is ready to be published. If the deviations of the main indicators calculated
on the original and the protected data are too large, the anonymization procedure should
be restarted and modified. It is possible to either change some parameters of the applied
procedures or start from scratch and completely change the anonymization strategy.
Usually the evaluation is focused on the properties of numeric variables, given unmodified and
modified micro-data. It is of course also possible to review the impact of local suppression
or recoding that has been conducted to reduce individual re-identification risks. Another
possibility to evaluate data utility of numerical variables is to define a model that is fitted on
the original micro-data. The idea is to predict important, sensitive variables using this model
both for the original and protected micro-data set as a first step. In a second step, statistical
properties of the model results, such as the differences in point estimates or variances, are
compared for the predictions, given original and modified micro-data. Finally, the quality
of the results is assessed. If the deviations are small enough, one may go on to publish the
protected micro-data set. Otherwise, adjustments must be made in the protection procedure.
In addition, it is interesting to evaluate the set of benchmarking indicators not only for
the entire data set but also independently for subsets of the data. In this case, the micro-
data are partitioned into a set of h groups. The evaluation of benchmarking indicators is
then performed for each of the groups and the results are evaluated by reviewing differences
between indicators for original and modified data in each group.
The slot additionalResults can be used to store additional results such as self-defined
indicators in an object of class ‘sdcMicroObj’. This is sometimes useful because all results
corresponding to an anonymization process are stored in one single object. The following line
of code estimates the gender pay gap using R package laeken (Alfons and Templ 2013), and
stores the result within the object sdc.

30 sdcMicro: Statistical Disclosure Control for Micro-Data in R

R> library("laeken")
R> sdc@additionalResults$gpg <- gpg(inc = "income", method = "mean",
+ gender = "sex", weights = "sampling_weight", breakdown = "water",
+ data = extractManipData(sdc))$valueByStratum$value

This result can then be simply compared for each category of water with the result of the
original data to get an indicator of data utility expressed as relative absolute errors (in
percentages):

R> testdata$sex <- as.factor(testdata$sex)
R> res <- gpg(inc = "income", method = "mean", gender = "sex",
+ weights = "sampling_weight", breakdown = "water",
+ data = testdata)$valueByStratum$value
R> options(scipen = 999)
R> 100 * abs((res - sdc@additionalResults$gpg)/res)

[1] 30.28450 403.90591 51.22580 21.85279 1867.59048 13.71210
[7] 131.11358 280.25468

We also can undo the last step of the anonymization procedure, apply a different disclosure
limitation technique and re-calculate the test statistics. In this case we note that the impact
of micro-aggregation on the benchmarking indicator is smaller than the impact of shuffling.

R> sdc <- undolast(sdc)
R> sdc <- microaggregation(sdc)
R> sdc@additionalResults$gpg <- gpg(inc = "income", method = "mean",
+ gender = "sex", weights = "sampling_weight", breakdown = "water",
+ data = extractManipData(sdc))$valueByStratum$value
R> 100 * abs((res - sdc@additionalResults$gpg) / res)

[1] 2.694697 8.391268 1.342160 2.777190 9.043971 14.527815 20.265172
[8] 80.290284

5. Reporting facilities
Using the function report() it is possible to generate reports about the results of the
anonymization process. The reports are internally generated using packages brew (Horner
2011) and knitr (Yihui 2013). Two different types, internal (setting function argument
internal = TRUE) and external (setting function argument internal = FALSE) reports, can
be produced and exported as HTML, PDF or plain text files. args(report) shows the pos-
sible function arguments and ?report gives access to the help file. It is for example possible
to select the output format and the output directory of the resulting report.
Internal reports include information about selected key variables, performed actions, disclo-
sure risk and data utility and session information on the package versions used. This detailed
report is suitable and useful for the organization that holds the data for internal use and
documentation of the anonymization procedure.

