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Abstract

We describe the R package CovSel, which reduces the dimension of the covariate vector
for the purpose of estimating an average causal effect under the unconfoundedness assump-
tion. Covariate selection algorithms developed in De Luna, Waernbaum, and Richardson
(2011) are implemented using model-free backward elimination. We show how to use the
package to select minimal sets of covariates. The package can be used with continuous
and discrete covariates and the user can choose between marginal co-ordinate hypothesis
tests and kernel-based smoothing as model-free dimension reduction techniques.
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1. Introduction

The theory and practice of causal inference from observational studies is an active research
field within the statistical sciences (including econometrics and epidemiology). Typical ob-
servational studies have as purpose to evaluate the effect of a causal variable (often called
treatment) on an outcome of interest. Since in observational studies pre-treatment variables,
henceforth covariates, are not expected to have a distribution balanced between treatment
groups, as opposed to a randomized study, one needs to control for confounding covariates.
Under unconfoundedness, i.e., the potential outcomes are independent of the treatment as-
signment given a vector of covariates, an average causal effect may be identified.

The starting point for covariate selection should be subject matter knowledge, which in
practice often gives only partial guidance, and this might result in an unnecessarily high-
dimensional covariate vector. When estimating an average causal effect non-parametrically,
controlling for too many covariates may result in poor performance of the estimator (e.g.,
Rubin 1997; Hahn 2004; De Luna et al. 2011) emphasizing the importance of avoiding con-
ditioning on redundant covariates. A common practice has been to control for all covariates
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affecting the treatment assignment without considering whether they are also related to out-
come. The lack of theoretical results in the literature on the issue of covariate selection was
pointed out in Imbens and Wooldridge (2009), and new results have recently appeared; see
De Luna et al. (2011), Vansteelandt, Bekaert, and Claeskens (2012), Laan and Gruber (2010);
see also earlier work by Robins and Rotnitzky (1995) and Hahn (2004).

In this article we introduce the R (R Core Team 2015) package CovSel (Higgstrom and
Persson 2015) aiming at reducing the covariate set when the purpose of the analysis is to
estimate an average causal effect non-parametrically. The package is available from the Com-
prehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=CovSel
and implements the general algorithms for covariate selection proposed by De Luna et al.
(2011) and Persson, Haggstrom, Waernbaum, and De Luna (2013). The former paper pro-
vides the theoretical foundation for the covariate selection algorithms and the latter studies
a data-driven implementation of the algorithms showing, e.g., how dimension reduction of
the covariate vector can yield important mean squared error (MSE) decrease for commonly
used non-parametric estimators. The data-driven covariate selection builds on marginal co-
ordinate hypothesis tests (Cook 2004; Li, Cook, and Nachtsheim 2005) for continuous-valued
covariate vectors, and on kernel smoothing with smoothing parameter thresholding when
discrete and continuous-valued covariates are available (Li, Racine, and Wooldridge 2009).

In Section 2 we give a brief description of the theoretical framework. We also introduce a
classic dataset, the Lalonde data, which is used to illustrate the purpose of the package.
Then follows a description of the CovSel package in Section 3. In Section 4 we demonstrate
the use of the package CovSel by performing covariate selection for the Lal.onde data as well
as in a number of different situations using simulated data.

2. Covariate selection when estimating average causal effects

2.1. Model

Assume that we have a random sample of individuals from a large population and want to
estimate the average causal effect of a binary treatment 7" on an outcome Y. The Neyman-
Rubin model (Splawa-Neyman 1990, which is the translated version of a paper published in
1923; Rubin 1974) is commonly used as a framework for causal reasoning and inference. For
each individual in the study, it defines two potential outcomes Y (1), outcome if treated, and
Y (0) outcome if not treated. Then, the individual causal effect is defined as (Y(1) — Y'(0)).
Because only one of the two potential outcomes can be observed for a given individual,
individual causal effects are not identified. Instead, population parameters are targeted, e.g.,
the average causal effect

8= EY(1) - Y (0).

