Journal of Statistical Software

October 2015, Volume 67, Issue 10. doi: 10.18687/jss.v0617.i10

Bayesian State-Space Modelling on
High-Performance Hardware Using LibBi

Lawrence M. Murray
University of Oxford

Abstract

LibBi is a software package for state space modelling and Bayesian inference on mod-
ern computer hardware, including multi-core central processing units, many-core graphics
processing units, and distributed-memory clusters of such devices. The software parses
a domain-specific language for model specification, then optimizes, generates, compiles
and runs code for the given model, inference method and hardware platform. In pre-
senting the software, this work serves as an introduction to state space models and the
specialized methods developed for Bayesian inference with them. The focus is on sequen-
tial Monte Carlo (SMC) methods such as the particle filter for state estimation, and the
particle Markov chain Monte Carlo and SMC? methods for parameter estimation. All
are well-suited to current computer hardware. Two examples are given and developed
throughout, one a linear three-element windkessel model of the human arterial system,
the other a nonlinear Lorenz ’96 model. These are specified in the prescribed modelling
language, and LibBi demonstrated by performing inference with them. Empirical results
are presented, including a performance comparison of the software with different hardware
configurations.

Keywords: Bayesian hierarchical modelling, state space modelling, sequential Monte Carlo,
particle Markov chain Monte Carlo, LibBi.

1. Introduction

State space models (SSMs) have important applications in the study of physical, chemical
and biological processes. Examples are numerous, but include marine biogeochemistry (Dowd
2006; Jones, Parslow, and Murray 2010; Dowd 2011; Parslow, Cressie, Campbell, Jones, and
Murray 2013), ecological population dynamics (Wikle 2003; Newman, Ferndndez, Thomas,
and Buckland 2009; Peters, Hosack, and Hayes 2011; Hosack, Peters, Hayes, and R. 2012),
Functional Magnetic Resonance Imaging (Riera et al. 2004; Murray and Storkey 2008, 2011),

http://dx.doi.org/10.18637/jss.v067.i10

2 High-Performance Bayesian State-Space Modelling Using LibBi

biochemistry (Golightly and Wilkinson 2008, 2011) and object tracking (Vo and Ma 2006).
They are particularly useful for modelling uncertainties in the parameters, states and obser-
vations of such processes, and particularly successful where a rigorous probabilistic treatment
of these uncertainties leads to improved scientific insight or risk-informed decision making.

SSMs can be interpreted as a special class within the more general class of Bayesian hier-
archical models (BHMs). For a given data set, existing methods for inference with BHMs,
such as Gibbs sampling (Geman and Geman 1984) or Hamiltonian Monte Carlo (HMC, Neal
2011), might be applied. However, specialist machinery for SSMs has been developed to bet-
ter deal with peculiarities typical of models in the class: nonlinearity, multiple modality, prior
densities without closed form that cannot be evaluated pointwise, and significant correlations
between state variables and parameters. Variants of sequential Monte Carlo (SMC, Doucet,
Freitas, and Gordon 2001) are particularly attractive, including particle Markov chain Monte
Carlo (PMCMC, Andrieu, Doucet, and Holenstein 2010) and SMC? (Chopin, Jacob, and Pa-
paspiliopoulos 2013). These methods have two particularly pragmatic qualities: they admit
a wide range of SSMs, including nonlinear and non-Gaussian models, without approximation
bias, and they are well-suited to recent, highly parallel computer architectures (Lee, Yau,
Giles, Doucet, and Holmes 2010).

Commodity computing hardware has evolved from the monoculture of x86 CPUs in the 1990s
to the ecosystem of diverse desktop central processing units (CPUs), mobile processors and
specialist graphics processing units (GPUs) of today. Adding to the challenge since 2004 is
that Moore’s Law, as applied to computing performance, has been upheld not by increasing
clock speed, but by broadening parallelism (Sutter 2005). This should not be understood
as a passing fad, nor a deliberate design choice for modern applications, but as a necessity
enforced by physical limits, the most critical of which is energy consumption (Ross 2008).
Thus, while architectures continue to change, their reliance on parallelism is unlikely to, at
least in the foreseeable future. The implication for statistical computing is clear: in order to
make best use of current and future architectures, algorithms must be parallelized. On this
criterion, SMC methods are a good fit.

Given these specialized methods for SSMs, it is appropriate that specialized software be avail-
able also. LibBi (Murray 2013) is such a package. Nominally, the name is a contraction of
“Library for Bayesian inference”, and pronounced “Libby”. Its design goals are accessibility
and speed. It accepts SSMs specified in its own domain-specific modelling language, which
is parsed and optimized to generate and compile C+4 code for the execution of inference
methods. The code exploits technologies for SIMD (Single Instruction Multiple Data) vector
operations including SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Exten-
sions), multithreading with OpenMP for shared-memory parallelism, MPI for distributed-
memory parallelism, and CUDA for GPU parallelism. The user interacts with the package
via a command-line interface, with input and output files handled in the standard NetCDF
format, based on the high-performance HDF5.

This work serves as a brief introduction to SSMs, appropriate Bayesian inference methods
for them, the modern computing context, and the consideration of all three in LibBi. The
material is presented in three parts: Section 2 introduces SSMs as a special class of BHMs;
Section 3 provides specialist methods for inference with the class; Section 4 provides technical
information on LibBi itself. Two examples are developed throughout. At the end of Section 2,
these examples are developed as SSMs and specified in the LibBi modelling language. At the
end of Section 3, posterior distributions are obtained for each model conditioned on simulated

Journal of Statistical Software 3

data sets, using the methods presented. In Section 4, the performance of LibBi on various
hardware platforms is compared. Section 5 summarizes results. Section 6 provides information
on available supplementary materials to reproduce the example results throughout this work.

2. State space models

State space models (SSMs) are suitable for modelling dynamical systems that have been
observed at one or more instances in time. They consist of parameters @ € RN, a la-
tent continuous- or discrete-time state process X(t) € Rz, and an observed continuous- or
discrete-time process Y (t) € RVv. A starting time is given by ¢, and an ordered sequence of
observation times by ti,...,tr.

The most general BHM over these random variables admits a joint density of the form:

p (Y (trr), X(tor), ®) = p(X(to.r), ®) p (Y (tr.r)X(tor), ©) (1)

joint prior likelihood

The SSM class can be considered a specialization of the general BHM class. It imposes the
Markov property on the state process X(t), and at each time ¢; permits the observation Y (¢;)
to depend only on parameters ® and the state X(¢;). Formally, the joint density takes the
form:

p (Y (trr), X(to.r), ©)

joint
= (C))|®))| X (¢ S C])
= p(®) p(X(to)] Hp ti)| X (ti-1), ©) Hp (t:),©) |
—— _v_/
parameter initial transition observation

prior likelihood

also depicted as a graphical model in Figure 1. The prior density is factored into a parameter
density, an initial state density, and a product of one or more transition densities. The
likelihood function is given as a product of observation densities. Specific models in the
class may, of course, exploit further conditional independencies and so introduce additional
hierarchical structure. This is demonstrated in the examples that follow.

2.1. Examples

Two example SSMs are introduced here. The first is a linear three-element windkessel model
of arterial blood pressure (Westerhof, Lankhaar, and Westerhof 2009), the second a nonlinear
eight-dimensional Lorenz 96 model of chaotic atmospheric processes (Lorenz 2006). In each
case the original deterministic model is introduced, then stochasticity added, and a prior
distribution over parameters specified, to massage it into the SSM framework.

Windkessel model

A windkessel model can be used to relate blood pressure and blood flow in the human ar-
terial system (Westerhof et al. 2009). The simplest two-element windkessel (Frank 1899) is
physically inspired: it couples a pump (the heart) and a chamber (the arterial system), with

4 High-Performance Bayesian State-Space Modelling Using LibBi

)

@@

X(t,)

Figure 1: The state space model, with parameters ©, latent Markov state process X(to.7)
and observation process Y (t1.7).

z Po(t)
P.(t) C == R§ P.(t) C == R§
F(t) F(t)
S S

0, O

Figure 2: Windkessel models represented as circuit diagrams, (left) two-element, and (right)
three-element. P,(t) gives aortal pressure and P,(t) peripheral pressure. F(t) gives blood
flow.

fluid (blood) flowing from the pump to the chamber, and returning via a closed loop. Air in
the chamber is compressed according to the volume of fluid (analogous to the compliance of
arteries).

The two-element windkessel model is commonly represented as an RC circuit as in Figure 2
(left). Voltage models blood pressure and current blood flow. A resistor models narrowing
vessel width in the periphery of the arterial system, and a capacitor the compliance of arteries.

The equations of the two-element windkessel are readily derived from circuit theory applied
to Figure 2 (left), see Kind, Faes, Lankhaar, Vonk-Noordegraaf, and Verhaegen (2010):

1 dP,(t)

—P,(t) + C—2—2 = F(t).
This is a linear differential equation. Assuming a discrete time step At and constant flow
F(t) over the interval [t,t + At), it may be solved analytically to give:

At At
Py(t + At) = exp <—RC) Py(t)+ R (1 — exp (—RC)) F). 3)

The two-element windkessel captures blood pressure changes during diastole (heart dilatation)
well, but not during systole (heart contraction), see Westerhof et al. (2009). An improvement

Journal of Statistical Software

is the three-element windkessel in Figure 2 (right), which introduces additional impedence
from the aortic valve. Again using circuit theory, aortal pressure, P,, may be related to
peripheral pressure, P,, by (Kind et al. 2010):

P,(t) = Py(t) + F(t)Z. (4)

The three-element windkessel is adopted henceforth. Blood flow, F(t), would usually be
measured, but for demonstrative purposes it is simply prescribed the following functional
form:

s a2 it .
Ft) = {Fmax sin <T5+Td) if mod(t,Ts + Ty) € [0, Ts] 5

0 if mod(t,Ts + Ty) € (Ts, Ts + Ty),

where Fax = 500ml s™! gives maximum flow, Ty = 0.3 s is time spent in systole, Ty = 0.5s
is time spent in diastole, with mod(z,y) giving the non-integer part of xz/y. This models
quickly increasing then decreasing blood flow during systole, and no flow during diastole.
The function is discretized to time steps of At and held constant in between.

An SSM can be constructed around the above equations. Input F'(t) is prescribed as above,
and a Gaussian noise term ¢(t) of zero mean and variance o is introduced to extend the state
process from deterministic to stochastic behavior (details below). The SSM has parameters
® = (R,C. Z, 02)T, state X(t) = P,(t) and observation Y (t) = P,(t). The time step is fixed
to At =102

The complete model is specified in the LibBi modelling language in Figure 3. The specification
begins with a model statement to name the model. It proceeds with the time step size declared
on line 5 as a constant value. Following this, the four parameters of the model, R (R), C (C),
Z (Z) and sigma2 (0?) are declared on lines 7-10, the input F (F(t)) on line 11, the noise
term xi (£(¢)) on line 12, the state variable Pp (P,(t)) on line 13, and the observation Pa
(P,(t)) on line 14.

