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Abstract

We review the theory and application of generalized linear autoregressive moving av-
erage observation-driven models for time series of counts with explanatory variables and
describe the estimation of these models using the R package glarma. Forecasting, diag-
nostic and graphical methods are also illustrated by several examples.
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1. Introduction

Increasingly, in fields as diverse as financial econometrics, public policy assessment, environ-
mental science, modeling of disease incidence and musicology, there is a need for modeling
discrete response time series in terms of covariates. In many of these applications the counts
are often quite small, at least for a significant portion of the observation times, so as to render
the use of traditional Gaussian continuous-valued response time series regression methods in-
appropriate. In response to this, over the past twenty or so years there has been substantial
development of models for discrete-valued time series. For regression models, where interest
is focused on making correct inferences about the impact of covariates on the response series,
accounting for serial dependence is critical, particularly for obtaining correct standard errors
for regression coefficient estimates. Assessing and modeling dependence when the outcomes
are discrete random variables can be challenging since traditional methods for detecting se-
ries dependence in regression residuals are often not effective. In this paper we consider
the GLARMA (generalized linear autoregressive moving average) subclass of observation-
driven models in detail. Compared to the parameter driven class of models (see Section 1.1)
GLARMA models are relatively easy to fit and provide an accessible and rapid way to detect
and account for serial dependence in regression modeling of time series.
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The R (R Core Team 2015) glarma package (Dunsmuir, Li, and Scott 2015) provides func-
tionality for estimating regression relationships between a vector of regressors (covariates,
predictors) and a discrete-valued response and is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=glarma. In time series regres-
sion modeling it is typically the case that there is serial dependence. This package models
the serial dependence using the GLARMA class of observation-driven models and provides
valid inference for the regression model components. Forecasting for this class of models is
straightforward using simulation.
Dunsmuir (2015) provides a review of GLARMA models and their applications and extensions
to analysis of multiple independent time series. GLARMA models have found applications
in many disciplines including: financial modeling, epidemiological assessments, clinical man-
agement, analysis of crime statistics, and primate behavior. Other areas of applications and
examples where GLARMA models could readily be applied include those mentioned in the
references cited in Sections 2 where we review observation-driven models more widely.

1.1. Generalized state space models

The GLARMA models considered here form a subclass of generalized state space models for
non-Gaussian time series described in Davis, Dunsmuir, and Wang (1999), Brockwell and
Davis (2010) and Durbin and Koopman (2012) for example. A generalized state space model
for a time series {Yt} consists of an observation variable and a state variable. The model
is expressed in terms of conditional probability distributions for the observation and state
variables. Following Cox (1981) such models can be loosely characterized as either parameter
driven or observation driven. The observation specification is the same for both models.
For parameter driven models the state equation commonly consists of a regression component
and a latent, usually stationary, time series that cannot be observed directly and which evolves
independently of past and present values of the observed responses or the covariates. On the
other hand, as the name implies, in observation driven models, the random component of Wt

depends on past observations {Ys, s < t} as well as other covariates.
Davis and Dunsmuir (2015) review estimation for parameter driven models including gen-
eralized methods of moments, maximum likelihood and composite likelihood methods. In
particular, maximum likelihood estimation requires very high dimensional integrals to be
evaluated or approximated using asymptotic expansions, simulation methods, numerical inte-
gration or all three. Because of this they can be difficult to fit and for routine model building,
in which many potential regressors need to be considered and evaluated for significance, the
parameter driven models for count time series are not yet ready for general use.
On the other hand, the observation-driven models considered here are much easier to fit
because the likelihood is conditionally specified as a product of conditional distributions which
belong to the exponential family and for which the natural parameter is readily calculated
via recursion. As a result they are relatively straightforward to apply in practical settings
with numerous regressors and long time series.
The outline of the remainder of the paper is as follows. Section 2 briefly reviews observation-
driven models in order to place the GLARMA models into context. Section 3 provides the
necessary theoretical background for GLARMA models. It describes the various combinations
of model elements (response distributions, dependence structures and predictive residuals)
that are currently supported in the glarma package. Options for initializing and obtaining
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maximum likelihood estimates using a form of Fisher scoring or Newton-Raphson iterations
are described. Issues of parameter identifiability and convergence properties of GLARMA
models and the associated maximum likelihood estimates are also reviewed to guide users
in the specification of these models. The forecasting methodology for GLARMA models is
also described. Section 4 describes the various modeling functions available in the package.
Section 5 describes the built-in model diagnostic procedures and plotting functions. Section 6
provides several examples illustrating the use of the package on real data sets. Section 7
reviews other R packages that are available for fitting observation-driven time series models
and Section 8 concludes with discussion of some potential future enhancements to the package.

2. Observation-driven models
Particularly over the past twenty or so years, following the early contributions of Jacobs and
Lewis (1978a,b), Cox (1981), Zeger and Qaqish (1988) and McKenzie (1988) for instance,
there has been substantial development of a range of observation-driven models for time se-
ries. A general reference is the book by Kedem and Fokianos (2005). Without aiming to
be exhaustive we mention some of the main models that have been developed. For count
responses, often modeled using a Poisson or negative binomial distribution conditional on
the past of the process and regression variables, reviews can be found in Davis et al. (1999),
Jung and Tremayne (2011), Jung, Kukuk, and Liesenfeld (2006) and Fokianos and Tjøs-
theim (2011) for example. The main models discussed include the autoregressive conditional
Poisson (ACP) model, the integer-valued autoregressive model (INAR), the integer-valued
generalized autoregressive conditional heteroscedastic model (INGARCH), the conditional
linear autoregressive process, and the dynamic ordered probit model. For binary responses
the autologistic model proposed by Cox (1958) has been extended to the binary autoregressive
model (BARMA) proposed by Li (1994).
There is no single model class that covers all of these observation driven models. However
Benjamin, Rigby, and Stasinopoulos (2003) propose a quite general class of models, called
generalized autoregressive moving average (GARMA) models which we briefly summarize
as follows. Let there be n consecutive times at which the response and regressor series
are observed. The response series is comprised of observations on the random variables
{Yt : t = 1, . . . , n} and associated with these are K-dimensional vectors of regressors xt also
observed for t = 1, . . . , n. We let Ft = {Ys : s = 1, . . . , t − 1;xs : s = 1, . . . , t} and note that
this summarizes, relative to any time point t, the past responses and the past and current
regressors. The distribution of the current observed response Yt conditional on Ft is assumed
to be a member of the exponential family of distributions (McCullagh and Nelder 1989) with
density

f(yt|Wt) = exp
{
ytWt − b(Wt)

κ
+ c(yt, κ)

}
, (1)

where Wt is the canonical parameter, which we call the “state variable”, κ is the scale
parameter, and the functions b(·) and c(·) define the specific member of the exponential
family of interest. Then, see McCullagh and Nelder (1989), µt = E(Yt|Ft) = ḃ(Wt) and
VAR(Yt|Ft) = κb̈(Wt) are the conditional mean and variance of Yt given Ft. Here ḃ and b̈
refer to first and second derivatives of b(·) with respect to its argument. A link function, g(·),
is used to relate the conditional mean to Wt so that g(µt) = Wt. In the GARMA model (and
in the GLARMA model of this paper) focus is on the case where the state variable in (1) is
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of the general form
Wt = x>t β + Zt. (2)

If Zt were not present inWt, the above model would be the standard generalized linear model
(GLM) of McCullagh and Nelder (1989) in which, given the regressors, observations Yt are
independent. In the most general form of the GARMA model Benjamin et al. (2003) define
Zt as

Zt =
p∑
j=1

φjA(yt−j , xt−j , β) +
q∑
j=1

θjM(yt−j , µt−j), (3)

where A and M are functions for autoregression and moving average components with un-
known parameters (in addition to the regression parameters β) φ for the autoregressive and
θ for the moving average components. Choices for M suggested in Benjamin et al. (2003)
are deviance residuals, Pearson residuals, residuals on the original scale (yt − µt) or on the
predictor scale (g(yt)−Wt).
Benjamin et al. (2003) state that the GARMA model (3) “is too general for practical ap-
plication” and concentrate on a simplified version of it. In particular they define their
GARMA(p, q) model as a model which satisfies (1) and

Wt = x>t β +
p∑
j=1

φj [g(yt−j)− x>t β] +
q∑
j=1

θj [g(yt−j)−Wt−j ]. (4)