Let X be a set of covariates observed before treatment on all individuals in the study. Then,
the identification of the parameter 5, and other population parameters, can be obtained under
the following assumptions.

Assumption 1 (Unconfoundedness) 7' I (Y (1),Y(0))|X.

Assumption 2 (Overlap) 0 < P(T' = 1|X) < 1.
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Figure 1: In Step 1 X7 such that 7" 1L X \ X7 |X7 holds is identified. In Step 2, for t = 0,1,
Q: C X7 such that ¥; 1L X7\ Q¢|Q; holds is identified.

Here A 1L B|C means A “is independent of” B given C' (Dawid 1979). The unconfounded-
ness assumption holds when X consists of all the covariates affecting both the causal agent T
and the potential outcomes Y'(1),Y(0). An example where the unconfoundedness assumption
holds trivially are randomized experiments, where we have 7' I (Y(1),Y(0)). In observa-
tional studies, the unconfoundedness assumption may be realistic in situations where many
covariates X are available to condition on.

2.2. Algorithms and minimal sets of covariates

The covariates one wishes to identify are those which affect treatment as well as the potential
outcomes and if Assumptions 1 and 2 hold it is possible to define the minimal sets of covariates
such that the treatment and the potential outcomes are independent given these sets, see De
Luna et al. (2011). Algorithms for covariate selection, denoted Algorithm 1 and Algorithm
2, are described in Figures 1 and 2, where the sets X7, Q;, X; and Z¢, t = 0,1, are defined
as follows: X7 is the minimal set of the complete covariate vector X rendering 7" and the
covariates not included in Xp conditionally independent, T 1L X \ Xp|Xp. Similarly, Q; is
the minimal subset of X rendering Y; and the covariates not included in Q; conditionally
independent, ¥; 1 X7\ QQ;. X; is the minimal set of the complete covariate vector X
rendering Y; and the covariates not included in X; conditionally independent, Y; 1 X\
X¢|X¢, and Z; is the minimal subset of X; rendering 7" and the covariates not included in Xy
conditionally independent, 7" I X; \ Z;|Z; . For existence and uniqueness of the sets defined
above see De Luna et al. (2011).



4 CovSel: Covariate Selection When Estimating Average Causal Effects in R

Algorithm 2
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Figure 2: In Step 1, for t = 0,1, X; such that ¥; 1L X \ X;|X; holds is identified. In Step 2,
for t =0,1, Z; C X; such that 7' 1L X; \ Z|Z; holds is identified.

2.3. The LaLonde data

The LaLonde data was first analyzed in LaLonde (1986) and has since then been used
numerous times (e.g., Dehejia and Wahba 1999; Smith and Todd 2005; Abadie and Im-
bens 2011). The data used in this paper is available on Dehejia’s web page at http:
//www.nber.org/~rdehejia/data/nswdata2.html and consists of 297 treated units from
a randomized evaluation of a labor training program, the national supported work (NSW)
demonstration, and 314 non-experimental comparison units drawn from survey datasets. Be-
low, using the text files from Dehejia’s web page, we construct the data frame lalonde which
will be used later on to demonstrate the selection of covariates for estimation of the average
causal effect of participation in NSW on post-intervention earnings. The lalonde data frame
is included in the CovSel package and can be accessed with the data command. Similar but
not identical datasets are included in other R packages, e.g., arm (Gelman and Su 2015),
Matching (Sekhon 2011), MatchIt (Ho, Imai, King, and Stuart 2011) and cem (Iacus, King,
and Porro 2009). The following code is used to create the lalonde data frame included in
package CovSel:

R> treated <- read.table(file = "nswre74_treated.txt")
R> controls <- read.table(file = "cps3_controls.txt")
R> nsw <- rbind(treated, controls)

R> ue <- function(x) factor(ifelse(x > 0, 0, 1))

R> UE74 <- mapply(ue, nsw[, 8])

R> UE75 <- mapply(ue, nsw[, 9])

R> nsw([, 4:7] <- lapply(nsw[, 4:7], factor)

R> lalonde <- cbind(nsw([, 1:9], UE74, UE75, nsw[, 10])
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R> colnames(lalonde) <- c("treat", "age", "educ", "black", "hisp",
+ "married", "nodegr", "re74", "re7r5", "ur4", "u75", "re78")

The data frame lalonde consists of 614 observations on 12 variables. The first ten rows are
shown below.