Recall (2), which gives the general joint distribution of an SSM. The specific joint distribution
for this SSM is:

p(Pa(tlzT)a Pp(tO:T)a Ra C? 27 0-2) = p(R)p(C)p(Z)p(O‘Q) p(Pp(tO))

joint parameter initial

Hp (t)|Py(ti1). R, C.0”, F(t;1)) Hp (1), Z, F(t; 1)) | - (6)

transition observation

Following the variable declarations in Figure 3 are four blocks, declared using the sub keyword,
each with the same name as, and describing the form of, one of the factors in (6). The prior
distribution over parameters is given by:

R ~ GAMMA(2,0.9)

~ GAMMA(2,1.5)

~ GAMMA(2,0.03)

o® ~ INv-GAMMA(2,500000),

N Q

)

described in the parameter block on lines 16-21 of Figure 3. The hyperparameters of these
distributions are guided by Kind et al. (2010). The prior distribution over the initial state is

6 High-Performance Bayesian State-Space Modelling Using LibBi

Windkessel.bi

1 /*x
2 * Three-element Windkessel model.
3 ¥/

4 model Windkessel {

5 const h = 0.01 // time step (s)

6

7 param R // peripheral resistance, mm Hg (ml s**-1)**-1
8 param C // arterial compliance, ml (mm Hg)**-1
9 param Z // characteristic impedence, mm Hg s ml**-1
10 param sigma2 // process noise variance, (mm Hg)**2
11 input F // aortic flow, ml s**-1

12 noise xi // noise, ml s**-1

13 state Pp // peripheral pressure, mm Hg

14 obs Pa // observed aortic pressure, mm Hg

15

16 sub parameter {

17 R ~ gamma(2.0, 0.9)

18 C ~ gamma(2.0, 1.5)

19 Z ~ gamma(2.0, 0.03)

20 sigma2 ~ inverse_gamma(2.0, 500000.0)

21}

22

23 sub initial {

24 Pp ~ gaussian(90.0, 15.0)

25 }

26

27 sub transition(delta = h) {

28 xi ~ gaussian(0.0, sqrt(h*sigma?2))

29 Pp <- exp(~h/(R*C))*Pp + R*(1.0 - exp(-h/(R*C)))*(F + xi)
30 %

31

32 sub observation {

33 Pa ~ gaussian(Pp + ZxF, 2.0)

34 }

35

36 sub proposal_parameter {

37 R ~ truncated_gaussian(R, 0.03, lower = 0.0)

38 C ~ truncated_gaussian(C, 0.1, lower = 0.0)

39 Z ~ truncated_gaussian(Z, 0.002, lower = 0.0)

40 sigma2 ~ inverse_gamma(2.0, 3.0*sigma2)

41}

42 }

Figure 3: The windkessel SSM specified in the LibBi modelling language.

Journal of Statistical Software 7

given by:
P,(to) ~ N(90,15),

where the second argument is the standard deviation. This is described in the initial block
on lines 23-25 of Figure 3. The transition model is a stochastic extension of (3). This use
of stochasticity might be interpreted as representing some uncertainty in the formulation of
the model given the biological phenomena it is meant to represent. The noise term £(t) is
introduced additively to blood flow, F'(t):

Py(t + At) = exp (ﬁé) Py(t) + R <1 ~ exp <§é)> (F(t) +£(1)).

This form is described in the transition block on lines 27-30 of Figure 3. The observation
model is based on (4), with additional noise:

Pu(t) ~ N(P,(t) + ZF(t),2).

This is described in the observation block on lines 32-34 of Figure 3.

One additional block is specified for the windkessel model. This is the proposal_parameter
block on lines 36—41. It gives the proposal distribution over parameters that is used during
marginal Metropolis-Hastings sampling, described in Section 3.2.

Note that the input F does not appear on the left side in any block. Instead, as an input
variable, its value at each time is drawn from an input file. This is prepared in advance from
(5) as a NetCDF file.

Lorenz 96 model

Lorenz '96 models are useful for the simulation of some important atmospheric processes (Lorenz
2006). They can be challenging to handle, owing to chaotic behavior in most regimes. An
N-dimensional Lorenz ’96 model over the vector x € RY is given by the ordinary differential
equations (ODEs):

dxy,

dt
where indices into x are taken to be cyclic, so that x,,_n =z, = xp+n. F acts as a constant
forcing term that induces various behaviors ranging from decay, to periodicity, to chaos. The
bifurcation diagram of this deterministic system is given in Figure 4 (left). A deterministic
model such as this is inappropriate for the SSM framework. To derive a suitable stochastic
model, the ODEs of (7) can be converted to stochastic differential equations (SDEs):

= xn—l(xn-‘rl - xn—2) —Zp+ F7 (7)

dXn = (Xn-1(Xnp1 — Xn—2) = X + F) dt + o dW,. (8)

Each W,, represents a standard Wiener process (Gardiner 2004, §3.8.1), and o is a param-
eter used to scale these. As the diffusion term is additive the SDEs may be interpreted
equivalently (Kloeden and Platen 1992, p157) in either the It6 (Gardiner 2004, §4.2.1) or
Stratonovich (Gardiner 2004, §4.2.3) sense. The bifurcation diagram of this stochastic sys-
tem is given in Figure 4 (right).

There is no analytical solution to integrate either the ODEs or SDEs to obtain a form for
Xp,; they must be integrated numerically. For the deterministic model, Lorenz (2006) uses a

8 High-Performance Bayesian State-Space Modelling Using LibBi

Deterministic Stochastic

Figure 4: Density of the state variables x relative to the forcing parameter F' in an eight-
dimensional Lorenz ’96 model. Densities are rescaled by column, to reveal the bifurcation of
(left) the original deterministic model and (right) the modified stochastic model with state
marginalized over o?. Note the way that decay behavior at 0 < F < 1 yields to periodic
behavior for F' > 1, and eventually to chaotic behavior. The prescribed prior distribution
F ~ U(8,12) places the state space model firmly within the chaotic regime.

fixed step-size At and classic O(At*) Runge-Kutta scheme. The same scheme yields a solu-
tion (Milstein and Tretyakov 2004) for the stochastic model by substituting the derivatives:
dx,

o Tn—1(Tp41 — Tn—2) —Tn + F+0

n
At 7
where each noise term AW, ~ N(0,v/At) is an increment of the Wiener process over the
time step of size At. This corresponds to a numerical solution to the SDEs (8) with strong
order O(At), with the additional advantage that, for small noise, it approaches the O(At%)
deterministic solution®.

The SSM consists of two parameters, @ = (F,0?), along with a state vector x(¢) and
observation vector y(t), both of length 8. The complete model is specified in the LibBi
modelling language in Figure 5.

In Figure 5, a dimension named n, of size 8, is first declared on line 5. It is given a cyclic

boundary condition, recalling that, in (7), indices are interpreted cyclically. The two param-
eters of the model, F (F) and sigma2 (02) are then declared on lines 9-10, the state vector

!The scheme corresponds to that of (2.8) in Section 3.2.2 of Milstein and Tretyakov (2004). As noted on p.
185 of that work, for a system with additive noise scaled by some small ¢, the scheme has strong order (mean
squared error) O(At* 4+ eAt). While equivalent to O(At) in general, this can be close to O(At?) if € is small.

Journal of Statistical Software

Lorenz96.bi

1 />/<>/<

2
3
4 m
5

© 00 N O

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

* Lorenz "96 model.

*/
odel Lorenz96 {
dim n(size = 8, boundary = ’cyclic’)

const h = 0.05 // step size

param F // forcing

param sigma2 // diffusion variance

state x[n] // state variables

noise deltaW[n] // Wiener process increments
obs y[n] // observations

sub parameter {
F ~ uniform(8.0, 12.0)
sigma2 ~ inverse_gamma(2.0, 0.9)

}

sub initial {
x[n] ~ uniform(-1.0, 3.0)
}

sub transition(delta = h) {
deltaW[n] ~ wiener()
ode(h = h, alg = ’RK4’) {
dx[n]/dt = x[n-11*(x[n+1] - x[n-2]) - x[n] + F +
sqrt (sigma?2)*deltaW[n] /h

sub observation {
y[n] ~ normal(x[n], 0.5)
}

sub proposal_parameter {
F ~ truncated_gaussian(F, 0.1, 8.0, 12.0);
sigma2 ~ inverse_gamma(2.0, 3.0%*sigma2)

3

sub proposal_initial {
x[n] ~ truncated_gaussian(x[n], 0.1, -1.0, 3.0)
}

Figure 5: The Lorenz '96 SSM specified in the LibBi modelling language.

10 High-Performance Bayesian State-Space Modelling Using LibBi

x (x(t)) on line 11, the noise vector deltaW (AW(¢)) on line 12, and the observation vector
y (y(t)) on line 13. The square bracket syntax is used to extend the vector variables over
the previously declared dimension n. Note that while x(t), AW (t) and y(¢) all vary in time,
there is no explicit declaration for the time dimension in LibBi.

Recall (2), which gives the general joint distribution of an SSM. The specific joint distribution
for the Lorenz '96 SSM is:

p(y(tir), x(tor), F,0) = p(F)p(o®) p(x(to)) (9)
joint parameter initia.

T T
< | [] p(x(ta)x(tiz1), Foo®) | | [T TS0 (s (i)l (t:) | - (10)
i=1 1=1

transition observation

The prior distribution over parameters is given by:

F ~ U(_812)

0? ~ INV-GAMMA(2,0.9),

described in the parameter block on lines 15-18 of Figure 5. The prior distribution over the
initial state of x is given by:

zn(to) ~ U(-1,3),

described in the initial block on lines 20-22 of Figure 5.

The final form of the ODEs derived above is specified in the transition block on lines 24-29
of Figure 5. Notice the use of indexing on line 27 to show the relationship between elements
of the x vector, without the use of a loop.

Each component of the vector y is an observation of the corresponding component of the
vector x, with some additive Gaussian noise. The observation model is given by:

Yn ~ N(zp,0.5),

where the second argument is the standard deviation. This is described in the observation
block on lines 31-33 of Figure 5.

Two additional blocks are specified for the Lorenz ’96 model. These are the proposal_parameter

and proposal_initial blocks on lines 35-38 and 40-42, respectively. These specify the pro-
posal distributions used for Metropolis-Hastings sampling, detailed in Section 3.2.