Note that the GARMA class of models consists of models on the predictor scale. Benjamin
et al. (2003) then present a series of examples such as the Poisson GARMA model and the
binomial logistic GARMA model amongst others. However, because the observed responses
enter into (4) after transformation by the link function there is a need to introduce an addi-
tional arbitrary threshold quantity c to cater for yt = 0 in the Poisson or binomial cases and
yt = 1 in the binary case so that g(yt) is properly defined. For example, for Poisson responses
with log link, g(yt) = log(yt) is not defined when yt = 0 which arises often in low count series,
which corresponds to the situation for which these types of models are most required. The
threshold quantity c is not a parameter that is estimated along with the other parameters and
this is a major drawback of the model with the state variable evolving according to (4) when
the canonical link is used. One alternative discussed in Benjamin et al. (2003) is the identity
link in which case the arbitrary threshold parameter c is not needed. However, care must be
taken with scaling the residuals in the moving average part of (4) as well as the regression
variables – see Davis et al. (1999) for details. Some R packages exist for estimation of some
GARMA models and these are reviewed in Section 7.
A variant of the GARMA and GLARMA models for binary series is the binary autoregressive
moving average (BARMA) model suggested by Li (1994), and discussed more recently in
Wang and Li (2011). This has a state variable defined by

Wt = x>t β +
p∑
i=1

yt−j +
q∑
i=1

(yt−j − µt−j), (5)

where µt is the conditional probability of a success at time point t given Ft. For binary time
series good reviews of modeling approaches are provided in Startz (2008) and Kauppi and
Saikkonen (2008). Their focus is on predicting U.S. quarterly recessions and they demon-
strate the utility of dynamics in the model for Wt, a feature of GARMA and GLARMA



Journal of Statistical Software 5

models. Models of this type without a moving average term could be fit using standard GLM
procedures by defining the regressors xt to include lagged values of the response series with-
out mean adjustment or scaling. Cross product terms between yt−j and yt−k or xt−k can
be included also – see Startz (2008) or Kauppi and Saikkonen (2008) for details. Models of
this type have also been considered by Rydberg and Shephard (2003) as a component of a
within day stock price movement model but they suggest that these are numerically unstable
and recommend using a GLARMA specification instead. The glarma package can be used to
fit BARMA models (see below). Note that the model considered by Kauppi and Saikkonen
(2008) in their Equation 4 is not a BARMA model because the recursions for Wt include
the regression term whereas in GLARMA and BARMA models the regression term and the
dynamics are additively combined.

3. Theory of GLARMA models
GLARMA models are similar in structure to GARMA models with some important differ-
ences which will be apparent once we give a complete description of the former. In general
the conditional distribution of Yt given Ft can be a member of the exponential family (1).
However, to describe the GLARMA model as currently implemented in glarma we define a
simplified exponential family form in which the dispersion parameter κ = 1 and, in order to
accommodate the binomial distribution in a simple way we define the b function to be scaled
by a factor at. The simplified version of (1) is

f(yt|Wt) = exp {ytWt − atb(Wt) + ct} , (6)

where at and ct are sequences of constants possibly depending on the observations yt. Details
of the specific distributions currently available in glarma are provided in Section 3.1.
Note that (6) is not the fully general form of the exponential family (see McCullagh and
Nelder 1989) in that it does not include an over-dispersion parameter and the canonical link
is used. It follows from (6), as before for the GARMA specification, that the conditional
means and variances of the responses are µt := E(Yt|Wt) = atḃ(Wt) and σ2

t := VAR(Yt|Wt) =
atb̈(Wt). The negative binomial case is not a member of the exponential family when the
scale parameter is not fixed and therefore needs to be treated in a special way – see below.
For GLARMA models as implemented in the glarma package the state variable is defined as

Wt = x>t β +Ot + Zt, (7)

in which there is an additional offset term Ot included because for many applications this may
be important. For example in modeling motor vehicle driver deaths, disease counts or crime
counts using a Poisson distribution, inclusion of the logarithm of population as an offset term
is important and provides a model for the incidence per unit of population. The offset term
enters the model without regression parameters.

3.1. Response distributions

Response distributions currently supported in the glarma package are Poisson and binomial
(which includes Bernoulli as a special case), both of which can be put in the form of (6), and
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Poisson Binomial Negative
Binomial

f(y|Wt)
µyt e
−µt

y!
(mt
y
)
πyt (1− πt)mt−y see (8)

at 1 mt -

ct − log yt! log
(mt
yt

)
-

b(Wt) eWt log(1 + eWt) -

µt eWt mtπt eWt

σ2
t µt mtπt(1− πt) µt + µ2

t /α
2

Link log logit log

Table 1: Distributions and associated link functions supported in the glarma package.

the negative binomial distribution with density in the form given by

f(yt|Wt, α) = Γ(α+ yt)
Γ(α)Γ(yt + 1)

[
α

α+ µt

]α [ µt
α+ µt

]yt

, (8)

where µt = exp(Wt). This cannot be put into the one parameter exponential family form
when α is not known, which, however, is the case of most practical interest. As α → ∞ the
negative binomial density converges to the Poisson density. Table 1 specifies the distributions
and associated link functions currently supported in the glarma package.

3.2. GLARMA dependence structure

Serial dependence in the response process Wt given by (7) is, in a similar vein to Benjamin
et al. (2003), introduced by specifying Zt as an autoregressive moving average recursion of
the form

Zt =
p∑
i=1

φi(Zt−i + et−i) +
q∑
i=1

θiet−i, (9)

in which the predictive residuals are defined as

et = Yt − µt
νt

(10)

for some scaling sequence {νt} – see Section 3.3 for choices currently supported.
This specification allows recursive calculation (in t) of the state equation. The model is
referred to as a GLARMA model in Davis, Dunsmuir, and Streett (2003). Shephard (1995)
provides the first example of such a model class. Rydberg and Shephard (2003) define the
GLARMA model in the following form

Zt =
p∑
i=1

φiZt−i + σet−1 + σ
q∑
i=1

θiet−1−i, (11)

which can be made equivalent to (9) by suitable redefinition of the degrees p and q and the
autoregressive and moving average coefficients as shown in Section 3.4.
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The name GLARMA, which we prefer to GARMA, was originally used in Shephard (1995), an
unpublished paper, and subsequently in Rydberg and Shephard (2003) and Davis et al. (2003).
This terminology captures the essence of the models we consider which are generalizations of
both generalized linear (GL) and autoregressive moving average (ARMA) models.
We can also write Zt given by (9) using linear combinations of past predictive residuals et
(Davis et al. 1999, 2003), i.e.,

Zt =
∞∑
j=1

γjet−j , (12)

where γj are given as coefficients in the power series
∞∑
j=1

γjζ
j = θ(ζ)/φ(ζ)− 1,

with φ(ζ) = 1 − φ1ζ − · · · − φpζ
p and θ(ζ) = 1 + θ1ζ + · · · + θqζ

q being the respective
autoregressive and moving average polynomials of the ARMA filter, each having all zeros
outside the unit circle. It follows that the {Zt} defined in this way can be thought of as the
best linear predictor of a stationary invertible ARMA process with driving noise specified by
the sequence {et} of scaled deviations of count responses from their conditional mean given
the past responses and the past and current regressors.

3.3. Types of GLARMA residuals

GLARMA predictive residuals are of the form (10) where ν(Wt) is a scaling function. Cur-
rently several choices for this are supported.

Pearson residuals: These are scaled by the standard deviation, σt (defined in Table 1) of
the predictive distribution νt = νP,t = σt.

Score-type residuals: These replace the conditional standard deviation by the conditional
variance νt = νS,t = σ2

t as suggested in Creal, Koopman, and Lucas (2008).

Identity residuals: These use no scaling so that νt = νI,t = 1.

The use of identity residuals allows BARMA models considered in Wang and Li (2011) to be
fit using the glarma package. For the Poisson response distribution GLARMA model, failure
to scale by the variance or standard deviation function will lead to unstable Poisson means
(that diverge to infinity or collapse to zero as an absorbing state for instance) and existence
of stationary and ergodic solutions to the recursive state equation is not assured – see Davis
et al. (1999), Davis et al. (2003) and Davis, Dunsmuir, and Streett (2005) for details. For the
binomial situation this lack of scaling should not necessarily lead to instability in the success
probability as time evolves since the success probabilities, πt, and observed responses, Yt, are
both bounded between 0 and 1. Thus degeneracy can only arise if the regressors xt become
unbounded from below or above. As recommended in Davis et al. (1999) temporal trend
regressors should be scaled using a factor relating to sample size n.
Note that for the distributions specified in Table 1 and provided that the regressors are such
that the choice of scaling νt 6= 0, then the et have zero mean and are uncorrelated (Davis
et al. 2003). When νt is set to the conditional standard deviation of Yt, the et also have unit
variance, hence are weakly stationary white noise.
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Note on BARMA models These can be put into the GLARMA framework by including
lagged values of the response variable in the regression matrix as additional columns and spec-
ifying moving average terms with identity residuals. Startz (2008) cautions that in BARMA
models it is possible to get parameter estimates such that πt = 0 or πt = 1 numerically
in which case the information matrix for the model is singular and estimates of parameter
covariances are not defined.
The above residuals provide a reasonable range of possible choices. Dunsmuir, Leung, and
Liu (2004) investigate the use of parametric scaling for the Poisson response case where
et = (yt−µt)/µλt which gives Pearson residuals when λ = 0.5 and score residuals when λ = 1.
They estimate λ by profiling the GLARMA likelihood. For the Polio data of Zeger (1988) they
obtain the estimate λ̂ = 1.14 which is not significantly different from 1 (score residuals) but
is significantly different from 0.5 (Pearson residuals). This method has not been implemented
in the glarma package because it is cumbersome to control convergence and has limited
application (mainly to Poisson responses). However, the models using Pearson and score
residuals could be fitted and their likelihoods compared to choose between λ = 0.5 and λ = 1.
Another alternative is to use Anscombe residuals which are claimed to produce residuals
which, although discrete, may be better matched moment-wise to the normal distribution
particularly in regard to skewness. These have been discussed in Davis et al. (1999) for
developing methods for testing for serial dependence. Including them in the glarma package
would require only a modest amount of work for the Poisson and negative binomial response
distributions but it would be substantially more involved for the binary or binomial response,
since in these cases, the Anscombe residuals require a computation using the incomplete beta
function which is defined in terms of the model parameters through the conditional probability
of success. Hence the computation of derivatives of the likelihood would be quite challenging.