Journal of Statistical Software 31

External reports contain less information than internal reports. For example, all information
about disclosure risks and information loss is suppressed. This report is suitable for external
users of the anonymized micro-data set.
All the information that is included in the report always depends on the anonymization process
that has been applied and reflects the current values in a given object of class ‘sdcMicroObj’.
For example, if PRAM was not applied, no specific summary for variables subjected to PRAM
is provided because this information is not available. However, if PRAM was applied, the
entire disclosure risk summary is presented differently because the usual risk measures are
not valid if categorical key variables have been modified using this procedure. The output
of report(sdc, format = "LATEX") and report(sdc, internal = TRUE) can be obtained
using the supplementary material.

6. Conclusion
In this paper, the R package sdcMicro was described in detail. This package implements pop-
ular statistical disclosure methods for risk estimation such as the SUDA2 algorithm, the indi-
vidual risk approach or risk measurement using log-linear models. In addition, perturbation
methods such as global recoding, local suppression, post-randomization, micro-aggregation,
adding correlated noise, shuffling and various other methods are integrated.
With package sdcMicro, statistical disclosure control methods can be applied in an ex-
ploratory, interactive and user-friendly manner. All results are saved in a structured S4
class object that contains all relevant information. Many useful methods are defined for this
class and can be applied to objects of such a class. All relevant slots of an object of class
‘sdcMicroObj’ are updated automatically whenever an anonymization method is applied.
Print and summary methods are defined and ready to be used to summarize the status of
disclosure risk and data utility. Additionally, the whole functionality of R can be used to
apply self-defined utility measures and store them in the ‘sdcMicroObj’ object. Reports that
summarize the anonymizations and their effect on the quality and risk of the data can be
generated automatically.
Most methods are implemented efficiently in either C++ or by using package data.table for
gaining computational speed especially for large data sets. The main functionalities of the
package are illustrated here by applying them to a complex survey that is available with the
package.

Computational details
All computations in this paper were performed using Sweave (Leisch 2002) with the following
R session:

• R version 3.0.2 (2013-09-25), x86_64_w64-mingw32;

• base packages (R Core Team 2013): base, datasets, graphics, grCevices, methods, stats,
tools, utils;

• sdcMicro, version 4.6.0 (Templ et al. 2015);

32 sdcMicro: Statistical Disclosure Control for Micro-Data in R

• brew (Horner 2011), knitr (Yihui 2013), data.table (Dowle and Short 2013), xtable (Dahl
2013), MASS (Venables and Ripley 2002), Rcpp (Eddelbuettel and Francois 2011), sets
(Meyer and Hornik 2009).

Acknowledgments
sdcMicro has been supported by the International Household Survey Network (IHSN),
see http://www.ihsn.org/home/software/disclosure-control-toolbox and also
vignette("sdc_guidelines") in R; PARIS21 Secretariat at the Organisation for Economic
Co-operation and Development (OECD; http://paris21.org/) and the Worldbank Devel-
opment Data Group (http://data.worldbank.org/about/development-data-group).

References

(????). doi:10.1080/00401706.1999.10485670.

Alfons A, Kraft S (2013). simPopulation: Simulation of Synthetic Populations for Surveys
Based on Sample Data. R package version 0.4.1, URL http://CRAN.R-project.org/
package=simPopulation.

Alfons A, Kraft S, Templ M, Filzmoser P (2011). “Simulation of Close-to-Reality Popula-
tion Data for Household Surveys with Application to EU-SILC.” Statistical Methods &
Applications, 20(3), 383–407. doi:10.1007/s10260-011-0163-2.

Alfons A, Templ M (2013). “Estimation of Social Exclusion Indicators from Complex Surveys:
The R Package laeken.” Journal of Statistical Software, 54(15), 1–25. doi:10.18637/jss.
v054.i15.

Brand R (2002). “Microdata Protection Through Noise Addition.” In Inference Control in
Statistical Databases, Lecture Notes in Computer Science, pp. 97–116. Springer-Verlag.

Burridge J (2003). “Information Preserving Statistical Obfuscation.” Statistics and Comput-
ing, 13(4), 321–327. doi:10.1023/a:1025658621216.

Dahl D (2013). xtable: Export Tables to LATEX or HTML. R package version 1.7-1, URL
http://CRAN.R-project.org/package=xtable.