3. Inference methods

An SSM is constructed as the joint distribution p (Y (t1.7), X(to.7), ®), typically factorized as
in (2). The task of Bayesian inference is to condition this joint distribution on some particular
data set, Y(t1.7) = y(t1.7), to obtain the posterior distribution p(X(to.7), ®|y(t1.7)).

The posterior distribution may be written:

p(X(tor), Oly(trr)) = p(Oly(tir))p (X(tor)|®,y(trr))- (11)

posterior

Journal of Statistical Software

Obtaining the first factor constitutes parameter estimation, while obtaining the second factor,
conditioning on some particular ® = @ drawn from the first, constitutes state estimation.
Methods for Bayesian inference will in limited cases derive a closed form for the posterior
distribution. In most cases this is unachievable, however, and either an approximate closed
form is fit, or Monte Carlo sampling is performed.

Because an SSM is a member of the broader BHM class, any method for inference over
BHMSs, such as Gibbs sampling or HMC, might be applied to SSMs also. Methods that do
not exploit the additional hierarchical structure of SSMs may be sub-optimal, however. SSMs
also commonly exhibit peculiarities such as strong autocorrelations in the state process relative
to the observation frequency (e.g., Murray, Jones, and Parslow 2013), and strong correlations
between the model parameters and state (e.g., Newman et al. 2009). The Gibbs sampler, a
mainstay of inference for BHMs, is known to mix slowly in such conditions (Papaspiliopoulos,
Roberts, and Skold 2007). For particularly complex SSMs, it may be that no convenient
closed form transition density exists (e.g., Beskos, Papaspiliopoulos, Roberts, and Fearnhead
2006; Fearnhead, Papaspiliopoulos, and Roberts 2008; Golightly and Wilkinson 2008, 2011;
Murray and Storkey 2011; Murray et al. 2013). This precludes the analytical derivation of
conditional distributions for Gibbs sampling, and even the pointwise evaluation of the prior
density needed to apply Metropolis-Hastings or HMC approaches.

Fortunately, specialized Bayesian methods for these cases do exist. Those based on sequential
Monte Carlo (SMC) are the focus of this work, and of the LibBi software. An important
exception is the Kalman filter (Kalman 1960), which is optimal for a further specialization of
the SSM class: that of linear-Gaussian models. An introduction to the Kalman filter is given
here also.

We begin with state estimation in Section 3.1, which will lead into parameter estimation in
Section 3.2.

3.1. State estimation

Sampling the second factor of (11), conditioned on a particular parameter setting ® = 6,
constitutes state estimation. This has been well-studied in the Bayesian filtering literature.
Two methods, the Kalman filter and the particle filter, are introduced here.

The Kalman filter

The Kalman filter (Kalman 1960) can be used in the special case of SSMs where both the
transition and observation densities are linear and Gaussian, and the initial state model is
Gaussian?. It is optimal in such cases, producing the exact closed-form solution. Models that
fit this class can be expressed in the following form:

X(to) ~ N(p(to), U(to)) (12)
X (4)[X (tin1) ~ N(FT(ti)X(ti_l),Q(ti)) fori=1,...,T (13)
Y(t)[X(t) ~ N(GT(t)X(t:),R(t:)) fori=1,...,T, (14)

where N(p, U) denotes the normal distribution with mean vector p and square-root of the
covariance matrix U. It is understood that all symbols may depend on 8. The Kalman filter

2A fixed starting point is also admitted as a degenerate case of a Gaussian distribution.

11

12 High-Performance Bayesian State-Space Modelling Using LibBi

is usually initialized with the mean vector u(tp) and covariance matrix 3(tg) of the initial
state p(X(to)|@). Here the square-root Kalman filter is presented, where the covariance matrix
is replaced with its upper-triangular Cholesky square-root U(tg), i.e., Z(tg) = U () U(t).
Using U(tp) has certain numerical and computational advantages; indeed most computational
manipulations of Gaussian distributions ultimately use the Cholesky square-root and not
¥ (to) directly.

After initialization, the Kalman filter iterates through observation times with interleaved
prediction and correction steps. Pseudocode is given in Algorithm 1. The prediction step
computes p(X(t;—1.;)|y(t1:i-1), @), which is Gaussian with mean

p(ti-1))
(p(t:)

and upper-triangular Cholesky factor of the covariance matrix

(U(ti-1) C(t))
0 U))

The cross term C(t;) is used later. The correction step first computes p(X(¢;), Y (¢;)|y(t1.i-1),0),
also Gaussian, with mean

and upper-triangular Cholesky factor of the covariance matrix
U(t) D)
0 V())

It then conditions this on Y (¢;) = y(t;), in the usual fashion for a Gaussian distribution, to
obtain p(X(¢;)|y(t1:i), 0), Gaussian with mean p(t;) and Cholesky factor U(¢;).

In the context of parameter estimation in Section 3.2, two further outputs are required of
the Kalman filter. The first is to deliver the likelihood of €, marginalized over X(to.7). The
computation is given on line 15 of Algorithm 1 (] - | denotes the matrix determinant and
|| - || the Euclidean norm). The second requirement is to deliver a single sample x’(tg.7) ~
p(X(to.r)|0,y(t1.7)). This is achieved with a backward pass through time at the end of
Algorithm 1, in a manner similar to the Rauch-Tung-Striebel smoother (Rauch, Tung, and
Striebel 1965).

A number of Kalman-type filters exist for nonlinear and non-Gaussian models. These in-
clude the mixture-of-Gaussians (Alspach and Sorenson 1972), extended (Smith, Schmidt, and
McGee 1962), ensemble (Evensen 1994) and unscented (Julier and Uhlmann 1997) Kalman
filters and accompanying smoothers (Rauch et al. 1965; Sérkka 2008). However, for nonlinear
and non-Gaussian cases these are approximate methods that introduce bias. The particle
filter (Gordon, Salmond, and Smith 1993; Doucet et al. 2001) is an alternative that does not,
and admits any SSM of the form (2). The particle filter is the focus for the nonlinear case in
this work. The approximate Kalman-type filters are not treated.

Journal of Statistical Software

Algorithm 1 The Kalman filter for given 6. This is presented over a time interval
[tr,ts], returning the marginal likelihood | = p(y(t0.s)|@) and a state sample x'(tp.s) ~
p(X(to:5)|0,y(to:s)), so that it may be called from Algorithms 3 and 4 later. The usual,
standalone algorithm sets r =0 and s =1T.

KALMAN-FILTER(O, t,.5) — (I, %' (to.s))
1 ifr=0
2 initialize X(t9) ~ N(u(to), U(tp))
3 fori=r+1,...,s
// state prediction

4 p(ti) < Fo(ti)pu(ti—1)
5 Clt) + Ulti1) Ulti 1)Fg(t)
6 3(t;) = Folt) U (ti—1) TU(ti— 1)Fg(t:) + Qo(ti) ' Qo(t:)
7 (t;) « CHOLESKY-FACTORIZE(3X(t;))
// observation prediction
8 v(t)<— Ge()ﬁfti)
9 D(t;) (t:) TU(t;)Go(ts)
10 T (t;) < Gg(DTU)Ut) T Gal(ts) + Re(t:) "Re(t:)
11 V(t;) < CHOLESKY-FACTORIZE(T(¢;))
/| correction
12 K+ D(ti)V(ti)_l
13 pu(ti) + p(t) + KV ()~ (y(t:) — v(t:)
14 U(t;) + CHOLESKY-DOWNDATE(U(t;), K)

s _ 2 : -
15 1+ I, m exp (—% V=) (y(t) — v(t)]) / marginal likelihood

// single state sample

16 x'(ts) ~ N(p(ts), U(ts))
17 fori=s-—1,...,0

18 K+ C(ti_;_l)fj(ti_;_l)*l

19 w < p(ti) + KU (tig1) ™" (% (tig1) — H(tzﬂ))

20 W «+ CHoLEsKY-FacTtorize(U(t;) "U(t;) — KTK)
21 x'(t;) ~ N(w, W)

22 return (I,x'(tp.s))

13

The particle filter

The particle filter (Gordon et al. 1993; Doucet et al. 2001), of the family of SMC methods,
can be used for any SSM as defined by (2). For this general form an analytical solution is not
forthcoming, and the particle filter instead relies on importance sampling. Numerous variants
are available, but the most basic, that of the bootstrap particle filter (Gordon et al. 1993), is

14 High-Performance Bayesian State-Space Modelling Using LibBi

Algorithm 2 The bootstrap particle filter for given 6. This is presented over a time interval
[t, ts], returning an estimate of the marginal likelihood [= p(y(to.s)|@) and an unbiased state
sample X' (to.s) ~ p(X(to.s)|0,y(to:s)), so that it may be called from Algorithms 3 and 4 later.
The usual, standalone algorithm sets r =0 and s =T

~

PARTICLE-FILTER(O, t,.5) — (I, X' (to.s))
1 ifr=0
foreachj € {1,...,P,}
X/ (tg) ~ p(Xo|@) # initialize particle j
wl (tg) + 1/P, / initialize weight j
fori=r+1,...,s
foreachj € {1,..., P}
a’ (t;) ~ MULTINOMIAL((ti—1)) # ancestor for particle j
xI (t;) ~ p(X (‘)IX“J“)(ti-1),8) # propagate particle j
wl(t;) + p(y(t;)|x?(t;), 0) # weight particle j

[T (L Zf““l wl (t)) / marginal likelihood

© 00 O O = W N

—_
=)

// single state sample
11 j ~ MULTINOMIAL(W(ts))
12 %/(tg) < xI(ts)
13 fori=s,...,1
14 j < al(t;)
15)A(/(ti_l) < xJ (ti—l)

A~

16 return (I,%'(to.s))

described in pseudocode in Algorithm 2 and visualized in Figure 6.

For a given 6, the particle filter is initialized by drawing P, number of random samples,
X/ (tg) ~ p(X(t0)]0), for j = 1,..., P,, and weighting each uniformly with w(to) = 1/P,.
These are referred to as particles. It proceeds sequentially through observation times through
a series of propagation, weighting and resampling steps. In the propagation step each particle
is advanced to the next observation time with x7(;) ~ p(X(t;)|x*) (t;_1),), where o (t;) is
the index of the particle’s ancestor at the previous time, t;_1 (more below). It is then weighted
with the likelihood of the new observation, w’(t;) = p(y(t;)|x’(t;),0). The resampling step
restores the particle stock to equal weights by resampling particles with replacement, where
the probability of each particle being drawn is proportional to its weight w’. Particles with
high weight tend to be replicated, while particles with low weight tend to be eliminated. It
is this process that determines the ancestor indices for the next time propagation.