R> lalonde[1:10, ]

treat age educ black hisp married nodegr re74 re75 u74 u75 re’78
1 1 37 11 1 0 1 1 0 0 1 1 9930.0460
2 1 22 9 0 1 0 1 0 0 1 1 3595.8940
3 1 30 12 1 0 0 0 0 0 1 1 24909.4500
4 1 27 11 1 0 0 1 0 0 1 1 7506.1460
5 1 33 8 1 0 0 1 0 0 1 1 289.7899
6 1 22 9 1 0 0 1 0 0 1 1 4056.4940
7 1 23 12 1 0 0 0 0 o 1 1 0.0000
8 1 32 11 1 0 0 1 0 0 1 1 8472.1580
9 1 22 16 1 0 0 0 0 0 1 1 2164.0220
10 1 33 12 0 0 1 0 0 0 1 1 12418.0700

The first variable, treat, is the treatment status indicator variable, with 1 indicating partic-
ipation in NSW. The next two variables are age in years (age) and schooling in years (educ).
Next, black, hisp, married and nodegr are indicator variables (1 = yes, 0 = no) for black,
hispanic, marital status and high school diploma, respectively. Real earnings during the years
1974, 1975 and 1978 are given in re74, re75, re78, respectively, and u74, u75 are indicator
variables for earnings in 1974, 1975 being zero.

3. The R package CovSel

The R package CovSel contains the functions:

e cov.sel is the main function called by the user for selecting covariate sets.
e cov.sel.np is called by cov.sel if kernel smoothing should be used.

e summary method for ‘cov.sel’ objects produces a summary of the results returned by
cov.sel.

The package also contains the simulated data sets datc, datf and datfc which are described
and analyzed in the examples in Section 4.

3.1. Function cov.sel

The function cov.sel can be used for reducing the dimension of the covariate vector in
situations where we want to estimate an average causal effect and the unconfoundedness
assumption holds. It is used as:

cov.sel(T, Y, X, type = c("dr", "np"), alg = 3, scope = NULL, alpha = 0.1,
thru = 0.5, thro = 0.25, thrc = 100, ...)
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and takes the following arguments:

T is a binary vector indicating the treatment status.

Y is a numeric vector of observed outcomes.

e X is a matrix or data frame containing columns of covariates. The covariates may be a
mix of continuous, unordered discrete (to be specified in the data frame using factor),
and ordered discrete (to be specified in the data frame using ordered).

e type is the type of method used, "dr" for marginal co-ordinate hypothesis tests and
"np" for kernel-based smoothing. Marginal co-ordinate hypothesis tests are suitable in
situations with only continuous covariates while kernel-based smoothing can be used if
discrete covariates are also present.

e alg is used to specify which algorithm to use. alg = 1 indicates Algorithm 1, alg = 2
indicates Algorithm 2 and alg = 3 runs them both. alg = 3 is default.

o scope is a character string giving the name of one (or several) covariate(s) that must
not be removed.

e alpha is a stopping criterion for the marginal co-ordinate hypothesis tests, i.e., the
algorithm will stop removing covariates when the p value for the next covariate to be
removed is less then alpha. The default is alpha = 0.1.

e thru is the bandwidth threshold used for unordered discrete covariates if type = "np".
Values in [0, 1] are valid. thru = 0 removes all unordered discrete covariates and thru
= 1 removes none of them. Default is thru = 0.5.

e thro is the bandwidth threshold used for ordered discrete covariates if type = "np".
Values in [0, 1] are valid. thro = 0 removes all ordered discrete covariates and thro =
1 removes none of them. Default is thro = 0.25.

e thrc is the bandwidth threshold used for continuous covariates if type = "np". Non-
negative values are valid. Default is thr = 100.

e ... are additional arguments passed on to dr or npregbw. If type = "dr", method
can be set to "sir" or "save", the first being the default. trace = 0 suppresses the
output generated by dr.step. If type = "np", regtype can be set to "lc" or "11",
the first being the default and bwtype can be set to "fixed", "generalized_nn" or
"adaptive_nn", where default is "fixed". See dr and npregbw for usage of na.action.