Domingo-Ferrer J, Torra V (2001). “A Quantitative Comparison of Disclosure Control Meth-
ods for Microdata.” In Confidentiality, Disclosure and Data Access: Theory and Practical
Applications for Statistical Agencies, pp. 111–134.

Dowle M, Short T (2013). data.table: Extension of data.frame for Fast Indexing, Fast
Ordered Joins, Fast Assignment, Fast Grouping and List Columns. R package version
1.8.10; with contributions from S Srinivasan, A Lianoglou and R Saporta, URL http:
//CRAN.R-project.org/package=data.table.

http://www.ihsn.org/home/software/disclosure-control-toolbox
http://paris21.org/
http://data.worldbank.org/about/development-data-group
http://dx.doi.org/10.1080/00401706.1999.10485670
http://CRAN.R-project.org/package=simPopulation
http://CRAN.R-project.org/package=simPopulation
http://dx.doi.org/10.1007/s10260-011-0163-2
http://dx.doi.org/10.18637/jss.v054.i15
http://dx.doi.org/10.18637/jss.v054.i15
http://dx.doi.org/10.1023/a:1025658621216
http://CRAN.R-project.org/package=xtable
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=data.table

Journal of Statistical Software 33

Drechsler J (2011). Synthetic Datasets for Statistical Disclosure Control: Theory and Imple-
mentation, volume 201 of Lecture Notes in Statistics. Springer-Verlag, New York. doi:
10.1007/978-1-4614-0326-5.

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Elliot M (2000). “DIS: A New Approach to the Measurement of Statistical Disclosure Risk.”
Risk Management, 2(4), 39–48. doi:10.1057/palgrave.rm.8240067.

Fischetti M, Salazar-González J (2000). “Complementary Cell Suppression for Statistical
Disclosure Control in Tabular Data with Linear Constraints.” Journal of the American
Statistical Association, 95(451), 916–928. doi:10.1080/01621459.2000.10474282.

Franconi L, Polettini S (2004). “Individual Risk Estimation in µ-Argus: A Review.” In
J Domingo-Ferrer (ed.), Privacy in Statistical Databases, Lecture Notes in Computer Sci-
ence, pp. 262–272. Springer-Verlag.

Gouweleeuw J, Kooiman P, Willenborg L, De Wolf PP (1998). “Post Randomisation for
Statistical Disclosure Control: Theory and Implementation.” Journal of Official Statistics,
14(4), 463–478.

Gower J (1971). “A General Coefficient of Similarity and Some of Its Properties.” Biometrics,
27(4), 857–871. doi:10.2307/2528823.

Horner J (2011). brew: Templating Framework for Report Generation. R package version
1.0-6, URL http://CRAN.R-project.org/package=brew.

Hundepool A, de Wetering AV, Ramaswamy R, Franconi L, Polettini S, Capobianchi A,
de Wolf PP, Domingo J, Torra V, Brand R, Giessing S (2008). µ-Argus. User Manual.
Version 4.2.

Ichim D, Franconi L (2010). “Strategies to Achieve SDC Harmonisation at European
Level: Multiple Countries, Multiple Files, Multiple Surveys.” In Privacy in Statistical
Databases’10, pp. 284–296.

Kowarik A, Templ M, Meindl B, Fonteneau F (2013). sdcMicroGUI: Graphical User Inter-
face for Package sdcMicro. R package version 1.0.3, URL http://CRAN.R-project.org/
package=sdcMicroGUI.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), Compstat 2002 – Proceedings in Computational
Statistics, pp. 575–580. Physica Verlag, Heidelberg.

Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007). “l-Diversity: Privacy
Beyond k-Anonymity.” ACM Transactions on Knowledge Discovery from Data, 1(1). doi:
10.1145/1217299.1217302.