The particle filter can be used to compute an unbiased estimate of the likelihood of 8,
marginalized over X(to.r). The computation (Del Moral 2004) is given on line 10 of Al-
gorithm 2. It can also produce a sample X'(to.r) ~ p(X(to.7)|0,y(t1.7)) by tracing a single
particle back through its ancestry (Andrieu et al. 2010). This occurs as the last step in
Algorithm 2.

Journal of Statistical Software

g
X
&

R

Weight \
Resample

Figure 6: Visualization of the particle filter algorithm where, at each time, particles proceed
through propagation, weighting and resampling steps. Particles may be eliminated in each
resampling step, with remaining particles forming an ancestry tree.

3.2. Parameter estimation

Sampling from the first factor of (11) constitutes parameter estimation, for which two ap-
proaches are given here. The first is marginal Metropolis-Hastings (Metropolis, Rosen-
bluth, Rosenbluth, Teller, and Teller 1953; Hastings 1970), of the family of Markov chain
Monte Carlo (MCMC), using either a Kalman filter to compute the likelihood of parameters,
marginalized over the state, or a particle filter to estimate it. When a particle filter is used
the approach is more specifically known as particle marginal Metropolis-Hastings (PMMH),
from the family of particle Markov chain Monte Carlo (PMCMC) methods (Andrieu et al.
2010). The second approach is sequential Monte Carlo (SMC, Del Moral, Doucet, and Jasra
2006). Recall that the particle filter for state estimation is a type of SMC algorithm, indeed
it is prototypical. Similar methods may be employed for parameter estimation, and this is
considered here. Within the SMC algorithm over parameters, a Kalman or particle filter is
used to compute weights; when the latter is used the method is more specifically known as
SMC? (Chopin et al. 2013).

Marginal Metropolis-Hastings

The marginal Metropolis-Hastings algorithm is given in Algorithm 3. It is initialized with
some arbitrary setting of parameters 6%, then for i = 1,2,..., a new setting 8 ~ ¢(6'|) is
proposed from some proposal distribution ¢. The move is accepted with probability given by
the Metropolis-Hastings rule:

p(y(t1.7)|0)p(8)q(0'|6) (15)

If accepted then @' = @', otherwise 8° = 8°~!. By construction, the Markov chain 6°, 6", ...
is ergodic to the posterior distribution, so that, after convergence, states of the chain may

. (1, p<y<t1:T>re'>p<e'>q<ero’>) |

15

16 High-Performance Bayesian State-Space Modelling Using LibBi

Algorithm 3 Marginal Metropolis-Hastings for parameter estimation. When the parti-
cle filter is used (i.e., PARTICLE-FILTER for FILTER), the algorithm gives particle marginal
Metropolis-Hastings (PMMH, Andrieu et al. 2010).

MARGINAL-METROPOLIS-HASTINGS (0, x(to.7), 1) — (0,x(to.1), 1)
0’ ~ q(0'|0) // propose
(I',x'(to.T)) + FILTER(O', to.7) # likelihood and state sample from filter
a~U(0,1)
: I'p(6')q(6]0")
it S Ge)@10)
return (6',x(to.r),l") /#/ accept
else
return (0,x(to.7),l) # reject

N O U = W N

be considered samples from it. The process continues until as many samples as desired have
been drawn, a number denoted Fjy.

Either a Kalman or particle filter may be used to compute or estimate the marginal likelihood
term p(y(t1.7)|@’) in (15) at each step. When estimated, a valid sampler is still obtained (An-
drieu et al. 2010). The single state sample drawn from the Kalman or particle filter completes
the sample with a draw from the second factor of (11).

Sequential Monte Carlo

An alternative approach to sampling the first factor of (11) is to replace the MCMC over
parameters with SMC over parameters. SMC over parameters works similarly to SMC over
state variables. It is initialized by drawing Py number of random samples from the prior
distribution over parameters, p(®), and weighting them uniformly with v/(tq) = 1/Pp for
j=1,...,Py. These are referred to as 0-particles and 0-weights. It proceeds sequentially
through observation times with a series of propagation, weighting and resampling steps, just
as for the particle filter for state estimation, along with a new rejuvenation step. Pseudocode
for the algorithm is given in Algorithm 4.

To each 6-particle is attached a Kalman or particle filter. Propagating a #-particle involves
advancing the attached filter through time. Weighting of a #-particle uses the marginal like-
lihood p(y(t;)|6%(t;)), computed by the attached Kalman filter or estimated by the attached
particle filter. Weighting with an unbiased estimate of that marginal likelihood gives a valid
SMC algorithm as in the random-weight particle filter (Fearnhead et al. 2008; Fearnhead,
Papaspiliopoulos, Roberts, and Stuart 2010), and is more specifically called SMC? (Chopin
et al. 2013). Resampling involves drawing a new set of unweighted 6-particles by weight,
along with their attached filters.

The resampling of #-particles at each time ¢; depletes the number of unique values represented.
Resampling has the same effect in the particle filter for state estimation, but in that case
particles diversify again in the next propagation step. As parameters do not change in time,
they cannot diversify in this way. To fix this, an additional step, called the rejuvenation
step, is inserted after the resampling of f-particles (Chopin et al. 2013). The aim of the step
is to diversify the values of #-particles while preserving their distribution. To this end it is

Journal of Statistical Software 17

Algorithm 4 Sequential Monte Carlo (SMC) for parameter estimation. When the particle
filter is used (i.e., PARTICLE-FILTER for FILTER), the algorithm gives SMC? (Chopin et al.
2013).

SEQUENTIAL-MONTE-CARLO
1 foreachj e {1,..., Py}
2 6 (to) ~ p(@) / initialize f-particle j
v/ (tg) < 1/ Py // initialize §-weight j
x7 (to) ~ p(Xo|@’(to)) # initialize state sample j
l(tg) < 1 / initialize likelihood j
fori=1,...,T
foreachj € {1,..., Py}
a’(t;) ~ MULTINOMIAL(V(t;—1)) /# ancestor for -particle j
(07 (t;), x7 (toi—1), 17 (ti—1)) < MARGINAL-METROPOLIS-HASTINGS(
GQJ(t")(ti_l),xaj(ti)(tgzi_l),l“j(ti)(ti_l)) // rejuvenate f-particle j
10 (07 (t;),x7 (tg.)) < FILTER(6” (t;),t;_1.;) # propagate and weight f-particle j

© 00 O U i W

sufficient to take a single marginal Metropolis-Hastings step for each #-particle, 67 (t;). This
works by proposing a move to a new value 8'(t;) ~ q(8'(t;)|6%(t;)), estimating the marginal
likelihood p(y(t1.;)|€’(t;)) with the Kalman or particle filter, and then accepting or rejecting
the move using the acceptance probability (15). Line 7 of Algorithm 4 achieves this by calling
the MARGINAL-METROPOLIS-HASTINGS function of Algorithm 3.

3.3. Parallelization

The methods presented exhibit varying degrees of parallelisability, and therefore suitability to
modern computing hardware. SMC is particularly promising in this regard (Lee et al. 2010).
The propagation, weighting and (in the case of parameter estimation) rejuvenation steps can
be performed in parallel for each (6-)particle. There is limited scope for parallelization of the
Kalman filter: its matrix operations can be multithreaded or even performed on GPU, but
this will only be faster for very large matrices (Song, Tomov, and Dongarra 2012), and may
be slower for small matrices.

For the particle filter, the minimum degree of parallelism is P,, the number of particles, with
the potential for further parallelization according to model-specific structure. The bottleneck
in high-performance implementation of the particle filter is the resampling step. Resampling
algorithms, such as the multinomial, systematic or stratified (Kitagawa 1996) approaches,
require a collective operation over the weight vector. This means that all threads must syn-
chronize. The development of asynchronous resampling methods to alleviate this bottleneck
is still an active area of research (Murray 2011; Del Moral, Jacob, Lee, Murray, and Peters
2013; Whiteley, Lee, and Heine 2013; Murray, Lee, and Jacob 2014; Lee and Whiteley. 2014).
In the meantime, the particle filter is best suited to shared-memory architectures where the
collective operation can be performed efficiently, although approaches for distributed-memory
resampling have been proposed (Boli¢, Djuri¢, and Hong 2005).

Marginal Metropolis-Hastings is itself a sequential method, but inherits the degree of par-

18 High-Performance Bayesian State-Space Modelling Using LibBi

allelism of the filter used at each step. Again, the Kalman filter offers limited scope, but
using the particle filter (the PMMH sampler) gives P,-way parallelism. The setting of P,
is complicated in this context, however. The tradeoff is to maximize the mixing rate of
the Metropolis-Hastings chain against the computational expense of running P, particles.
The optimal choice relates to the variance in the marginal likelihood estimator (Pitt, Silva,
Giordani, and Kohn 2012; Doucet, Pitt, and Kohn 2013; Murray et al. 2013). Increasing
P, decreases this variance, but does not necessarily improve the real-time mixing of the
Metropolis-Hastings chain for a fixed computational budget. Because arbitrarily increasing
P, to consume all available hardware resources has depreciating returns on mixing rate, there
are limits on the degree of parallelism of PMMH.

A possible solution is to run multiple marginal Metropolis-Hastings chains. This also has
limits. In practice, one usually removes some number, By, of steps from the start of each
chain to correct for the initialization bias of 8°. By depends on the autocorrelation of the
chain, and should be sufficiently large for the influence of 8° to be forgotten. With multiple
chains, each chain must take at least By steps before drawing one or more samples that
will be preserved. This imposes a serial limitation on the maximum speedup achievable
by parallelization with multiple chains, which may be quantified by Amdahl’s law (Amdahl
1967) as Py/By. The performance gains of multiple chains might therefore be disappointing
without some additional strategy to reduce By. Adaptation (Gilks, Roberts, and Sahu 1998;
Haario, Saksman, and Tamminen 2001; Andrieu and Thoms 2008) and tempering (Frantz,
Freeman, and Doll 1990; Geyer 1991; Marinari and Parisi 1992; Geyer and Thompson 1995;
Neal 1996) are both established means of reducing By for single chains. Using these for each
chain in isolation can reduce By, but only by a factor that is independent of the number
of chains. Reducing By relative to the number of chains is to be preferred. Population
MCMC (Laskey and Myers 2003) attempts this via an evolutionary (Back 1996) selection,
crossing and mutation of multiple chains. Craiu, Rosenthal, and Yang (2009) more explicitly
target the posterior with an ensemble of chains, using the covariance of samples across all
chains to adapt the proposal covariance of individual chains. This remains an active area of
research.

Using SMC for parameter estimation gives at least a Py-way parallelism, even with the Kalman
filter. Using the particle filter (the SMC? method) has a much higher degree of parallelism,
at PyP,. This is very promising. As for the particle filter, however, the resampling step is
synchronous, which can be a bottleneck to the scaling of the algorithm. This also remains an
active area of research.