If type = "dr", marginal co-ordinate hypothesis tests are performed in each step of the
algorithm using the function dr from package dr (Weisberg 2002). If on the other hand type
= "np" then non-parametric kernel regression is repeatedly performed, using the function
npregbw from package np (Hayfield and Racine 2008), to determine which covariates can be
removed from the full covariate set.

With dr one can choose between sliced inverse regression, "sir", or sliced average variance
estimation, "save". Both are methods based on studying an inverse regression problem,
where the former considers dependencies only through the first moment (the mean) while
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the latter looks at the second moment (Cook and Weisberg 1991). Though "save" is more
general than "sir", it may miss first moment information, e.g., linear trends. Thus, one may
want to use both to see if they result in different choices of covariate sets. For kernel-based
smoothing the regression type can be set to using a local constant or local linear kernel and
the bandwidth type can be set to fixed, generalized nearest neighbors or adaptive nearest
neighbors. See dr and npregbw for details.

In kernel-based smoothing the bandwidth range for an unordered discrete covariate x is 0
to 1/length(levels(x)), while for ordered discrete covariates, no matter how many levels,
the range is 0 to 1. For continuous covariates the bandwidth ranges from 0 to infinity.
Ordered discrete and continuous covariates are removed if their bandwidths exceed their
respective thresholds (thro and thrc). Unordered discrete covariates are removed if their
bandwidths are larger than thru times the maximum bandwidth.

Since cross-validation is used to select bandwidths for the kernel smoothing this is computa-
tionally intensive and a doubling of the sample size will increase the run time of npregbw by
a factor of four. This means that cov.sel with type = "np" will be slow for large sample
sizes since npregbw is called multiple times. The computation time can be reduced by setting
some of the arguments in npregbw to non-default values. For more on this subject the reader
is referred to Hayfield and Racine (2008) and to the frequently asked questions document on
Jeffrey S. Racine’s website (http://socserv.mcmaster.ca/racine/np_faq.pdf).

The default values for the thresholds thru, thro, thrc and alpha are arbitrary. On the other
hand, we know that the bandwidth for relevant covariates will tend to zero as sample size
increases (Li et al. 2009). The thresholds used should therefore be smaller the larger the
sample sizes in order to avoid selecting irrelevant covariates. This said, the default values for
the thresholds have shown to yield good results in simulations studies reported in Persson
et al. (2013), for a wide range of situations and sample sizes of 500 and 1000. In applications,
we recommend the user to investigate the sensitivity of the results to small changes in the
threshold values.

4. Examples

We illustrate the use of the main function cov.sel for different data situations. We begin
by selecting covariates in the simulated data sets and then move on to the LaLonde data.
Three simulated data sets, datc, datfc and datf, are included in package CovSel and can
be accessed with the data command, see below.

4.1. Continuous-valued covariates
Let us first install and load package CovSel in R.

R> install.packages("CovSel")
R> library("CovSel")

Loading required package: dr

Loading required package: MASS

Loading required package: np

Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-2)
[vignette("np_faq",package="np") provides answers to frequently asked questions]
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As can be seen above the CovSel package depends on and loads the additional packages dr
(Weisberg 2002), MASS (Venables and Ripley 2002) and np (Hayfield and Racine 2008).