Manning A, Haglin D, Keane J (2008). “A Recursive Search Algorithm for Statistical
Disclosure Assessment.” Data Mining and Knowledge Discovery, 16(2), 165–196. doi:
10.1007/s10618-007-0078-6.

http://dx.doi.org/10.1007/978-1-4614-0326-5
http://dx.doi.org/10.1007/978-1-4614-0326-5
http://dx.doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1057/palgrave.rm.8240067
http://dx.doi.org/10.1080/01621459.2000.10474282
http://dx.doi.org/10.2307/2528823
http://CRAN.R-project.org/package=brew
http://CRAN.R-project.org/package=sdcMicroGUI
http://CRAN.R-project.org/package=sdcMicroGUI
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1007/s10618-007-0078-6
http://dx.doi.org/10.1007/s10618-007-0078-6

34 sdcMicro: Statistical Disclosure Control for Micro-Data in R

Maronna R, Martin D, Yohai V (2006). Robust Statistics: Theory and Methods. John Wiley
& Sons, New York. doi:10.1002/0470010940.

Mateo-Sanz J, Sebe F, Domingo-Ferrer J (2004). “Outlier Protection in Continuous Microdata
Masking.” In Privacy in Statistical Databases, volume 3050 of Lecture Notes in Computer
Science, pp. 201–215. Springer-Verlag.

Matthews G, Harel O (2011). “Data Confidentiality: A Review of Methods for Statistical
Disclosure Limitation and Methods for Assessing Privacy.” Statistics Surveys, 5, 1–71.
doi:10.1214/11-ss074.

Meyer D, Hornik K (2009). “Generalized and Customizable Sets in R.” Journal of Statistical
Software, 31(2), 1–27. doi:10.18637/jss.v031.i02.

Muralidhar K, Parsa R, Sarathy R (1999). “A General Additive Data Perturbation Method
for Database Security.” Management Science, 45(10), 1399–1415. doi:10.1287/mnsc.45.
10.1399.

Muralidhar K, Sarathy R (2006). “Data Shuffling – A New Masking Approach for Numerical
Data.” Management Science, 52(2), 658–670. doi:10.1287/mnsc.1050.0503.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rinott Y, Shlomo N (2006). “A Generalized Negative Binomial Smoothing Model for Sample
Disclosure Risk Estimation.” In Privacy in Statistical Databases, Lecture Notes in Computer
Science, pp. 82–93. Springer-Verlag.

Rubin D (1993). “Discussion: Statistical Disclosure Limitation.” Journal of Official Statistics,
9(2), 461–468.

Samarati P, Sweeney L (1998). “Protecting Privacy When Disclosing Information: k-
Anonymity and Its Enforcement Through Generalization and Suppression.” Technical Re-
port SRI-CSL-98-04, SRI International.

Shlomo N (2010). “Releasing Microdata: Disclosure Risk Estimation, Data Masking and
Assessing Utility.” Journal of Privacy and Confidentiality, 2(1), 73–91.

Skinner C (2009). “Statistical Disclosure Control for Survey Data.” In D Pfeffermann, C Rao
(eds.), Handbook of Statistics – Sample Surveys: Design, Methods and Applications, volume
29 (Part A), pp. 381–396. North Holland.

Skinner C, Holmes D (1998). “Estimating the Re-Identification Risk per Record in Microdata.”
Journal of Official Statistics, 14(4), 361–372.

Sweeney L (2002). “k-Anonymity: A Model for Protecting Privacy.” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557–570. doi:10.1142/
s0218488502001648.

Task Force on the Conference of European Statisticians (2007). “Managing Statistical Con-
fidentiality & Microdata Access. Principles and Guidelines of Good Practice.” Technical
report, United Nations Economic Comissionn for Europe, New York and Geneva.

http://dx.doi.org/10.1002/0470010940
http://dx.doi.org/10.1214/11-ss074
http://dx.doi.org/10.18637/jss.v031.i02
http://dx.doi.org/10.1287/mnsc.45.10.1399
http://dx.doi.org/10.1287/mnsc.45.10.1399
http://dx.doi.org/10.1287/mnsc.1050.0503
http://www.R-project.org/
http://dx.doi.org/10.1142/s0218488502001648
http://dx.doi.org/10.1142/s0218488502001648

Journal of Statistical Software 35

Templ M (2008). “Statistical Disclosure Control for Microdata Using the R Package sdcMicro.”
Transactions on Data Privacy, 1(2), 67–85.