3.4. Examples

The example models introduced in Section 2 are used within LibBi to demonstrate the in-
ference methods above. The three-element windkessel model is an example where Kalman
filter-based methods are suitable, while the nonlinear Lorenz 96 model requires the particle
filter. In both cases simulated data sets are used.

LibBi provides a 1libbi command to access its functionality from the command line. It is
used as follows:

libbi command [optioms...]

where command is the particular command to execute, followed by zero or more command-

Journal of Statistical Software

prior.conf

--target prior

--model-file Windkessel.bi
--nsamples 50000

--start-time 0.0

-—end-time 2.4

--noutputs 240

--input-file data/input.nc
—--output-file results/prior.nc

posterior.conf

--target posterior

--model-file Windkessel.bi
--filter kalman

--nsamples 50000

--start-time 0.0

-—end-time 2.4

--noutputs 240

—--input-file data/input.nc
--obs-file data/obs.nc
--output-file results/posterior.nc

Figure 7: LibBi configuration files, containing command-line options, for the the windkessel
example.

line options to specify input files and configuration parameters. The pertinent command for
these examples is sample, which draws samples from the joint, prior or posterior distribution.
Options may be given on the command line itself, or, as is often convenient, by listing them
in a configuration file and giving the name of that file on the command line instead, like so:

libbi sample @config.conf

All of the examples use configuration files in this way. The contents of these files are given
in Figure 7.

Windkessel example

The three-element windkessel model has Gaussian initial state, linear and Gaussian transition
model, and linear and Gaussian observation model. Kalman filter-based methods are suitable
in this case. The model can be coerced into the matrix form of (12—14), but it is not necessary
to do so by hand: LibBi uses symbolic differentiation to derive the matrix form internally.

19

20 High-Performance Bayesian State-Space Modelling Using LibBi

Consequently, no changes are required to the model file, as given in Figure 3, to apply the
Kalman filter.

The windkessel model requires two input files: one giving the values of the input variable
F(t), and one giving the values of the observed variable P,(¢). The input is shown in the
top-left plot of Figure 8, and observations in the top-right. These have been prepared in
advance as NetCDF files data/input.nc and data/obs.nc, available in the supplementary
materials (see Section 6).

A first step is often to simulate the model’s prior distribution. This is useful to validate the
model specification. Command-line options for this purpose are given in the prior.conf file
in Figure 7. The command is then:

1libbi sample @prior.conf

with results output to the NetCDF file results/prior.nc and shown in the top-right of
Figure 8. The posterior distribution can be sampled using the options in the posterior.conf
file in Figure 7. Note in particular the ——filter kalman option to indicate that a Kalman
filter should be used for state estimates. The default sampling method is marginal Metropolis-
Hastings, so no options are required to select this. The command is:

1libbi sample @posterior.conf

with results output to the NetCDF file results/posterior.nc. SMC does work to sam-
ple from the posterior distribution of parameters also. It may be selected by adding the
--sampler sir option (see the posterior_sir.conf file in the supplementary materials).
State estimates are shown in the top-right of Figure 8, and parameter estimates in the lower
four plots.

Lorenz '96 example

A similar procedure is followed for the Lorenz '96 model, although a prediction forward in
time will also be made. Because it is a nonlinear model, the particle filter is used for state
estimation and marginal likelihood estimates.

The Lorenz ’96 model requires one input file, containing the observations. This has been
prepared in advance as data/obs_sparse.nc, available in the supplementary materials (see
Section 6). It contains observations of the first four components of y(t) at every other time
step (recall At = 0.05) on the interval ¢ = [0, 3]. It is an example of how sparse or missing data
can be handled by LibBi. The aim is to condition the joint distribution on those observations
that fall in the interval ¢ = [0, 2], and set aside the remainder to validate a forward prediction
on the interval t = (2, 3].

The first task is to simulate the prior distribution. The prior.conf configuration file in
Figure 9 is set up for this purpose. The command:

1ibbi sample @prior.conf

outputs samples to the results/prior.nc file. These are shown in grey in Figures 11 and 12.
The posterior is sampled with options from the posterior.conf configuration file of Figure 9.
The particle filter is the default option for state estimation, and marginal Metropolis-Hastings
for parameter estimation, so no options to select an appropriate method are required. The
command is:

600

Journal of Statistical Software

500

400

F(mis?
w
o
o

100

0.5 1 15
t(s)

T L]
posterior—
prior

14

12

10

P(R)

o N A O ©

0.86

0.9 094 0.98
R (mm Hg (ml s'l)'l)

1.02

200

T .
posterior
prior

150

p(2)

100

0.025 0.03 0.035 0.04

Z (mmHgs ml'l)

P (mm Hg)

300

prior Py
posterior P
250 ° observed P
200 |-
150
100 | 7o P
0 I I I
0 0.5 1 1.5 2
t(s)
T .
9 posterior |
prior
8
7
6
o5
=g
4
3
2
1
0
13 135 14 145 15 155 1.6 1.65
C (mm Hg'l)
T .
posterior
prior
4
“.’O =
—
X
N’c; 2 L
=
1 I
0

0 0.2 0.4 0.6 0.8 1
o? (mm2 ng x106)

21

Figure 8: (top left) input blood flow F'(t), (top right) prior and posterior distribution of the
state P,(t), bold lines giving the median and shaded regions the 95% credibility interval at
each time, with observations P,(t) plotted over the top, and (remainder) histograms of the
posterior samples of parameters against prior distributions. Note that the 95% credibility
interval for the state estimate of P,(t) in the top right is difficult to distinguish owing to its

narrowness.

22 High-Performance Bayesian State-Space Modelling Using LibBi

prior.conf

--target prior

--model-file Lorenz96.bi
-—end-time 3

--noutputs 60

--nsamples 100000
—--output-file results/prior.nc

posterior.conf

--target posterior

--model-file Lorenz96.bi
--end-time 2

--noutputs 40

--nsamples 100000

-—nparticles 512

--obs-file data/obs_sparse.nc
—--output-file results/posterior.nc
--with-transform-initial-to-param

prediction. conf

--target prediction

--model-file Lorenz96.bi
--start-time 2

--end-time 3

--noutputs 20

--nsamples 100000

—--init-file results/posterior.nc
--output-file results/prediction.nc

Figure 9: LibBi configuration files, containing command-line options, for the the Lorenz 96
example.

libbi sample @posterior.conf

Results are output to results/posterior.nc, and plot in blue in Figures 10-12. SMC?
does work to sample from the posterior distribution also. It may be selected by adding the
--sampler sir option (see the posterior_sir.conf file in the supplementary materials).

Journal of Statistical Software

2 5
4=
15
3+ l
Co1p) |
Q o
2|
0.5
1
|

0 0

82848688 9 929496938 0.1 02 03 04 05 06 0.7
2

F o

Figure 10: Parameter estimates for the Lorenz '96 case study, (left) F' and (right) 0. In
both cases the blue histogram summarizes posterior samples, while the grey curve denotes
the prior distribution.

Finally, a prediction can be made. The configuration file prediction. conf of Figure 9 is set
up for this. The output file of the posterior sample is used as an input file for the prediction
(--init-file results/posterior.nc) so as to extend the state estimate forward in time
to form a posterior prediction. The command is:

1libbi sample @prediction.conf

Results are output to results/prediction.nc, and plot in red in Figures 11-12. Note that
the observations on t = (2, 3] do not factor in to the prediction, they are shown in Figure 11
only for validation of the prediction.

4. The LibBi software

LibBi is made up of a C4++ template library and Perl frontend. The C++ template library
provides the inference methods, along with supporting functionality for, among other things,
input and output, memory management, matrices and vectors, and pseudorandom number
generation. The Perl frontend parses the LibBi modelling language, generates model-specific
C++ code using the Perl Template Toolkit (Wardley 2013), uses a GNU Autotools (GNU
2013)build system to compile and link this against the C++ template library, and finally
runs the program. Code is configured for the hardware platform according to options set by
the user when calling the 1ibbi command. LibBi supports several hardware architectures and
high-performance computing technologies, including SIMD vector operations on CPU using
SSE and AVX, multithreading on multicore CPUs using OpenMP (OpenMP Architecture
Review Board 2013), general-purpose GPU programming on NVIDIA GPUs using CUDA
(Compute Unified Device Architecture. NVIDIA Corporation 2013), and distributed-memory

23

24 High-Performance Bayesian State-Space Modelling Using LibBi

15 T T -
—4 prior
1 posterior

10

\kﬁ

=R
=

%

=
a1

-10

15

/Aj/ 2
SO R

0O 05 1 15 2 25 3 O 05 1 15 2 25 3

Figure 11: State estimates for the Lorenz ’96 case study, giving the four components of the
state vector x(t) that are observed with additional noise. Grey denotes the prior distribution,
blue the posterior and red the prediction. For each, the central line gives the time-marginal
median and the shaded region about it the 95% credibility interval. White circles indicate
the observations. Observations that fall in the time interval of prediction are witheld from
the inference, but shown for validation purposes.

Journal of Statistical Software

f— Iprior
1 posterio
———1 _predqici
< <
-10
15
< X
-5 \
N
-10

Figure 12: State estimates for the Lorenz ’96 case study, giving the four components of the
state vector x(t) that are not observed. See Figure 11 for explanation of components.

26 High-Performance Bayesian State-Space Modelling Using LibBi

computing using MPI (Message Passing Interface, MPI Forum 2013). The compilation process
is hidden from the user. Intermediate files are preserved in a hidden directory to avoid
repeated effort, although a short wait is noticeable after making changes to a model that
require recompilation.

A number of algorithmic innovations are realized in the LibBi software. Among these are
parallelized implementations of numerical integrators for ODEs (Murray 2012), alternative
resampling algorithms for SMC (Murray 2011; Murray et al. 2014), and the memory-efficient
storage of the SMC ancestry tree (Jacob, Murray, and Rubenthaler 2015).

The LibBi modelling language is described with an LALR grammar (DeRemer 1969). Tools
such as Yacc (Johnson 2013) and GNU Bison (Donnelly and Stallman 2013)may be used to
compile parsers from the grammar. Yapp (Desarmenien 2013), a Yacc-like parser compiler
for Perl, is used for this purpose. Input and output files use the standard NetCDF (UniData
2013) format, based on HDF5 (HDF Group 2013), and are readily created and analyzed within
various mathematical and statistical packages such as MATLAB (The MathWorks, Inc. 2013),
R (R Core Team 2015), and GNU Octave (Eaton 2002). The workflow for LibBi typically
sees the user prepare input files in their preferred statistical package, run LibBi from the
command-line, then return to their statistical package to summarize and visualize the results.
It is hoped that closer integration will be realized in future.