The data in datc contains ten normally distributed covariates as well as the potential out-
comes, the treatment indicator 7" and the response Y. It is generated by

R> set.seed(9327529)

R> n <- 1000

R> eta <- mvrnorm(n, rep(0, 2), diag(1l, 2, 2))

R> Sigma <- diag(1, 10, 10)

R> Sigmal[7, 8] <- Sigmal[8, 7] <- 0.5

R> X <- mvrnorm(n, rep(0, 10), Sigma)

R>y0 <- 2+ 2% X[, 1] +2 *x X[, 2] + 2 » X[, 5] + 2 = X[, 6] +

+ 2 x X[, 8] + etal, 1]

R>yl <-4+ 2% X[, 1] +2 * X[, 2] + 2 * X[, 5] + 2 * X[, 6] +

+ 2 x X[, 8] + etal, 2]

R>e<-1/ (1 +exp(-0.5x*X[, 1] - 0.5 % X[, 2] - 0.5 X[, 3] -
+ 0.5 x X[, 4] - 0.5 x X[, 71))

R> T <- rbinom(n, 1, e)

R>y <-y1 *T+y0* (1 -T)

R> datc <- data.frame(x1 = X[, 1], x2 = X[, 2], x3 = X[, 3], x4 = X[, 4],
+ x5 = X[, 5], x6 = X[, 6], x7 = X[, 7], x8 = X[, 81, x9 = X[, 9],
+ x10 = X[, 10], yo, y1, y, T)

Since this data only contains continuous covariates we can use marginal co-ordinate hypothesis
tests in the selection algorithms, which is set by type = "dr". Using the default values (and
adding trace = 0 to suppress the extra output generated by dr.step), covariate selection is
performed as follows

R> ans <- cov.sel(T
+ alg = 3, scope
R> ans

datc$T, Y = datc$y, X = datc[, 1:10], type = "dr",
NULL, alpha = 0.1, trace = 0)

$X.T
[1] IIX1II "X2" "X3“ IIX4II ||X7ll

$Q.0
[1] llxlll ||X2ll IIXSH IIX7II

$Q.1
[1] "Xl" "X2" "X4“ "X7"

$X.0
[1] IIX1II IIX2H IIXSII "X6" "X8" IIX10II

$X.1
[1] IIX1II ||X2ll "X5|| "X6" “X8" IIX9I|



Journal of Statistical Software

$Z.0
[1] IIX1II ||X2ll IIX8||

$Z.1
[1] "Xl" "X2" "X8“

$evectorsQ.0

Dir1l Dir2 Dir3 Dird
x1 0.68345145 0.5336071 0.1570979 0.4333477
x2 0.59615208 -0.1855380 0.1490656 -0.7798567
x3 0.05556844 0.5080012 -0.8713177 -0.2648708
x7 0.41762299 -0.6502106 -0.4403465 0.3658916

$evectorsQ.1

Dir1l Dir2 Dir3 Dir4
x1 0.65122801 -0.28351936 -0.03334562 0.6525600
x2 0.70513331 -0.08037438 0.24224417 -0.6855881
x4 -0.04685983 -0.89753273 -0.37176312 -0.2161204
X7 0.27657413 0.32801177 -0.89554342 -0.2396380

$evectorsZ.0

Dir1 Dir2 Dir3
x1 0.7388869 -0.6469896 0.008586759
x2 0.6409990 0.7253482 0.332497832
x8 0.2077653 0.2351052 -0.943064929

$evectorszZ.1

Dir1l Dir2 Dir3
x1 0.7388869 -0.6469896 0.008586759
x2 0.6409990 0.7253482 0.332497832
x8 0.2077653 0.2351052 -0.943064929

$method
[1] "gir"

$covar
[1] llxlll IIX2" l|X3" ||X4ll IIX5ll "X6“ IIX7|| llX8" “X9" ||X10ll

attr(,"class")
[1] "cov.sel"

Applying the summary function to the ‘cov.sel’ object gives us information on the different
covariate sets defined in Section 2.

R> summary (ans)

Original covariate vector:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
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Minimal subsets of the covariate vector:

Q.0 = =x1 x2 x3 x7
Q.1 = x1 x2 x4 x7
Z.0 = x1 x2 x8
Z.1 = x1 x2 x8

Removed variables:
Q.0Ocomp = x4 xb x6 x8 x9 x10

Q.1comp = x3 x5 x6 x8 x9 x10
Z.0comp = x3 x4 x5 x6 x7 x9 x10
Z.lcomp = x3 x4 x5 x6 x7 x9 x10
method = sir

From the code generating the data we can see that the true subsets in Algorithm 1 are Xp =
{X1, X2, X3, X4, X7} and Qo = Q1 = { X1, X2, X7}. Similarly, the true subsets in Algorithm
2 are XO = X1 = {Xl,XQ,X5,X6,X8} and ZO = Zl = {Xl,XQ,Xg}. If we compare the
covariate sets selected by cov.sel we see that none of the covariates that theoretically should
be included is removed in this case.