3.4. Parameter identifiability

The GLARMA component Zt of the state variable given in (9) can be rewritten as

Zt =
p∑
i=1

φiZt−i +
q̃∑
i=1

θ̃iet−i, (13)

where q̃ = max(p, q) and:

1. If p ≤ q, θ̃j = θj + φj for j = 1, . . . , p and – if p < q – θ̃j = θj for j = p+ 1, . . . , q.

2. If p > q, θ̃j = θj + φj for j = 1, . . . , q and θ̃j = φj for j = q + 1, . . . , p.

When pre-observation period values are set to zero (that is Zt = 0 for t ≤ 0 and et = 0 for
t ≤ 0) then, if and only if θ̃j = 0 for j = 1, . . . , q̃, the recursion (13) would result in Zt = 0 for
all t and hence there is no serial dependence in the GLARMA model. This is is equivalent to
φj = −θj for j = 1, . . . , p and θj = 0 for j = p+ 1, . . . , q̃.
Consequently the null hypothesis of no serial dependence requires only these constraints on
the θ and φ parameters. In some situations this means that under the null hypothesis of
no serial dependence there are nuisance parameters which cannot be estimated. This has
implications for the convergence behavior, i.e., the number of iterations required to optimize
the likelihood, and on testing that there is no serial dependence in the observations (other
than that induced by the regression component x>t β).
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When p > 0 and q = 0 (equivalent to an ARMA(p, p) specification with constraint θj = φj or
a pure MA with p = 0 and q > 0), then identification issues do not arise and the hypothesis
of no serial dependence corresponds to the hypothesis that φj = 0 for j = 1, . . . , p in the
first case and θj = 0 for j = 1, . . . , q in the second case. The likelihood ratio and Wald tests
(see Section 5.1 for further details) provided in the glarma package will have an asymptotic
chi-squared distribution with correct degrees of freedom.
In cases where p > 0 and q > 0 some caution is advised when fitting models and testing that
serial dependence is not present. To simplify the discussion we focus on the case where p = q.

1. If there is no serial dependence in the observations but p = q > 0 is specified then
there is a strong possibility that the likelihood optimization for this overspecified model
will not converge because the likelihood surface will be “ridge-like” along the line where
φj = −θj . This issue is classical for standard ARMA models. Similarly if the degree
of serial dependence is of lower order than that specified for the GLARMA model,
identifiability issues and lack of convergence of the likelihood optimizing recursions
are likely to occur. Lack of identifiability typically manifests itself in the matrix of
second derivatives DNR or the approximate Fisher scoring version DFS becoming close
to singular or even non-positive definite. The state variable Wt can also degenerate to
±∞ in which case an error code in the output of the glarma() call is provided.

2. The likelihood ratio test, that there is no serial dependence, versus the alternative, that
there is GLARMA-like serial dependence with p = q > 0, will not have a standard chi-
squared distribution, because the parameters φj for j = 1, . . . , p are nuisance parameters
which cannot be estimated under the null hypothesis. Testing methods such as proposed
in Hansen (1996) for example need to be developed for this situation.

3.5. The GLARMA likelihood

Given n successive observations {yt : t = 1, . . . , n} of the response series, the likelihood,
conditional on initial values for the recursions to calculate Zt, is constructed as the product
of conditional densities of Yt given Ft. The state vectorWt at each time point embodies these
conditioning variables as well as the unknown parameters δ = (β, φ, θ) and in order to stress
this we will use the notation Wt(δ) where appropriate. Then, the log-likelihood is given by

l(δ) =
n∑
t=1

log f(yt|Wt(δ)). (14)

Strictly speaking this is a conditional (on initial values) log-likelihood but for brevity we will
henceforth use the term log-likelihood. For the Poisson and binomial response distributions
the log-likelihood (14) is

l(δ) =
n∑
t=1
{ytWt(δ)− atb(Wt(δ)) + ct}. (15)

For the negative binomial response distribution the log-likelihood is based on (8) and the shape
parameter α also has to be estimated along with β, φ and θ. We then let δ = (β, φ, θ, α).
Note that the et in (10) and the Zt in (9) are also functions of the unknown parameter δ
and hence need to be recomputed for each iteration of the likelihood optimization. Thus
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in order to calculate the likelihood and its derivatives, recursive expressions are needed to
calculate et, Zt and Wt as well as their first and second partial derivatives with respect
to δ. Expressions for these recursive formulae are available in Davis et al. (2005) for the
Poisson case. Corresponding formulae for the binomial case were derived in Lu (2002) and
for the negative binomial case in Wang (2004). The essential computational cost is in the
recursions for Zt and Wt and their first and second derivatives with respect to δ. Fortunately,
these require identical code for the various response distributions and definitions of predictive
residuals et.
The likelihood is maximized from a suitable starting value of the parameter δ using a version
of Fisher scoring iteration or by Newton-Raphson iteration. For a given value of δ let the
vector of first derivatives with respect to δ of the log-likelihood (14) be

d(δ) = ∂l(δ)
∂δ

and the second derivative matrix be

DNR(δ) = ∂2l(δ)
∂δ∂δ>

, (16)

where the matrix of second derivatives of the log-likelihood is (in the Poisson and binomial
response cases) given by

DNR(δ) =
n∑
t=1

[yt − atḃ(Wt)]
∂2Wt

∂δ∂δ>
−

n∑
t=1

atb̈(Wt)
∂Wt

∂δ

∂Wt

∂δ>
. (17)

Using the fact that, at the true parameter value δ, E[yt− atḃ(Wt)|Ft] = 0, the expected value
of the first summation in (17) is zero and hence the expected value of the matrix of second
derivatives is E[DFS(δ)], where

DFS(δ) = −
n∑
t=1

atb̈(Wt)
∂Wt

∂δ

∂Wt

∂δ>
. (18)

Since E(yt − atḃ(Wt)|Ft) = 0 it follows that E[DNR(δ)] = −E[d(δ)d(δ)>]. While these expec-
tations cannot be computed in closed form, expression (18) requires first derivatives only and
is used in the glarma package as the basis for the approximate Fisher scoring method. Thus,
if δ(k) is the parameter vector at the current iterate k, the Newton-Raphson updates proceed
using

δ(k+1) = δ(k) −DNR(δ(k))−1d(δ(k)) (19)

and the approximate Fisher scoring updates use DFS in place of DNR. Given a specified
tolerance TOL, iterations continue until the largest gradient of the log-likelihood satisfies
maxi |di(δ(k)|) ≤ TOL or a maximum number of iterations MAXITER is surpassed. At
termination we let δ̂ = δ(k+1) and call this the “maximum likelihood estimate” of δ.

Selecting initial values of the state variable For calculation of the Zt in (9), initializing
conditions for the recursions must be used. The current implementation in glarma is to set
et = 0 and Zt = 0 for t ≤ 0 ensuring that the conditional and unconditional expected values
of et are zero for all t. These would seem to be natural specifications for GLARMA models
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and are used in Rydberg and Shephard (2003) and Davis et al. (2003). In BARMA models
(5) the recursions for Wt are in terms of past Yt and past unscaled deviations Yt − µt. While
setting pre-period values of these latter to zero may be natural, there remains the question of
how best to initialize Yt for t ≤ 0. For example Kauppi and Saikkonen (2008) suggest using
a method that can be “interpreted as estimates of the unconditional mean” of Wt and Startz
(2008) suggests setting µt to zero, or the sample mean of Yt, or πt = 0.5 or initial values of
yt−µt to zero. Currently to use the glarma package to fit BARMA models yt−µt = 0, t ≤ 0
is assumed and the users are free to specify values yt for t ≤ 0 in whatever way they wish.