Existing software for general BHMs exists, including the BUGS pair WinBUGS (Lunn, Thomas,
Best, and Spiegelhalter 2000) and more recently OpenBUGS (Lunn, Jackson, Best, Thomas,
and Spiegelhalter 2012), as well as JAGS (Plummer 2013, 2003) and Stan (Stan Development
Team 2015). Specialist software for SSMs also exists, notably BiiPS (Todeschini and Caron
2013). Tt is against these programs that LibBi might be most closely compared. All of these
existing packages accept models specified in the BUGS language or extensions of it (Plummer
2003), while LibBi prescribes its own, albeit similar, language. WinBUGS, OpenBUGS, JAGS
and BiiPS build a data structure from the model which is manipulated internally by the client
program, while Stan and LibBi take a code generation approach. WinBUGS, OpenBUGS and
JAGS target general BHMs, while BiiPS and LibBi target the more-specific class of SSMs.
In line with this more specialized focus, BiiPS and LibBi use SMC as a staple method, rather
than Gibbs (as in WinBUGS, OpenBUGS and JAGS) or HMC (as in Stan, see Hoffman and
Gelman 2014). The most notable distinction of LibBi against all of these packages is its
high-performance computing focus, where its hardware support, particularly for GPUs and
distributed clusters, is unique.

The C++ template library component of LibBi might also be compared to similar libraries
such as SMCTC (Johansen 2009). The template metaprogramming techniques advocated in
Johansen (2009) are mirrored in LibBi. But where a library requires its user to program
their model to a prescribed interface, an additional code generator component, as in LibBi,
automates compliance with the interface from a higher-level language in which the model is
specified. In LibBi this also facilitates the generation of code for different combinations of
methods and hardware.

4.1. Suitability

The suitability of LibBi for a particular problem is inherited from the SMC-based methods
upon which it relies. While clearly model dependent, some advice can be given.

At each time step, SMC methods draw an importance sample; the efficacy of this hinges on

Journal of Statistical Software

Intel Xeon E5-2650 CPU Nvidia Tesla S2050 GPU

Task parallism 8-way 14-way
Data parallism (per task) 8-way™ 32-way'
Clock rate 2.00 GHz 1.15 GHz
Cache 20480 KB 768 KB

Table 1: Capabilities of the CPU and GPU devices used for empirical experiments, from
a programming perspective. Specifications are obtained from /proc/cpuinfo for the CPU,
and the CUDA SDK deviceQuery program for the GPU. x = Using single-precision AVX
instructions, 4-way for double precision. Earlier generation CPUs can use SSE instructions,
4-way for single and 2-way for double precision, and indeed LibBi is limited to this at time
of writing. T = Threads per warp.

the design of a good proposal distribution. As this becomes difficult in high dimensions, SMC
tends to be better suited to models with few state variables. For PMMH and SMC?, a critical
measure of performance is the variance of the estimate of the marginal likelihood delivered
by SMC (see e.g., Pitt et al. 2012; Doucet et al. 2013; Murray et al. 2013). This variance is
known (Cérou, Del Moral, and Guyader 2011) to scale linearly with the length of the time
series, T', so that the number of particles, P, should also scale linearly with 7. As such,
while few state variables are preferred, reasonably long time series are manageable. Large
problems that can be structured in this way may be tractable.

A particular advantage of SMC methods is that they can accommodate highly complex tran-
sition models. In the most basic SMC methods, the transition model is only ever simulated,
and not evaluated pointwise, so that it is unnecessary that it have a closed form density
function. This permits SMC to be applied to models that cannot be handled by, for example,
Gibbs sampling or HMC.

To date, LibBi has been used for published studies in soil carbon (Clifford et al. 2014) and
marine biogeochemistry (Parslow et al. 2013), in both cases utilising its PMMH implementa-
tion. The latter of these studies uses a complex nonlinear differential model of 15 parameters,
15 state variables, nine noise terms, nine exogenous inputs and two observed variables, with
an observed time series of 227 points. These dimensions may provide some anecdotal guid-
ance as to what can be achieved. Work to scale the methods and software to larger models
is ongoing.

4.2. Performance results

This section offers a comparison of LibBi performance under different hardware configurations.
The Lorenz '96 model is used for this purpose. Experiments are conducted on a single machine
with two 8-core Intel Xeon E5-2650 CPUs, three NVIDIA Tesla 2075 GPUs, and 128 GB main
memory. The important technical specifications of these devices are given in Table 1. The
particle filter, PMMH and SMC? methods described in Section 3 are configured according to
Table 2 using hardware configurations in Table 3. All methods are tested with the first six
configurations in Table 3. The SMC? method is also tested with the last two configurations,
which use MPI to distribute #-particles across multiple processes.

Figure 13 gives the execution times for each method in each configuration, summarized across
100 repeated runs with different random number seeds. For context, one would ideally like

27

28 High-Performance Bayesian State-Space Modelling Using LibBi

Py P, T tr

--nsamples n --nparticles n --noutputs n --end-time =
Particle filter 1 8192 40 2
PMCMC 500 8192 40 2
SMC? 384 8192 40 2

Table 2: Method configurations for timing results.

Processes Threads/process SIMD enabled ~ GPU enabled
(MPI) (OpenMP) (AVX) (CUDA)
--enable-mpi --mpi-np n --nthreads m» --enable-avx --enable-cuda

#1 1 1

#2 1 4

#3 1 1 v

#4 1 4 v

#5 1 1 v

#6 1 4 v

#7 3 4 v

#8 3 4 v

Table 3: System configurations for timing results. Headings additionally give the technology
(e.g., MPI) and LibBi command-line option (e.g., ——enable-mpi) used to enable it. All con-
figurations additionally use the --disable-assert command-line option to disable runtime
assertion checks.

to see:

1. that configurations #2 and #4 execute four times faster than configurations #1 and
#3, respectively, due to OpenMP multithreading,

2. that configurations #3 and #4 execute eight times faster than configurations #1 and
#2, respectively, due to four-way AVX vector parallelism in single precision floating
point,

3. that configurations #5 and #6 execute faster than configuration #4, as the algorithms
are well-suited to GPU, and,

4. that configurations #7 and #8 execute three times faster than configurations #4 and
#6, respectively, due to three MPI processes on uncontested hardware.

Of course, these ideal targets are rarely met in practice due to synchronization overhead
and necessarily serial sections of code. Results in Figure 13 do suggest good gains with
OpenMP, AVX and GPU use, however, and modest gains with MPI for a CPU (but not
GPU) configuration. Improving gains with MPI is a topic of current research.

Performance of these methods is very much model-dependent, and the results of Figure 13
should be considered demonstrative only. For example, LibBi parallelizes predominantly (but
not only, e.g., Murray 2012) across particles. For GPU performance to exceed CPU-only
performance, typically at least a thousand particles will be required, and this may increase
with future hardware. The number of z-particles per 6 sample in these configurations (Table 2)

Journal of Statistical Software

Particle filter PMCMC smc?
1 600 1200

[: oo .
0.8 500 l 000

400 800 H

o
o
[

300 - 600

Execution time (s)

o
>
[
[
'
I
e

200 400

0-2 H 100 |- 200 H ﬂ
0 [==1 == 0 HF‘]W 0 ﬂf‘ﬂﬂ
1234586 123456 12345678
Configuration Configuration Configuration

Figure 13: Execution times for each method under each configuration. Results are based on
100 runs with different random number seeds. Columns give the median, while error bars
straddle the 50% credibility interval.

is sufficiently large that good returns are expected. Not all models justify the use of this many
x-particles, however, and for fewer, CPU performance can, and in many cases does, exceed
GPU performance.

5. Summary

LibBi combines the utility the SSMs with the generality and computational scalability of SMC
methods, in a manner sensitive to modern hardware realities. Its two aims are accessibility
and speed. Accessibility is achieved by decoupling models, from methods, from the hardware
on which they run. Models are specified in a modelling language with a rich variety of features,
the focus on SMC methods ensures broad inferential support, and code generation alleviates
the user from the combinatorial task of writing model-, method- and hardware-specific code.
Speed is achieved through code generation and template metaprogramming techniques, along
with support for high-performance technologies such as SSE, AVX, OpenMP, MPI and CUDA
to make full use of available hardware resources, including GPUs. Good performance gains
are obtained with these technologies as demonstrated in Figure 13. Research continues into
both statistical and computational advances to scale to higher-dimensional models on large
compute clusters.

6. Supplementary material

The two examples given in this work are available in the supplementary files along with this
manuscript or for download at http://www.libbi.org/examples.html, as the Windkessel

29

http://www.libbi.org/examples.html

30 High-Performance Bayesian State-Space Modelling Using LibBi

and Lorenz96 packages. Fach package includes the model, data, and input files required to
reproduce the results in this work. A number of other examples are also available.

References

Alspach D, Sorenson H (1972). “Nonlinear Bayesian Estimation Using Gaussian Sum Ap-
proximations.” IEEE Transactions on Automatic Control, 17, 439-448. doi:10.1109/tac.
1972.1100034.

Amdahl G (1967). “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities.” AFIPS Conference Proceedings, 30, 483-485. doi:10.1145/
1465482 .1465560.

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 72, 269-302. doi:10.1111/j.1467-9868.2009.
00736.x.

Andrieu C, Thoms J (2008). “A Tutorial on Adaptive MCMC.” Statistical Computing, 18,
343-373. doi:10.1007/s11222-008-9110-y.

Back T (1996). Fvolutionary Algorithms in Theory and Practice. Oxford University Press.

Beskos A, Papaspiliopoulos O, Roberts GO, Fearnhead P (2006). “Exact and Computationally
Efficient Likelihood-Based Estimation for Discretely Observed Diffusion Processes.” Journal
of the Royal Statistical Society B, 68, 333-382. doi:10.1111/j.1467-9868.2006.00552.x.

Boli¢ M, Djuri¢ PM, Hong S (2005). “Resampling Algorithms and Architectures for Dis-
tributed Particle Filters.” IEEE Transactions on Signal Processing, 53, 2442-2450. doi:
10.1109/tsp.2005.849185.

Cérou F, Del Moral P, Guyader A (2011). “A Nonasymptotic Theorem for Unnormalized
Feynman-Kac Particle Models.” Annales de I’Institut Henri Poincaré, Probabilités et Statis-
tiques, 47(3), 629-649. doi:10.1214/10-aihp358.

Chopin N, Jacob PE, Papaspiliopoulos O (2013). “SMC?: An Efficient Algorithm for Se-
quential Analysis of State Space Models.” Journal of the Royal Statistical Society B, 75,
397-426. doi:10.1111/j.1467-9868.2012.01046.x.