Increasing the stopping criterion value to 0.3 and changing the method from the default "sir"
to "save" results in the following covariate sets

R> ans <- cov.sel(T
+ alg = 3, scope
R> ans

datc$T, Y = datc$y, X = datc[, 1:10], type = "dr",
NULL, alpha = 0.3, trace = 0, method = "save")

$X.T
[1] "Xl" "X3" "X4“ "X8"

$Q.0
[1] IIX1II "X3" "X8“

$Q.1
[1] IIX1II “X4" IIX8||

$X.0
[1] llxlll “X2" "X5“ "X6" ||X8ll

$X.1
[1] IIX1H "X2" HX5II "X6" "X8"

$Z.0
[1] qun "X8"

$z.1
[1] "X1" “X8"



$evectorsQ.O

Diril
x1 -0.5408152
x3 0.3384066
x8 -0.7700649

$evectorsQ.1
Dir1l
x1 -0.4946413
x4 0.1384715
x8 -0.8579951

$evectorsZ.0

Dirl
x1 -0.8608260
x8 -0.5088994

$evectorsZ.1
Dir1l

x1 -0.8608260
x8 -0.5088994
$method

[1] "save"
$covar

[1] "X1|| IIX2"

attr(,"class")
[1] "cov.sel"

The increased stopping criterion value would under "sir" have led to larger subsets but
here we see that this larger value in combination with "save" resulted in subsets smaller
than in the previous example. In this case the returned final subsets are too small, in that
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Dir2 Dir3

.53814880 0.6893291
.84193897 -0.4430845
.03917445 -0.5731506

Dir2 Dir3

.8030985 -0.32314659
.2132580 -0.94107811
.55663756 -0.09974101

Dir2

.5135257
.85680742

Dir2

.5135257
.8580742

lIX3" IIX4II |IX5ll "X6"

"X7"

llX8"

unconfoundedness is no longer upheld given these subsets.

4.2. Categorical covariates

The data in datf contains eight binary covariates as well as the potential outcomes, the
treatment indicator T" and the response Y. It is generated, using the package bindata (Leisch,

Weingessel, and Hornik 2012), as follows

R> library(bindata)
R> set.seed(9327529)

R> n<-500

R> x1 <- rbinom(n, 1, prob = 0.5)

"X9 n

"X10"

11
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R>
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x25 <- rmvbin(n, bincorr=cbind(c(1,0.7),c(0.7,1)), margprob=c(0.5,0.5))

x34 <- rmvbin(n, bincorr=cbind(c(1,0.7),c(0.7,1)), margprob=c(0.5,0.5))

x2 <- x25[,1]

x3 <- x34[,1]

x4 <- x34[,2]

x5 <- x25[,2]

x6 <- rbinom(n, 1, prob = 0.5)

x7<- rbinom(n, 1, prob = 0.5)

x8 <- rbinom(n, 1, prob = 0.5)

e0<-rnorm(n)

el<-rnorm(n)

p<-1/(1 + exp(3 - 1.5 *xx1 -1.5 %x2 - 1.5 *x3-0.1*x4 -0.1 % x5 -
1.3 * x8))

T <- rbinom(n, 1, prob = p)

yO <-4 + 2 *xx1 +3 *x4+5%x5+ 2 *x6+ e0

yl1 <- 2+ 2 % x1 + 3 % x4+ 5 *x x6 + 2 *x x6 + el

y<-yl *T+y0* (1 -T)

datf <- data.frame(x1l, x2, x3, x4, x5, x6, x7, x8, y0, y1, y, T)

datf[, 1:8] <- lapply(datf[, 1:8], factor)

datf[, 12] <- as.numeric(datf[, 12])