Choosing lags for the ARMA components Selection of appropriate lags for the AR
and MA components in the GLARMA model is usually considerably more difficult than it is
for Gaussian series where residuals from least squares model fits can provide quite useful infor-
mation about the serial dependence structure through use of the autocorrelation and partial
autocorrelation functions. Unlike residuals from least squares regression, which often provide
useful information about serial dependence model structure for continuous responses, in the
discrete-valued response setting, residuals from the GLM fit often do not give good guidance
on choosing p and q needed to specify the GLARMA model, particularly if the dependence
is weak or moderate. We would recommend that the autocorrelation and partial autocorre-
lation functions be estimated using GLM residuals and, if strong patterns are observed, that
these be reflected in the choice of p and q. However, following the discussion on parameter
identifiability in Section 3.4 it is also highly recommended that users start with low orders
for p and q and initially avoid specifying them to be equal. Once stability of estimation is
achieved for a lower order specification increasing the values of p or q could be attempted.

Initializing the MLE recursions By default, the iterations in (19) are initialized using
the GLM estimates for β and zero initial values for the autoregressive moving average terms.
For the negative binomial case, β and α are initialized using a call to glm.nb() from package
MASS (see Venables and Ripley 2002). While this is often a successful strategy, for which
convergence to the MLE is typically rapid, it does not always lead to convergence or can take
quite a few iterations. In some cases, using the Fisher scoring method can be more robust
to starting values. Thus, this can be used to initialize the iterative algorithm and to then
switch to Newton-Raphson once the procedure is reasonably stable, because Newton-Raphson
is typically faster once the iterations are close to the optimum. Users may optionally specify
initial parameter values of their own choice. This can be important particularly when strong
serial dependence is required to be modeled or when the model may be overspecified and
hence poorly identified because the likelihood surface is flat in some directions in parameter
space. In the former case, the autocorrelation function of the residuals from an initial GLM
fit can guide selection of AR and MA terms and initial values for these. Alternatively the
autocorrelation of the randomized probability integral transformation residuals might provide
guidance. When the model is poorly identified it is particularly difficult to obtain convergence
of the likelihood iterations as discussed in more detail in Section 3.4. Our recommendation
is to start with moving average terms at small order lags and seasonal lags (if appropriate)
and build up a sequence of models with the moving average order, q, increasing. Then,
examination of the moving average coefficient estimates, θ̂j can sometimes suggest a simpler
autoregressive or mixed autoregressive moving average specification.
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3.6. Stochastic properties of GLARMA models

Sufficient conditions for the mean and variance of the predictive residuals to exist are, for
example, that the autoregressive polynomial φ(ζ) has all zeros outside the unit circle, the
regressors xt are such that 0 < σt <∞ and the recursions in (9) are initialized with Zt = et = 0
for t ≤ 0. Assuming then that σt < ∞ in the Poisson and negative binomial case and that
0 < πt < 1 and mt < ∞ in the binomial case the three types of residuals considered will
have finite mean and variance at any time point t. In that case they form a martingale
difference sequence (Rydberg and Shephard 2003; Davis et al. 2003) and as a result of that
are uncorrelated. Further the Pearson residuals (and only those) have unit variance and
therefore are zero mean, unit variance weakly stationary white noise. Means, variances and
autocovariances for the state process {Wt} can be readily derived using the definition of
Zt in (12) – see (Davis et al. 1999). For the Poisson response case the corresponding means,
variance and autocovariances for the count response series {Yt} can be derived approximately.
Additionally an approximate interpretation of the regression coefficients β can be given – see
(Davis et al. 2003). Similar results could be derived for the negative binomial response case.
For binomial and Bernoulli responses, calculation of means, variances, autocovariances for
the response series and interpretation of regression coefficients is not straightforward. This
is a typical issue for interpretation of random effects models and transition models in the
binomial or Bernoulli case – see Diggle, Heagerty, Liang, and Zeger (2002) for example.

To date the stationarity and ergodicity properties of the GLARMA model are only partially
understood. These properties are important in order to ensure that the process is capable of
generating sample paths that do not degenerate to zero or do not explode as time progresses,
as well as for establishing the large sample distributional properties of estimates of the param-
eters. Davis et al. (2003) provide partial results for perhaps the simplest of all possible models
for Poisson responses specified with p = 0, q = 1 and x>t β = β. Results for simple examples
of the stationary Bernoulli case are given in Streett (2000). Recently Davis and Liu (2012)
have considered a general class of observation-driven models for one parameter exponential
family response distributions. As they point out, the GLARMA processes do not necessarily
satisfy the contraction condition required for the existence of a stationary distribution except
in simple cases of Davis et al. (2003). These cases exclude regression terms in Wt.

Increasingly, asymptotic results for various types of observation driven models without covari-
ates are becoming available. Tjøstheim (2012) reviews the ergodic and stationarity properties
for some observation-driven models primarily in the Poisson response context. However these
results do not apply to the specific form of GLARMA models that are presented here. Wang
and Li (2011) discuss the BARMA model and present some asymptotic results for that case.
However the state equation for the BARMA model differs structurally from that for the bi-
nary GLARMA model, because past observations of Yt also enter in the autoregressive terms
without scaling or centering, whereas in the GLARMA model they only enter through the
residuals. Woodard, Matteson, and Henderson (2011) present some general results on station-
arity and ergodicity for the form of the GARMA model of Benjamin et al. (2003). However
these results are not directly applicable to the GLARMA model form considered here because
the state equation recursions again involve applying the link function to both the responses
and the mean responses. None of these recent results consider the case of covariates and hence
are not, as yet, applicable to likelihood estimation for regression models for discrete outcome
time series.
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3.7. Fitted values

There are two concepts of fitted values currently supported for the GLARMA model. The
first is defined as the estimated conditional mean function µ̂t at time point t calculated using
the maximum likelihood estimates δ̂. Thus

µ̂t = atḃ(x>t β̂ + Ẑt), (20)

where Ẑt are calculated using δ̂ in (9). These fitted values combine the regression fit (fixed
effects) together with the contribution from weighted sums of past estimated predictive resid-
uals.
Because for GLARMA models the unconditional mean function is difficult to obtain exactly
in all cases an estimated unconditional mean function of t is not provided. Instead, for the
second concept of fitted values, the fitted value from the regression term only is suggested as
a guide to the fit without the effect of random variation due to Zt. This is defined to be

µ̃t = atḃ(x>t β̂). (21)

We refer to this as the “fixed effects fit” in plotting functions below. Note that this is not
an estimate of the unconditional mean even in the Poisson case (arguably the most tractable
for this calculation). The theoretical unconditional mean for this case is approximated by
exp(x>t β+ν2/2) where ν2 =

∑∞
l=1 γ

2
i – see Davis et al. (2003) for details. A similar calculation

for the binomial case is not available. Hence, in view of these theoretical constraints, the use
of the fixed effects fit seems a simple and sensible alternative to the conditional mean µ̂t given
by (20).

3.8. Distribution theory for likelihood estimation

For inference in the GLARMA model it is assumed that the central limit theorem holds so
that

δ̂
d≈ N(δ, Ω̂), (22)

where the approximate covariance matrix is estimated by

Ω̂ = −DNR(δ̂)−1 (23)

in the case of Newton-Raphson and similarly with DNR replaced by DFS in the case of Fisher
scoring. Thus a standard error for the maximum likelihood estimates of the ith component
of δ is computed using Ω̂1/2

ii .
There have been a number of claims in the literature concerning a central limit theorem for
models of this type. However all of these make assumptions concerning convergence of key
quantities which require ergodicity to be established which has not been done in generality
yet. The central limit theorem for the maximum likelihood parameter estimates is rigorously
established only in the stationary Poisson response case in Davis et al. (2003) and in the
Bernoulli stationary case in Streett (2000). Simulation results are also reported in Davis
et al. (1999, 2003) for non-stationary Poisson models. Other simulations not reported in the
literature support the supposition that the estimates δ̂ have a multivariate normal distribution
for large samples for a range of regression designs and for the various response distributions
considered here. Hence, while a central limit theorem for the maximum likelihood estimators
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is currently not available for the general model it seems plausible, since for these models the
log-likelihood is a sum of elements in a triangular array of martingale differences.
For nested models likelihood ratio test statistics and Wald statistics can be calculated. When-
ever the central limit theorem (22) holds an approximate chi-squared distribution with ap-
propriate degrees of freedom can be used to assess significance. Let δ(1) specify a subset of δ
that is hypothesized to take a specific value δ(1)

0 . The Wald test is constructed as

W 2 = [δ̂(1) − δ(1)
0 ]>[Ω̂(1)]−1[δ̂(1) − δ(1)