Clifford D, Pagendam D, Baldock J, Cressie N, Farquharson R, Farrell M, Macdonald L,
Murray L (2014). “Rethinking Soil Carbon Modelling: A Stochastic Approach to Quantify
Uncertainties.” Environmetrics, 25(4), 265-278. doi:10.1002/env.2271.

Craiu R, Rosenthal J, Yang C (2009). “Learn From Thy Neighbor: Parallel-Chain and
Regional Adaptive MCMC.” Journal of the American Statistical Association, 104, 1454—
1466. doi:10.1198/jasa.2009.tm08393.

Del Moral P (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
with Applications. Springer-Verlag.

http://dx.doi.org/10.1109/tac.1972.1100034
http://dx.doi.org/10.1109/tac.1972.1100034
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1007/s11222-008-9110-y
http://dx.doi.org/10.1111/j.1467-9868.2006.00552.x
http://dx.doi.org/10.1109/tsp.2005.849185
http://dx.doi.org/10.1109/tsp.2005.849185
http://dx.doi.org/10.1214/10-aihp358
http://dx.doi.org/10.1111/j.1467-9868.2012.01046.x
http://dx.doi.org/10.1002/env.2271
http://dx.doi.org/10.1198/jasa.2009.tm08393

Journal of Statistical Software 31

Del Moral P, Doucet A, Jasra A (2006). “Sequential Monte Carlo Samplers.” Journal of the
Royal Statistical Society B, 68, 441-436. doi:10.1111/j.1467-9868.2006.00553.x.

Del Moral P, Jacob P, Lee A, Murray L, Peters G (2013). “Feynman-Kac Particle Integration
with Geometric Interacting Jumps.” Journal of Stochastic Analysis and Applications, 31(5),
830-871. doi:10.1080/07362994.2013.817247.

DeRemer F (1969). Practical Translators for LR(k) Languages. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge.

Desarmenien F (2013). “Yapp.” URL http://search.cpan.org/~fdesar/Parse-Yapp-1.
05/yapp/.

Donnelly C, Stallman R (2013). “Bison: GNU Parser Generator.” URL http://www.gnu.
org/software/bison/.

Doucet A, Freitas N, Gordon N (eds.) (2001). Sequential Monte Carlo Methods in Practice.
Springer-Verlag.

Doucet A, Pitt M, Kohn R (2013). “Efficient Implementation of Markov Chain Monte Carlo
When Using an Unbiased Likelihood Estimator” URL http://arxiv.org/abs/1210.1871.

Dowd M (2006). “A Sequential Monte Carlo Approach for Marine Ecological Prediction.”
Environmetrics, 17, 435-455. doi:10.1002/env.780.

Dowd M (2011). “Estimating Parameters for a Stochastic Dynamic Marine Ecological Sys-
tem.” Environmetrics, 22(4), 501-515. doi:10.1002/env.1083.

Eaton J (2002). GNU Octave Manual. Network Theory Limited. ISBN 0-9541617-2-6.

Evensen G (1994). “Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model
Using Monte-Carlo Methods to Forecast Error Statistics.” Journal of Geophysical Research-
Oceans, 99(C5), 10143-10162. doi:10.1029/94jc00572.

Fearnhead P, Papaspiliopoulos O, Roberts G (2008). “Particle Filters for Partially Observed
Diffusions.” Journal of the Royal Statistical Society B, 70, 755-777. doi:10.1111/j.
1467-9868.2008.00661.x.

Fearnhead P, Papaspiliopoulos O, Roberts G, Stuart A (2010). “Random-Weight Particle
Filtering of Continuous Time Processes.” Journal of the Royal Statistical Society B, 72(4),
497-512. doi:10.1111/3j.1467-9868.2010.00744.x.

Frank O (1899). “Die Grundform des arteriellen Pulses. Erste Abhandlung: Mathematische
Analyse.” Zeitschrift fuer Biologie, 37, 483-526.

Frantz DD, Freeman DL, Doll JD (1990). “Reducing Quasi-Ergodic Behavior in Monte Carlo
Simulations by J-Walking: Applications to Atomic Clusters.” Journal of Chemical Physics,
93, 2769-2784. doi:10.1063/1.458863.

Gardiner C (2004). Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences. 3rd edition. Springer-Verlag.

http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x
http://dx.doi.org/10.1080/07362994.2013.817247
http://search.cpan.org/~fdesar/Parse-Yapp-1.05/yapp/
http://search.cpan.org/~fdesar/Parse-Yapp-1.05/yapp/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://arxiv.org/abs/1210.1871
http://dx.doi.org/10.1002/env.780
http://dx.doi.org/10.1002/env.1083
http://dx.doi.org/10.1029/94jc00572
http://dx.doi.org/10.1111/j.1467-9868.2008.00661.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00661.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00744.x
http://dx.doi.org/10.1063/1.458863

32 High-Performance Bayesian State-Space Modelling Using LibBi

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
6, 721-741. doi:10.1109/tpami.1984.4767596.

Geyer C, Thompson E (1995). “Annealing Markov Chain Monte Carlo with Applications to
Ancestral Inference.” Journal of the American Statistical Association, 90, 909-920. doi:
10.1080/01621459.1995.10476590.

Geyer CJ (1991). “Markov Chain Monte Carlo Maximum Likelihood.” In ED Keramidas (ed.),
Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp.
156—163. doi:10.1080/01621459.1995.10476590.

Gilks W, Roberts G, Sahu S (1998). “Adaptive Markov Chain Monte Carlo through
Regeneration.” Journal of the American Statistical Association, 93, 1045-1054. doi:
10.1080/01621459.1998.10473766.

GNU (2013). “GNU Autotools.” URL http://www.gnu.org/software/.

Golightly A, Wilkinson D (2011). “Bayesian Parameter Inference for Stochastic Biochemical
Network Models Using Particle Markov Chain Monte Carlo.” Interface Focus, 1, 807-820.

Golightly A, Wilkinson DJ (2008). “Bayesian Inference for Nonlinear Multivariate Diffusion
Models Observed with Error.” Computational Statistics € Data Analysis, 52, 1674-1693.
doi:10.1016/j.csda.2007.05.019.

Gordon NJ, Salmond DJ, Smith AFM (1993). “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation.” IFE Proceedings-F, 140, 107-113. doi:10.1049/ip-f-2.
1993.0015.

Haario H, Saksman E, Tamminen J (2001). “An Adaptive Metropolis Algorithm.” Bernoulli,
7,223-242. doi:10.2307/3318737.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57, 97-109.

HDF Group (2013). “HDF5.” Hierarchical Data Format, URL http://www.hdfgroup.org/
HDF5/.

Hoffman M, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15, 1593-1623. In
press.

Hosack G, Peters G, Hayes, R K (2012). “Estimating Density Dependence and Latent Popu-
lation Trajectories with Unknown Observation Error.” Methods in Ecology and Evolution,
3(6), 1028-1038. doi:10.1111/j.2041-210x.2012.00218.x.

Jacob P, Murray L, Rubenthaler S (2015). “Path Storage in the Particle Filter.” Statistics
and Computing, 25(2), 487-496. doi:10.1007/s11222-013-9445-x.

Johansen AM (2009). “SMCTC: Sequential Monte Carlo in C++." Journal of Statistical
Software, 30(6), 1-41. doi:10.18637/jss.v030.106.

http://dx.doi.org/10.1109/tpami.1984.4767596
http://dx.doi.org/10.1080/01621459.1995.10476590
http://dx.doi.org/10.1080/01621459.1995.10476590
http://dx.doi.org/10.1080/01621459.1995.10476590
http://dx.doi.org/10.1080/01621459.1998.10473766
http://dx.doi.org/10.1080/01621459.1998.10473766
http://www.gnu.org/software/
http://dx.doi.org/10.1016/j.csda.2007.05.019
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.2307/3318737
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1111/j.2041-210x.2012.00218.x
http://dx.doi.org/10.1007/s11222-013-9445-x
http://dx.doi.org/10.18637/jss.v030.i06

Journal of Statistical Software 33

Johnson S (2013). “Yacc.” URL http://dinosaur.compilertools.net/yacc/.

Jones E, Parslow J, Murray L (2010). “A Bayesian Approach to State and Parameter Estima-
tion in a Phytoplankton-Zooplankton Model.” Australian Meteorological and Oceanographic
Journal, 59(SP), 7-16.

Julier S, Uhlmann J (1997). “A New Extension of the Kalman Filter to Nonlinear Systems.” In
The Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defense
Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Manage-
ment. doi:10.1117/12.280797.

Kalman RE (1960). “A New Approach to Linear Filtering and Prediction Problems.” Journal
of Basic Engineering, 82, 35-45. doi:10.1115/1.3662552.

Kind T, Faes T, Lankhaar JW, Vonk-Noordegraaf A, Verhaegen M (2010). “Estimation of
Three- And Four-Element Windkessel Parameters Using Subspace Model Identification.”
IEEE Transactions on Biomedical Engineering, 57, 1531-1538. doi:10.1109/tbme.2010.
2041351.

Kitagawa G (1996). “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State
Space Models.” Journal of Computational and Graphical Statistics, 5, 1-25. doi:10.2307/
1390750.

Kloeden P, Platen E (1992). Numerical Solution of Stochastic Differential Equations.
Springer-Verlag. doi:10.1007/978-3-662-12616-5.

Laskey K, Myers J (2003). “Population Markov Chain Monte Carlo.” Machine Learning, 50,
175-196. doi:10.1023/a:1020206129842.

Lee A, Whiteley N (2014). “Forest Resampling for Distributed Sequential Monte Carlo.” URL
http://arxiv.org/abs/1406.6010.

Lee A, Yau C, Giles M, Doucet A, Holmes C (2010). “On the Utility of Graphics Cards
to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods.” Journal of
Computational and Graphical Statistics, 19, 769-789. doi:10.1198/jcgs.2010.10039.

Lorenz E (2006). “3: Predictability — A Problem Partly Solved.” In T Palmer, R Hagedorn
(eds.), Predictability of Weather and Climate, pp. 40-58. Cambridge University Press. doi:
10.1017/cbo9780511617652.004.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS Book: A Practical
Introduction to Bayesian Analysis. CRC Press / Chapman and Hall.

Lunn D, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS — A Bayesian Modelling
Framework: Concepts, Structure and Extensibility.” Statistics and Computing, 10, 325-337.
doi:10.1023/a:1008929526011.