Templ M (2011a). “Comparison of Perturbation Methods on Pre-Defined Quality Indicators.”
In Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Tarragona,
Spain. Tarragona.

Templ M (2011b). “Estimators and Model Predictions from the Structural Earnings Survey
for Benchmarking Statistical Disclosure Methods.” Research Report CS-2011-4, Department
of Statistics and Probability Theory, Vienna University of Technology. URL http://www.
statistik.tuwien.ac.at/forschung/CS/CS-2011-4complete.pdf.

Templ M, Filzmoser P (2014). “Simulation and Quality of a Synthetic Close-to-Reality
Employer-Employee Population.” Journal of Applied Statistics, 41(5), 1053–1072. doi:
10.1080/02664763.2013.859237.

Templ M, Kowarik A, Meindl B (2014). “sdcMicro Case Studies.” Research Report CS-2014-1,
Department of Statistics and Probability Theory. Vienna University of Technology.

Templ M, Kowarik A, Meindl B (2015). sdcMicro: Statistical Disclosure Control Methods
for the Generation of Public- And Scientific-Use Files. Manual and Package. R package
version 4.6.0, URL http://CRAN.R-project.org/package=sdcMicro.

Templ M, Meindl B (2008a). “Robust Statistics Meets SDC: New Disclosure Risk Measures
for Continuous Microdata Masking.” In Privacy in Statistical Databases, volume 5262 of
Lecture Notes in Computer Science, pp. 113–126. Springer-Verlag.

Templ M, Meindl B (2008b). “Robustification of Microdata Masking Methods and the Com-
parison with Existing Methods.” In Privacy in Statistical Databases, volume 5262 of Lecture
Notes in Computer Science, pp. 177–189. Springer-Verlag.

Templ M, Meindl B (2010). “Practical Applications in Statistical Disclosure Control Using R.”
In J Nin, J Herranz (eds.), Privacy and Anonymity in Information Management Systems,
Advanced Information and Knowledge Processing, pp. 31–62. Springer-Verlag.

Venables W, Ripley B (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag,
New York. doi:10.1007/978-0-387-21706-2.

Yihui X (2013). knitr: A General Purpose Package for Dynamic Report Generation in R. R
package version 1.5, URL http://CRAN.R-project.org/package=knitr.

Affiliation:
Matthias Templ
Department of Statistics and Probability Theory
Vienna University of Technology
Wiedner Hauptstr. 8–10
A-1040 Vienna, Austria
E-mail: templ@tuwien.ac.at

http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-4complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-4complete.pdf
http://dx.doi.org/10.1080/02664763.2013.859237
http://dx.doi.org/10.1080/02664763.2013.859237
http://CRAN.R-project.org/package=sdcMicro
http://dx.doi.org/10.1007/978-0-387-21706-2
http://CRAN.R-project.org/package=knitr
mailto:templ@tuwien.ac.at

36 sdcMicro: Statistical Disclosure Control for Micro-Data in R

Alexander Kowarik, Bernhard Meindl, Matthias Templ
Methods Unit
Statistics Austria
Guglgasse 6
A-1110 Vienna, Austria
URL: http://www.statistik.at/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2015, Volume 67, Issue 4 Submitted: 2014-01-23
doi:10.18637/jss.v067.i04 Accepted: 2014-12-11

http://www.statistik.at/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v067.i04

	Introduction
	Concepts to anonymize micro-data
	Classification of variables
	Challenges
	Work flow

	Working with sdcMicro
	General information about sdcMicro and performance
	S4 class structure
	Utility functions

	Methods
	Measuring the disclosure risk
	Population frequencies and the individual risk approach
	The concept of k-anonymity
	l-diversity
	Sample frequencies on subsets: SUDA2
	The individual and cluster risk approach
	Measuring the global risk
	Measuring the global risk using individual risks
	Measuring the global risk using log-linear models
	Measuring risk for continuous key variables

	Anonymization methods
	Recoding
	Local suppression
	Post-randomization
	Micro-aggregation
	Adding noise
	Shuffling

	Measuring data utility
	Generally applicable methods
	A note on other measures of data utility

	Reporting facilities
	Conclusion