0 ], (24)

where Ω̂(1) is the submatrix corresponding to δ
(1)
0 of the estimated asymptotic covariance

matrix of (23). Further details on implementation of these tests in glarma are given in
Section 5.1.
Associated with testing of the need for GLARMA terms in the model is the use of residuals
to investigate serial dependence not accounted for by the model fitted so far. If the residuals
from a GLM fit (without GLARMA terms) are used to calculate estimated autocorrelations
and partial autocorrelations in the usual way then it is straightforward to show that, under
the conditions on the regressors as given in Davis and Wu (2009), these will be asymptotically
normally distributed with standard error given by the usual 1/

√
n. This provides the usual

95% intervals in the diagnostic plots provided in glarma. If the residuals are calculated after
fitting GLARMA terms in the model, then the asymptotic theory is not yet available to
establish the corresponding result. However the first author’s experience with simulations
suggests that the autocorrelations estimated using residuals from the GLARMA model fit
are asymptotically normal with the usual standard error. Because the residuals from an
adequately specified GLARMA model are martingale differences their autocorrelations at the
true parameters are uncorrelated with standard error 1/

√
n as usual. Asymptotic normality

of the estimated autocorrelations is also likely. Experience with simulations suggests that,
for example, the usual Box-Ljung portmanteau test for serial dependence has the correct
asymptotic chi-squared distribution.

3.9. Forecasting GLARMA models
Methods for forecasting future values of the observed time series using observation-driven
models are not as well developed as they are for the traditional ARMA or ARMAX mod-
els for continuous responses. The conditional specification of the observation-driven model
means that one-step ahead forecasts are simple. However for multi-step ahead forecasts the
conditional specification means that all possible future sample paths over the forecast horizon
need to be considered either theoretically or via simulation. We discuss these aspects here.
For one-step ahead forecasts of Yn+1 from the last observation at time point n, provided
values of the regressors xn+1 at time point n+1 are available either by knowledge or separate
forecasting, then the conditional distribution of Yn+1 may be forecast simply by forecasting
the state variable Wn+1. However, this can be done using the parameter estimates in the
observation-driven model. We illustrate this for the GLARMA model with similar formulae
applying for GARMA and BARMA models.

Ŵn+1 = x>n+1β̂ + Ẑn+1,

Ẑn+1 =
p∑
j=1

φ̂j(Ẑn+1−j + ên+1−j) +
q∑
j=1

θ̂j ên+1−j . (25)
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Note that Ẑn+1 can be completely determined using values of Ẑt and êt for t ≤ n. Then the
predictive distribution for Yn+1 is estimated to be f(y|Ŵn+1) where the density f is given
by (6). Obviously this estimated density provides a complete description of the forecast and
could be presented as a bar chart or features such as its mean, mode or median for a single
point forecast could be used. Additionally one could determine prediction intervals but due to
the discreteness of the distribution these will not correspond to commonly selected prediction
coverage probabilities such as 95% for example.
Multi-step ahead forecasts are more involved as has been noted by several authors. Rydberg
and Shephard (2003) give the following general formula which applies for lead times L > 1.

f(yn+L|Fn) =
∑
yn+1

· · ·
∑

yn+L−1

L∏
j=1

f(Yn+j |Fn+j)). (26)

Here the information sets Fn+j are defined to combine the actual information in Fn which is
available, knowledge of the regressors xn+1, . . . , xn+j and the values of yn+1, . . . , yn+j−1 used
in the summations on the right hand side of (26). The summation then is over all possible
projected sample paths over n + 1, . . . , n + L − 1, the number of which will grow at least
exponentially with L. The state variables Wn+j required to specify the conditional densities
in (26) need to be updated recursively. However the GLARMA updating equations are rapid
to compute. Rydberg and Shephard (2003) suggest that complete enumeration of the sums
and products is impossible and suggest either doing this by truncating the state space for
responses Yt (relevant in the Poisson and negative binomial cases) or by simulation.
The binomial, and particularly the binary case may be amenable to complete enumeration
and, indeed, such an approach is suggested in Kauppi and Saikkonen (2008). In the binary
case Startz (2008), Klingenberg (2008), and in an appendix Kauppi and Saikkonen (2008),
discuss implementation of (26) for binary dynamic models including the BARMA type struc-
ture and provide formulae for analogous terms on the right hand side by summing over all
possible paths of zeros and ones over the forecast period. For binary data this will provide
non-simulation based forecasts of the future probabilities of success conditional on available
data. Extension of this method to binomial, Poisson or negative binomial distributions will
be computationally and algebraically complex. Because of this, simulation is the approach
that has been implemented in the glarma package for all distributions currently supported.
Benjamin et al. (2003) also utilize the simulation approach and suggest that this is feasible
for short-range forecasting. Again they mention that the regressors need to be known in the
future or, if stochastic, are capable of being forecast.
Other recent work on forecasting includes McCabe, Martin, and Harris (2011), who study
multi-period ahead forecasts within the context of the integer autoregressive class of models,
and Freeland and McCabe (2004), for the Poisson autoregression model. These models are
not in the GLARMA class of models.

4. Modeling functions in glarma
There are seven modeling functions for fitting GLARMA models, falling into three groups:

Poisson: glarmaPoissonPearson() and glarmaPoissonScore().
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Binomial: glarmaBinomialIdentity(), glarmaBinomialPearson() and
glarmaBinomialScore().

Negative binomial: glarmaNegBinPearson() and glarmaNegBinScore().

The second component of the name indicates the distribution used for the counts and the third
component the residuals used in the fitting routine. A call to glarma() results in a call to the
appropriate fitting routine, as determined by the values of the arguments type and residuals
supplied to the glarma() call. Pearson residuals are used by default. Two iterative methods
are available for the optimization of the log-likelihood, Fisher scoring (method = "FS") and
Newton-Raphson (method = "NR"), the default method being Fisher scoring. The object
returned by any of the fitting routines is of class ‘glarma’.
To specify the model in a call to glarma(), the response variable is given by the argument
y, and the matrix of predictors for the regression part of the model is given by the argument
X. The matrix X must include a column of ones to enable the fitting of a mean term in
the regression component of the model. If required for Wt in (7), an offset term Ot must
be specified also. Initial values can be given for the coefficients in the regression component
using the argument beta. If no initial values are provided, a call is made to the corresponding
GLM to obtain initial regression coefficient values.
The ARMA component of the model is specified using the arguments phiLags and phiInit
(for the AR terms) and thetaLags and thetaInit (for the MA terms). For both the AR and
MA terms, the first argument of the pair of arguments specifies the orders of the lags which
are to be included in the model, and the second argument the initial values of the coefficients
for those lags.
When the counts are modeled using the negative binomial distribution, there is an additional
parameter, the shape parameter of the negative binomial, designated as α in the GLARMA
model. This parameter is called θ in the function glm.nb() from package MASS, but for
GLARMA models θ refers to the moving average terms in the ARMA component of the
model. An initial value for α can be provided using the argument alphaInit. If no initial
value is provided, a call is made to glm.nb() from MASS. An initial value for the call to
glm.nb() can be supplied by giving a value to the argument alpha of glarma(). The default
value for alpha is 1.
Because the GLARMA model is fitted using numerical non-linear optimization, it is possible
that non-convergence occurs. Two error codes are included in the object returned by glarma()
to alert users to numerical problems which occurred during fitting. If the Fisher scoring or
Newton-Raphson iterations fail to converge, errCode will be set to 1. This can result from
non-identifiability of the ARMA component of the model such as when the degrees and lags
of both the AR and MA components are specified to be the same, as discussed in Section 3.4.
It is possible that for certain values of the ARMA parameters the recursions calculating {Wt}
diverge to ±∞. In that case the value of WError will be set to 1 allowing the user to check
for this condition when the likelihood optimization fails to converge.
Once a fitted model object has been obtained, there are accessor functions available using S3
methods to extract the coefficients (coef(), or the alias coefficients()), the fitted values
(fitted() or the alias fitted.values()), the residuals (residuals() or the alias resid()),
the model frame (model.frame()), the number of observations (nobs()), the log-likelihood
(logLik()), and the AIC (extractAIC()). These are standard implementations of the meth-
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ods with the exception of coef(). This method takes an argument types which allows the
extraction of the ARMA coefficients (types = "ARMA"), or the regression coefficients (types
= "beta"), or both sets of coefficients (types = "all"), the default.
For an object of class ‘glarma’ the package includes S3 print, summary, and plot methods
as well as a print method for the object returned by summary.