Marinari E, Parisi G (1992). “Simulated Tempering: A New Monte Carlo Scheme.” FEuro-
physics Letters, 19, 451-458.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). “Equation of
State Calculations by Fast Computing Machines.” Journal of Chemical Physics, 21, 1087—
1092. doi:10.1063/1.1699114.

http://dinosaur.compilertools.net/yacc/
http://dx.doi.org/10.1117/12.280797
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/tbme.2010.2041351
http://dx.doi.org/10.1109/tbme.2010.2041351
http://dx.doi.org/10.2307/1390750
http://dx.doi.org/10.2307/1390750
http://dx.doi.org/10.1007/978-3-662-12616-5
http://dx.doi.org/10.1023/a:1020206129842
http://arxiv.org/abs/1406.6010
http://dx.doi.org/10.1198/jcgs.2010.10039
http://dx.doi.org/10.1017/cbo9780511617652.004
http://dx.doi.org/10.1017/cbo9780511617652.004
http://dx.doi.org/10.1023/a:1008929526011
http://dx.doi.org/10.1063/1.1699114

34 High-Performance Bayesian State-Space Modelling Using LibBi

Milstein G, Tretyakov M (2004). Stochastic Numerics for Mathematical Physics. Scientific
Computation. Springer-Verlag. doi:10.1007/978-3-662-10063-9.

MPI Forum (2013). “MPI: Message Passing Interface.” URL http://www.mpi-forum.org/.

Murray L (2011). “GPU Acceleration of the Particle Filter: The Metropolis Resampler.” In
DMMD: Distributed Machine Learning and Sparse Representation with Massive Data Sets.
URL http://arxiv.org/abs/1202.6163.

Murray L (2012). “GPU Acceleration of Runge-Kutta Integrators.” IEEE Transactions on
Parallel and Distributed Systems, 23, 94-101. doi:10.1109/tpds.2011.61.

Murray L (2013). “LibBi: Library for Bayesian Inference.” URL http://www.libbi.org/.

Murray L, Jones E, Parslow J (2013). “On Disturbance State-Space Models and the Particle
Marginal Metropolis-Hastings Sampler.” SIAM/ASA Journal of Uncertainty Quantifica-
ﬁon,l(l),494f521.doi:10.1137/130915376.

Murray L, Lee A, Jacob P (2014). “Parallel Resampling in the Particle Filter.” In review,
URL http://arxiv.org/abs/1301.4019.

Murray L, Storkey A (2008). “Continuous Time Particle Filtering for fMRI” In Advances in
Neural Information Processing Systems, volume 20, pp. 1049-1056. MIT Press.

Murray L, Storkey A (2011). “Particle Smoothing in Continuous Time: A Fast Approach
via Density Estimation.” IFEFE Transactions on Signal Processing, 59, 1017-1026. doi:
10.1109/tsp.2010.2096418.

Neal R (1996). “Sampling from Multimodal Distributions Using Tempered Transitions.”
Statistics and Computing, 6, 353-366. doi:10.1007/bf00143556.

Neal R (2011). “5: MCMC Using Hamiltonian Dynamic.” In S Brooks, A Gelman, G Jones,
XL Meng (eds.), Handbook of Markov Chain Monte Carlo, pp. 113-162. CRC Press /
Chapman and Hall.

Newman K, Fernandez C, Thomas L, Buckland S (2009). “Monte Carlo Inference for State-
Space Models of Wild Animal Populations.” Biometrics, 65(2), 572-583. doi:10.1111/j.
1541-0420.2008.01073.x.

NVIDIA Corporation (2013). “CUDA: Compute Unified Device Architecture.” URL http:
//www.nvidia.com/cuda/.

OpenMP Architecture Review Board (2013). “OpenMP: The OpenMP API Specification for
Parallel Computing.” URL http://www.openmp.org/.

Papaspiliopoulos O, Roberts G, Skold M (2007). “A General Framework for the Param-
eterisation of Hierarchical Models.” Statistical Science, 22(1), 59-73. doi:10.1214/
088342307000000014.

Parslow J, Cressie N, Campbell E, Jones E, Murray L (2013). “Bayesian Learning and
Predictability in a Stochastic Nonlinear Dynamical Model.” Ecological Applications, 23(4),
679-698. doi:10.1890/12-0312.1.

http://dx.doi.org/10.1007/978-3-662-10063-9
http://www.mpi-forum.org/
http://arxiv.org/abs/1202.6163
http://dx.doi.org/10.1109/tpds.2011.61
http://www.libbi.org/
http://dx.doi.org/10.1137/130915376
http://arxiv.org/abs/1301.4019
http://dx.doi.org/10.1109/tsp.2010.2096418
http://dx.doi.org/10.1109/tsp.2010.2096418
http://dx.doi.org/10.1007/bf00143556
http://dx.doi.org/10.1111/j.1541-0420.2008.01073.x
http://dx.doi.org/10.1111/j.1541-0420.2008.01073.x
http://www.nvidia.com/cuda/
http://www.nvidia.com/cuda/
http://www.openmp.org/
http://dx.doi.org/10.1214/088342307000000014
http://dx.doi.org/10.1214/088342307000000014
http://dx.doi.org/10.1890/12-0312.1

Journal of Statistical Software 35

Peters G, Hosack G, Hayes K (2011). “Ecological Non-Linear State Space Model Selection via
Adaptive Particle Markov Chain Monte Carlo (AdPMCMC).” URL http://arxiv.org/
abs/1005.2238.

Pitt M, Silva R, Giordani P, Kohn R (2012). “On Some Properties of Markov Chain Monte
Carlo Simulation Methods Based on the Particle Filter.” Journal of Econometrics, 171(2),
134-151. doi:10.1016/j.jeconom.2012.06.004.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using
Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd Interna-
tional Workshop on Distributed Statistical Computing, Vienna, Austria. ISSN 1609-395X,
URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

Plummer M (2013). “JAGS: Just Another Gibbs Sampler” URL http://mcmc-jags.
sourceforge.net/.

Rauch H, Tung F, Striebel C (1965). “Maximum Likelihood Estimates of Linear Dynamic
Systems.” AIAA Journal, 3, 1445-1450. doi:10.2514/3.3166.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Riera J, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashim R (2004). “A
State-Space Model of the Hemodynamic Approach: Nonlinear Filtering of BOLD Signals.”
Neurolmage, 21, 547-567. doi:10.1016/j.neuroimage.2003.09.052.

Ross P (2008). “Why CPU Frequency Stalled: The Data.” IEEE Spectrum. doi:10.1109/
mspec.2008.4476447.

Sarkka S (2008). “Unscented Rauch-Tung-Striebel Smoother.” IEEE Transactions on Auto-
mated Control, 53, 845-849. doi:10.1109/tac.2008.919531.

Smith G, Schmidt S, McGee L (1962). “Application of Statistical Filter Theory to the Optimal
Estimation of Position and Velocity On Board a Circumlunar Vehicle.” Technical report,
National Aeronautics and Space Administration.

Song F, Tomov S, Dongarra J (2012). “Enabling and Scaling Matrix Computations on
Heterogeneous Multi-Core and Multi-GPU Systems.” In Proceedings of the 26th ACM
International Conference on Supercomputing, pp. 3656—-376. ACM, New York. doi:
10.1145/2304576.2304625.

Stan Development Team (2015). “Stan: A C++ Library for Probability and Sampling, Version
2.8.0” URL http://mc-stan.org/.

Sutter H (2005). “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software.” Dr. Dobb’s Journal, 30. Online version updates CPU trend results to 2009,
URL http://www.gotw.ca/publications/concurrency-ddj.htm.

The MathWorks, Inc (2013). MATLAB - The Language of Technical Computing, Ver-
ston R2013b. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.
com/products/matlab/.

http://arxiv.org/abs/1005.2238
http://arxiv.org/abs/1005.2238
http://dx.doi.org/10.1016/j.jeconom.2012.06.004
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://dx.doi.org/10.2514/3.3166
http://www.R-project.org/
http://dx.doi.org/10.1016/j.neuroimage.2003.09.052
http://dx.doi.org/10.1109/mspec.2008.4476447
http://dx.doi.org/10.1109/mspec.2008.4476447
http://dx.doi.org/10.1109/tac.2008.919531
http://dx.doi.org/10.1145/2304576.2304625
http://dx.doi.org/10.1145/2304576.2304625
http://mc-stan.org/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

36 High-Performance Bayesian State-Space Modelling Using LibBi

Todeschini A, Caron F (2013). “BiiPS: Bayesian Inference with Interacting Particle Systems.”
URL https://alea.bordeaux.inria.fr/biips/.

UniData (2013). “NetCDF.” Network Common Data Form, URL http://www.unidata.
ucar.edu/software/netcdf/.

Vo BN, Ma WK (2006). “The Gaussian Mixture Probability Hypothesis Density Filter.” IEEE
Transactions on Signal Processing, 54, 4091-4104. doi:10.1109/tsp.2006.881190.

Wardley A (2013). “The Perl Template Toolkit.” URL http://www.template-toolkit.org/.

Westerhof N, Lankhaar JW, Westerhof B (2009). “The Arterial Windkessel.” Medical and Bi-
ological Engineering and Computing, 47(2), 131-141. doi:10.1007/s11517-008-0359-2.

Whiteley N, Lee A, Heine K (2013). “On the Role of Interaction in Sequential Monte Carlo
Algorithms.” URL http://arxiv.org/abs/1309.2918.

Wikle C (2003). “Hierarchical Bayesian Models for Predicting the Spread of Ecologi-
cal Processes” FEcology, 84(6), 1382-1394. doi:10.1890/0012-9658(2003)084[1382:
hbmfpt]2.0.co;2.

Affiliation:

Lawrence M. Murray
Department of Statistics
University of Oxford

Oxford, United Kingdom

E-mail: murray@stats.ox.ac.uk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2015, Volume 67, Issue 10 Submitted: 2013-06-16

doi:10.18637/jss.v067.110 Accepted: 2014-11-21

https://alea.bordeaux.inria.fr/biips/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://dx.doi.org/10.1109/tsp.2006.881190
http://www.template-toolkit.org/
http://dx.doi.org/10.1007/s11517-008-0359-2
http://arxiv.org/abs/1309.2918
http://dx.doi.org/10.1890/0012-9658(2003)084[1382:hbmfpt]2.0.co;2
http://dx.doi.org/10.1890/0012-9658(2003)084[1382:hbmfpt]2.0.co;2
mailto:murray@stats.ox.ac.uk
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v067.i10

	Introduction
	State space models
	Examples
	Windkessel model
	Lorenz '96 model

	Inference methods
	State estimation
	The Kalman filter
	The particle filter

	Parameter estimation
	Marginal Metropolis-Hastings
	Sequential Monte Carlo

	Parallelization
	Examples
	Windkessel example
	Lorenz '96 example

	The LibBi software
	Suitability
	Performance results

	Summary
	Supplementary material