5. Diagnostics

5.1. Likelihood ratio and Wald tests

In glarma, the likelihood ratio test and the Wald test both test that the serial dependence
parameters ψ = (φ>, θ>)> are all equal to zero (that is H0 : ψ = 0 versus Ha : ψ 6= 0). These
tests are provided by the function likTests(), which operates on an object of class ‘glarma’.
The likelihood ratio test compares the likelihood of the fitted GLARMA model with the
likelihood of the GLM model with the same regression structure. The same null hypothesis
applies to the Wald test, which is based on the Wald statistic defined in (24). Values of both
statistics are compared to the chi-squared distribution with degrees of freedom given by the
number of ARMA parameters. These degrees of freedom and associated chi-squared p values
are correct under the situations discussed in Section 3.4.
Package users may also construct their own tailor-made likelihood ratio tests by using the
reported log-likelihood (logLik()) for the two models under comparison and Wald tests W 2

in (24) using the appropriate submatrix of the reported estimated covariance matrix in (23)
available as glarmamod$cov.

5.2. Probability integral transformation

To examine the validity of the assumed distribution in the GLARMA model a number of
authors have suggested the use of the probability integral transformation (PIT), see for ex-
ample Czado, Gneiting, and Held (2009). Although PIT applies to continuous distributions
and the distributions in GLARMA models are discrete, Czado et al. (2009) have provided
a non-randomized approach which has been implemented in the glarma package. There are
four functions involved: glarmaPredProb() calculates conditional predictive probabilities;
glarmaPIT() calculates the non-randomized PIT; histPIT() plots a histogram of the PIT;
and qqPIT() draws a Q-Q plot of the PIT. If the distribution selected for the model is correct,
then the histogram and Q-Q plot should resemble the histogram and Q-Q plot obtained when
sampling from the uniform distribution on [0, 1]. Of the two plots, the histogram is generally
more revealing. Deviations from the expected form of the Q-Q plot are often difficult to
discern.
To calculate the conditional predictive probabilities and the PIT the following formulae from
Czado et al. (2009) are used. Given the counts {yt}, the conditional predictive probability
function F (t)(.|yt) is given by

F (t)(u|yt) =


0, u ≤ F (yt − 1),
u− F (yt − 1)

F (yt)− F (yt − 1) , F (yt − 1) ≤ u ≤ F (yt),

1, u > F (yt).

(27)
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Here F (yt) and F (yt− 1) are the upper and lower conditional predictive probabilities respec-
tively.
Then the non-randomized PIT is defined as

F̄ (u) = 1
n− 1

n∑
t=2

F (t)(u|yt). (28)

To draw the PIT histogram, the number of bins, I, is chosen, then the height of the ith bin
is

fi = F̄

(
i

I

)
− F̄

(
i− 1
I

)
. (29)

The default number of bins in histPIT() is 10. To help with assessment of the distribution,
a horizontal line is drawn on the histogram at height 1, representing the density function of
the uniform distribution on [0, 1].
The Q-Q plot of the PIT plots F̄ (u) against u, for u ∈ [0, 1]. The quantile function of the
uniform distribution on [0, 1] is also drawn on the plot for reference.
Jung and Tremayne (2011) employ the above diagnostics as well as the randomized version
of PIT residuals to compare alternative competing count time series models for several data
sets.
One can also define the normalized conditional (randomized) quantile residuals of Dunn and
Smyth (1996) as rt = Φ−1(ut) where Φ−1 is the inverse standard normal distribution function
and ut is a uniform random variable on the interval [F (yt − 1), F (Yt)] defined as in (27).
Benjamin et al. (2003) advocate the use of autocorrelation and partial autocorrelation function
and associated portmanteau statistics (e.g., the Box-Ljung statistic) of these rt to assess
the adequacy of the serial dependence components in a GARMA model. This idea can
easily be implemented using glarmaPredProb() described above. Earlier, Berkowitz (2001)
suggested using a likelihood ratio test that the rt are mean zero, variance one and independent
in particular and, more generally, for other ways in which dependence may not have been
modeled adequately.

5.3. Plots

The plot method for objects of class ‘glarma’ produces six plots by default: a time series plot
with the observed values of the dependent variable, the fixed effects fit, and the GLARMA
fit; a plot of the residuals against time; a histogram of the uniform PIT values; a histogram
of the normal randomized residuals; a Q-Q plot of the normal randomized residuals; and the
autocorrelation of the normal randomized residuals. Additional four plots can be produced:
the autocorrelation of the residuals; a Q-Q plot of the residuals; a Q-Q plot of the uniform
PIT values; and the partial autocorrelation of the normal randomized residuals. Any subset
of these ten plots can be obtained using the which argument. For example the default value
of which is set to which = c(1L, 3L, 5L, 7L, 8L, 9L). Arguments to the plot method are
also provided to change properties of the lines in these plots, namely line types, widths, and
colors.
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6. Examples
There are several example data sets included in the glarma package which cover binary,
binomial, Poisson and negative binomial responses. Sample analyses for all these data sets
are provided in either the help pages for the data sets or for the glarma() function.
GLARMA models with Poisson counts have appeared previously in the literature, however
analyses using the binomial and negative binomial distributions are novel, so we concentrate
on those cases in this section.

6.1. Asthma data

This data set arose from a single hospital (at Campbelltown), as part of a larger study into
the relationship between atmospheric pollution and the number of asthma cases presenting
at emergency departments in the South West region of Sydney, Australia, see Davis et al.
(2003). A description of the columns in the data set is given in Table 2.
We fit a model with a moving average term at lag 7 with negative binomial counts. The
initial values of the regression coefficients are found by fitting the corresponding GLM model,
and the initial value of the shape parameter, α, of the negative binomial distribution is taken
as 0. Pearson residuals are used and fitting is by Newton-Raphson.

R> library("glarma")
R> data("Asthma", package = "glarma")
R> y <- Asthma[, 1]
R> X <- as.matrix(Asthma[, 2:16])
R> glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",
+ alphaInit = 0, maxit = 100, grad = 1e-6)
R> glarmamod

Call: glarma(y = y, X = X, type = "NegBin", method = "NR", thetaLags = 7,
alphaInit = 0, maxit = 100, grad = 1e-06)

Negative Binomial Parameter:
alpha
37.19

Column Variable Description
1 Count Daily asthma counts.
2 Intercept Vector of 1s.
3 Sunday Dummy variable for Sundays.
4 Monday Dummy variable for Mondays.
5 CosAnnual cos(2πt/365), annual cosine term.
6 SinAnnual sin(2πt/365), annual sine term.
7 H7 Scaled, lagged and smoothed humidity.
8 NO2max Maximum daily nitrogen oxide.

9–16 T1.1990–T2.1993 Smooth shapes to capture school terms in each year.

Table 2: The asthma data set.
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GLARMA Coefficients:
theta_7
0.04392

Linear Model Coefficients:
Intercept Sunday Monday CosAnnual SinAnnual

0.58397 0.19455 0.22999 -0.21450 0.17728
H7 NO2max T1.1990 T2.1990 T1.1991

0.16843 -0.10404 0.19903 0.13087 0.08587
T2.1991 T1.1992 T2.1992 T1.1993 T2.1993
0.17082 0.25276 0.30572 0.43607 0.11412

Degrees of Freedom: 1460 Total (i.e. Null); 1444 Residual
Null Deviance: 1990
Residual Deviance: 1443
AIC: 4874

R> summary(glarmamod)

Call: glarma(y = y, X = X, type = "NegBin", method = "NR", thetaLags = 7,
alphaInit = 0, maxit = 100, grad = 1e-06)

Pearson Residuals:
Min 1Q Median 3Q Max

-1.849 -0.741 -0.175 0.609 6.178

Negative Binomial Parameter:
Estimate Std.Error z-ratio Pr(>|z|)

alpha 37.2 25.4 1.46 0.14

GLARMA Coefficients:
Estimate Std.Error z-ratio Pr(>|z|)

theta_7 0.0439 0.0194 2.27 0.023 *

Linear Model Coefficients:
Estimate Std.Error z-ratio Pr(>|z|)

Intercept 0.5840 0.0633 9.22 < 2e-16 ***
Sunday 0.1946 0.0576 3.38 0.00073 ***
Monday 0.2300 0.0564 4.08 4.6e-05 ***
CosAnnual -0.2145 0.0397 -5.41 6.3e-08 ***
SinAnnual 0.1773 0.0415 4.27 2.0e-05 ***
H7 0.1684 0.0563 2.99 0.00279 **
NO2max -0.1040 0.0339 -3.07 0.00216 **
T1.1990 0.1990 0.0585 3.41 0.00066 ***
T2.1990 0.1309 0.0590 2.22 0.02648 *
T1.1991 0.0859 0.0675 1.27 0.20306
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T2.1991 0.1708 0.0595 2.87 0.00410 **
T1.1992 0.2528 0.0567 4.46 8.2e-06 ***
T2.1992 0.3057 0.0510 5.99 2.1e-09 ***
T1.1993 0.4361 0.0523 8.33 < 2e-16 ***
T2.1993 0.1141 0.0627 1.82 0.06868 .

Null deviance: 1989.9 on 1460 degrees of freedom
Residual deviance: 1442.6 on 1444 degrees of freedom
AIC: 4874

Number of Newton Raphson iterations: 6

LRT and Wald Test:
Alternative hypothesis: model is a GLARMA process
Null hypothesis: model is a GLM with the same regression structure

Statistic p-value
LR Test 7.05 0.0079 **
Wald Test 5.15 0.0233 *
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We note that virtually all the regression terms in the model are significant, most being highly
significant. The moving average term is significant and both tests indicate that there is a need
to fit a GLARMA model rather than a simple GLM. The value of α is quite large, suggesting
that a Poisson model might provide adequate fit.
The plot method for an object of class ‘glarma’ shows six plots by default, as explained
previously. As an example, in Figure 1, we show just four of these plots. Since the default
title for the PIT histogram is too long for the available space we use the titles argument to
abbreviate it.

R> plot(glarmamod, which = c(1, 2, 3, 5),
+ titles = list(NULL, NULL, NULL, "PIT for GLARMA (Neg. Binomial)"))

The ACF plot indicates that the model has dealt adequately with any serial correlation
present, and the PIT histogram suggests that the negative binomial distribution provides a
suitable model for the counts.

6.2. Court conviction data
This data set records monthly counts of charges laid and convictions made in Local Court
and Higher Court in armed robbery in New South Wales, Australia, from 1995–2007, see
Dunsmuir, Tran, and Weatherburn (2008). A description of the columns in the data set is
given in Table 3.
The first step is to set up dummy variables for months.

R> data("RobberyConvict", package = "glarma")
R> datalen <- dim(RobberyConvict)[1]
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Figure 1: Diagnostic plots for the asthma model.

Column Variable Description
1 Date Date in month/year format.
2 Incpt Vector of 1s.
3 Trend Scaled time trend.
4 Step.2001 Step change from 2001 onwards.
5 Trend.2001 Change in trend from 2001 onwards.
6 HC.N Monthly number of cases, Higher Court.
7 HC.Y Monthly number of convictions, Higher Court.
8 HC.P Monthly proportion of convictions, Higher Court.
9 LC.N Monthly number of cases, Lower Court.
10 LC.Y Monthly number of convictions, Lower Court.
11 LC.P Monthly proportion of convictions, Lower Court.

Table 3: The court conviction data set.

R> monthmat <- matrix(0, nrow = datalen, ncol = 12)
R> months <- unique(months(strptime(RobberyConvict$Date,
+ format = "%m/%d/%Y"), abbreviate = TRUE))
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R> dimnames(monthmat) <- list(NULL, months)
R> for (j in 1:12) {
+ monthmat[months(strptime(RobberyConvict$Date, "%m/%d/%Y"),
+ abbreviate = TRUE) == months[j], j] <-1
+ }
R> RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)

Similar analyses can be carried out for both the Lower Court and the Higher Court data.
Here we consider only the Lower Court data. The ARIMA component of the model is chosen
to be AR(1) and the model for the conviction counts is binomial. A GLM is fitted first to
obtain an initial value for the regression coefficients. The initial value of the AR parameter
is set at 0. Pearson residuals are used with Newton-Raphson iteration.
First of all the data is prepared for fitting a binomial and the initial GLM fit is obtained.

R> y1 <- RobberyConvict$LC.Y; n1 <- RobberyConvict$LC.N
R> Y <- cbind(y1, n1 - y1)
R> head(Y, 5)

y1
[1,] 3 9
[2,] 3 8
[3,] 6 9
[4,] 6 9
[5,] 6 5

R> glm.LCRobbery <- glm(Y ~ Step.2001 +
+ I(Feb + Mar + Apr + May + Jun + Jul) + I(Aug + Sep + Oct + Nov + Dec),
+ data = RobberyConvict, family = binomial(link = logit),
+ na.action = na.omit, x = TRUE)
R> summary(glm.LCRobbery, corr = FALSE)

Call:
glm(formula = Y ~ Step.2001 + I(Feb + Mar + Apr + May + Jun +

Jul) + I(Aug + Sep + Oct + Nov + Dec), family = binomial(link = logit),
data = RobberyConvict, na.action = na.omit, x = TRUE)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.543 -0.898 0.168 0.801 2.650

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2568 0.1561 -1.65 0.0998 .
Step.2001 0.8232 0.0813 10.12 <2e-16 ***
I(Feb + Mar + Apr + May + Jun + Jul) -0.3723 0.1619 -2.30 0.0215 *
I(Aug + Sep + Oct + Nov + Dec) -0.5007 0.1655 -3.03 0.0025 **
---
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Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 327.48 on 149 degrees of freedom
Residual deviance: 212.12 on 146 degrees of freedom
AIC: 684.8

Number of Fisher Scoring iterations: 4

Then the GLARMA model is fitted.

R> X <- glm.LCRobbery$x
R> colnames(X)[3:4] <- c("Feb-Jul", "Aug-Dec")
R> head(X, 5)

(Intercept) Step.2001 Feb-Jul Aug-Dec
1 1 0 0 0
2 1 0 1 0
3 1 0 1 0
4 1 0 1 0
5 1 0 1 0

R> glarmamod <- glarma(Y, X, phiLags = 1, type = "Bin", method = "NR",
+ maxit = 100, grad = 1e-6)
R> summary(glarmamod)

Call: glarma(y = Y, X = X, type = "Bin", method = "NR", phiLags = 1,
maxit = 100, grad = 1e-06)

Pearson Residuals:
Min 1Q Median 3Q Max

-2.446 -0.816 0.134 0.730 2.480

GLARMA Coefficients:
Estimate Std.Error z-ratio Pr(>|z|)

phi_1 0.0818 0.0330 2.48 0.013 *

Linear Model Coefficients:
Estimate Std.Error z-ratio Pr(>|z|)

(Intercept) -0.2747 0.1571 -1.75 0.0804 .
Step.2001 0.8220 0.0957 8.59 <2e-16 ***
Feb-Jul -0.3568 0.1598 -2.23 0.0256 *
Aug-Dec -0.5004 0.1633 -3.06 0.0022 **

Null deviance: 327.48 on 149 degrees of freedom
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Residual deviance: 198.91 on 145 degrees of freedom
AIC: 680.7

Number of Newton Raphson iterations: 4

LRT and Wald Test:
Alternative hypothesis: model is a GLARMA process
Null hypothesis: model is a GLM with the same regression structure

Statistic p-value
LR Test 6.11 0.013 *
Wald Test 6.14 0.013 *
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We observe that the regression coefficients for the GLARMA model are quite similar to those
for the GLM model. In particular, the step change in 2001 is highly significant. The likelihood
ratio and Wald tests both suggest the need to deal with autocorrelation. Figure 2 is produced
using plot(glarmamod).
In these diagnostic plots, the ACF plot of the randomized residuals shows little residual
autocorrelation, and the Q-Q plot of the randomized residuals shows reasonable conformity
with normality. However the PIT histogram suggests that the binomial model for the counts
is not appropriate for this data.

6.3. Example of diagnostics based on normalized randomized residuals

We illustrate the normalized randomized quantile residuals on the court conviction data below.
The function normRandPIT() produces the randomized PIT residuals.
Figure 3 shows the utility of these residuals when the serial dependence term is omitted from
the model. We first fit the model and obtain the randomized residuals.

R> glarmamod <- glarma(Y, X, type = "Bin", method = "NR", maxit = 100,
+ grad = 1e-6)
R> rt <- normRandPIT(glarmamod)$rt

Figure 3 is produced using plot(glarmamod, which = 7:10).
The Box-Ljung portmanteau test results are:

R> Box.test(rt, lag = 12, type = "Ljung-Box", fitdf = 0)

Box-Ljung test

data: rt
X-squared = 24.498, df = 12, p-value = 0.01739
R> Box.test(glarmamod$residuals, lag = 12, type = "Ljung-Box", fitdf = 0)

Box-Ljung test
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Figure 2: Diagnostic plots for the court conviction model.

data: glarmamod$residuals
X-squared = 23.16, df = 12, p-value = 0.02636
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Figure 3: Diagnostic plots for the court conviction model.

6.4. Example of forecasting with GLARMA models
Forecasting for GLARMA models is implemented in the glarma package via the forecast
method for ‘glarma’ objects. In the following example we first produce a series of one-step
ahead forecasts of µt and plot them along with the estimated values of µt obtained by using
all the data. We first obtain the estimates and predicted values.

R> library("zoo")

Loading required package: zoo

Attaching package: "zoo"

The following objects are masked from "package:base":

as.Date, as.Date.numeric

R> data("DriverDeaths", package = "glarma")
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R> y <- DriverDeaths[, "Deaths"]
R> X <- as.matrix(DriverDeaths[, 2:5])
R> Population <- DriverDeaths[, "Population"]
R> glarmamod <- glarma(y, X, offset = log(Population/100000),
+ phiLags = 12, thetaLags = 1, type = "Poi", method = "FS",
+ residuals = "Pearson", maxit = 100, grad = 1e-6)
R> allX <- X
R> allFits <- fitted(glarmamod)
R> ally <- y
R> forecasts <- numeric(72)
R> for (i in 62:71) {
+ y <- DriverDeaths[1:i, "Deaths"]
+ X <- as.matrix(DriverDeaths[1:i, 2:5])
+ Population <- DriverDeaths[1:i, "Population"]
+ glarmamod <- glarma(y, X, offset = log(Population/100000),
+ phiLags = 12, thetaLags = 1, type = "Poi", method = "FS",
+ residuals = "Pearson", maxit = 100, grad = 1e-6)
+ XT1 <- matrix(allX[i + 1, ], nrow = 1)
+ offsetT1 <- log(DriverDeaths$Population[i + 1]/100000)
+ mu <- forecast(glarmamod, 1, XT1, offsetT1)$mu
+ if (i == 62) {
+ forecasts[1:62] <- fitted(glarmamod)
+ }
+ forecasts[i+1] <- mu
+ }

Next we produce the plot shown in Figure 4. The code to produce the plot is not shown, but
can be found in the supplementary material.
For forecasting more than one-step ahead, sampling is required as explained previously. We
continue the example above by producing a sample of possible values of µt for the last time
period obtained by predicting two steps ahead.

R> glarmamod <- glarma(y[1:70], X[1:70, ],
+ offset = log(Population/100000)[1:70], phiLags = 12, thetaLags = 1,
+ type = "Poi", method = "FS", residuals = "Pearson", maxit = 100,
+ grad = 1e-6)
R> nObs <- NROW(X)
R> n.ahead <- 2
R> XT1 <- as.matrix(X[(nObs - n.ahead + 1):nObs, ])
R> offsetT1 <- log(Population/100000)[(nObs - n.ahead + 1):nObs]
R> nSims <- 500
R> forecastMu <- forecastY <- matrix(ncol = n.ahead, nrow = nSims)
R> for (i in 1:nSims) {
+ temp <- forecast(glarmamod, n.ahead, XT1, offsetT1)
+ forecastY[i, ] <- temp$Y
+ forecastMu[i, ] <- temp$mu
+ }
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Figure 4: Successive one-step ahead predictions for driver deaths.

R> table(forecastY[, 2])

0 1 2 3 4 5 6 7 8
54 129 131 93 53 22 12 5 1

The distribution of the sample values is shown in Figure 5. The code to produce the plot is
not shown.

7. Other packages for observation-driven models
A number of other packages on CRAN are available which use various approaches to fit
observation-driven models for the type of data modeled using the glarma package. We here
discuss the packages detected using searches for functions via the package sos Graves, Dorai-
Raj, and Francois (2013). The keywords used for these searches were “GLARMA”, “GARMA”
and “polio”, the last of these because the polio data set of Zeger (1988) is the classical example
considered by most researchers concerned with analyzing this type of data.
Searching using the keyword “GLARMA” only produced references to the glarma package.
Searching using the keyword “GARMA” produced references to the packages VGAM (Yee
and Wild 1996; Yee 2010, 2015), gamlss.util (Stasinopoulos, Rigby, and Eilers 2015) and
gsarima (Briet 2014).
VGAM has a function garma() which fits a GARMA model. The help file indicates that
the current version of the function is only a preliminary version, viz “Currently, this function
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Figure 5: Distribution of sample values from forecasting two steps ahead.

is rudimentary and can handle only certain continuous, count and binary responses only”.
Also “This function is unpolished and is (sic) requires lots of improvements. In particular,
initialization is very poor. Results appear very sensitive to quality of initial values.” Fitting
is by Fisher scoring, and Pearson residuals are produced. There is no plot method. One
example is given, the interspike data from Zeger and Qaqish (1988) and the model fitted is
an AR(2), with no regression component other than the overall mean.
The package gamlss.util, which is an extension to gamlss (Rigby and Stasinopoulos 2005;
Stasinopoulos and Rigby 2007) has a garmaFit() function. As an example the Polio data of
Zeger (1988) is modeled. The word “GARMA” does not appear in the main references to the
gamlss package, so further information about the function must be sought in Benjamin et al.
(2003) and the code of the function itself. The work in Benjamin et al. (2003) has already
been discussed.
The garmaFit() function has no offset argument, although it seems that an offset can be
included using the formula specification of the model. The ARMA specification only allows
for specification of the maximum AR and MA orders, so specifying that the model has MA
terms 1, 2 and 5 only (as in the GLARMA polio analysis) does not appear possible. The range
of possible response distributions is large and different link functions can also be used. The
residuals used are identity residuals. There are print, summary, fitted, coef, residuals,
update, plot, deviance, and formulamethods for the object returned by garmaFit(). There
is a predict method, but the help page states it is under development. Overall the function
garmaFit() and associated methods provide a useful modeling capability, although we have
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misgivings about the methodology, as we have outlined in Section 3.
The package gsarima only provides code for simulating some GLMs which have an autore-
gressive component.
Searching on “polio” produced two further packages on CRAN which analyze the polio data:
acp (autoregressive conditional Poisson, Vasileios 2015); and gcmr (Gaussian copula marginal
regression, Masarotto and Varin 2015). The theory behind these two packages may be found
in Heinen (2003) and Masarotto and Varin (2012), respectively. A further package found
in this search was mr (marginal regression, Masarotto and Varin 2010). This package is
archived, but appears to have been superseded by gcmr.
Heinen (2003) only deals with the ARMA(1,1) structure for modeling the lack of indepen-
dence. Besides the Poisson distribution, two versions of the double Poisson distribution are
considered for the marginal distribution of the counts. Heinen (2003) also examines mod-
els where the variance has an ARMA(1,1) structure. There are examples in the paper for
these models, but package acp only fits the ACP model, not the double Poisson or other
enhancements.
Masarotto and Varin (2012) use multivariate Gaussian copula regression to model GLMs with
time series errors. They use maximum likelihood to fit the parameters of their models but
due to the complexity of their approach, a Monte Carlo approximation of the likelihood with
importance sampling is used for model fitting. In the package gcmr fitting uses the function
gcmr(). There are diagnostics for the model available, including examination of the residuals.
Analysis of the polio data is carried out as an example for the package capability. The model
specification only allows for all lag orders to be included when errors with given orders are
specified. Marginal distributions can be beta, binomial, gamma, normal, negative binomial,
Poisson or Weibull.

8. Future enhancements and applications
The glarma package can be further developed to expand the range of response distributions
and forms of state equation. In relation to the state equation the development of transfer
function type models (along the lines of Box, Jenkins, and Reinsel 2013) and the inclusion
of intervention models would require replacing the linear regression component x>t β by a
transfer function which is non-linear in the parameters. Such an enhancement would create
useful models for policy assessment in fields such as criminology.
As regards increasing the range of response distributions available three suggest themselves
as being of considerable practical utility. The first is the gamma response (for continuous
outcomes) or the generalized gamma. These distributions would allow modeling durations
between events as arise in financial modeling. We have developed the GLARMA methods
for these which, however, are currently not implemented in the glarma package but could
be easily enough. The second is inclusion of zero-inflated distributions. This could currently
be accommodated to a limited extent by modeling the probability of a zero occurring with
a binary process and then modeling the probability of a positive response with a separate
count distribution. The model could be conditionally specified in a similar vein to that used
for model transaction level stock price movements as in Rydberg and Shephard (2003). A
more general model would require both the zero-inflated component and the count response
component to be modeled jointly in terms of possibly coupled state equations or bivariate
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state equations. This would require a substantial additional development of the current
glarma package.
The third is the multinomial response distribution which would be useful in financial modeling
with, for example, the hurdle model used in Liesenfeld, Nolte, and Pohlmeier (2006) and
in modeling listener responses to music as in Dean, Bailes, and Dunsmuir (2014). Again
development of this in a complete way would require a multivariate state equation to be used
and this would, as in the zero-inflated case, require substantial development.
The glarma package has already been utilized in modeling multiple independent time series
of binary responses (Dean et al. 2014) and in modeling the impact of changes in legal blood
alcohol levels on driver deaths (Dunsmuir 2015). Data sets of this type, which we call “long
longitudinal data”, are increasingly needed to be analyzed. Dunsmuir (2015) outlines a fixed
effects approach and a random effects approach (random effects being used to explain differ-
ences between regression parameters in the individual series). Currently to implement these
additional R code is required, but it is planned to make this available in future releases of the
glarma package.
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