Since this data only contains categorical covariates we use kernel smoothing in the selection
algorithms, which is set by type = "np". Using the default values, covariate selection is
performed as follows

R>
+
R>

$X.
[1]

$Q.
[1]

$Q.
[1]

$X.
[1]

$X.
[1]

$z.
[1]

ans <- cov.sel(T = datf$T, Y = datf$y, X = datf[, 1:8], type = "np",

NULL, alpha = 0.1, thru = 0.5, thro = 0.25, thrc = 100)

alg = 3, scope
ans

T
llxlll ||X2ll "X3“ IIX5|| “X8"

0
IIX1II "X2" "X3“ IIX5II

1
llxlll ||X3ll IIX5l|

0
IIX1II “X4" "X5“ IIX6II

1
IIX1II "X4" "X5“ "X6"

0
IIX1II “X4" IIX5||
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$z.1
[1] IIX1II “X4" "X5||

$bandwidthsQ.O
[1] 0.020341307 0.231325017 0.017142417 0.003798791

$bandwidthsQ. 1
[1] 6.569470e-03 1.417726e-02 3.371529e-09

$bandwidthsZ.0
[1] 0.04257388 0.05589723 0.05354814

$bandwidthsZ.1
[1] 0.04257380 0.05589683 0.05354823

$regtype
[1] "Local-Constant"

$bwtype
[1] "fixed"

$covar
[1] "Xl" ||X2ll "X3|| "X4" ||X5ll "X6“ ||X7|| “X8"

attr(,"class")
[1] "cov.sel"

Here, X7, X9, X3, X4, X5 and Xg are all correlated with and thus affect T. However, X»
and X5 as well as X3 and X, are strongly correlated and the correlation between X9 and T
is larger than the correlation between X5 and 7T, similarly, the correlation between X3 and
T is larger than the correlation between X, and 7. In light of this, we almost have that
T 1 Xs5|X2 and similarly that 7" 1L X4|X3. This results in X7 = {X1, X9, X3, X5} and
Qo = Q1 = {X1, X2, X3} which is almost what is selected by cov.sel, the exceptions are
that Xj5 is included instead of X5 in Q.1 and in addition to the true sets in X.T and Q.0. The
true subsets in Algorithm 2 are Xg = X1 = {X1, X4, X5, Xs} and Zy = Z; = {X1, X4, X5}
and these are recovered by cov.sel.

4.3. Mixed valued covariates

The data in datfc contains four normally distributed covariates, four binary covariates as
well as the potential outcomes, the treatment indicator 7" and the response Y. It is generated
by:

R> set.seed(9327529)

R> n<-500

R> x1 <- rnorm(n, mean = 0, sd = 1)
R> x2 <- rbinom(n, 1, prob = 0.5)
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R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
+

R>
R>
R>
R>
R>
R>
R>
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x25 <- rmvbin(n, bincorr=cbind(c(1,0.7),c(0.7,1)), margprob=c(0.5,0.5))

x2 <- x25[,1]

Sigma <- matrix(c(1,0.5,0.5,1),ncol=2)

x34 <- mvrnorm(n, rep(0, 2), Sigma)

x3 <- x34[,1]

x4 <- x34[,2]

x5 <- x25[,2]

x6 <- rbinom(n, 1, prob = 0.5)

x7<- rnorm(n, mean = 0, sd = 1)

x8 <- rbinom(n, 1, prob = 0.5)

e0<-rnorm(n)

el<-rnorm(n)

p <-1/(1 + exp(3 - 1.2 *x1 - 3.7 *x2 -1.5 *x3-0.3%x4-0.3%*x5-
1.9 * x8))

T <- rbinom(n, 1, prob = p)

yO <-4+ 2 *x1 +3 *x4+5*x5+2*x6+ e0

y1 <=2+ 2 *x1 + 3 * x4+ 5 % x5 + 2 * x6 + el

y<-yl*T+y0* (1-T)

datfc <- data.frame(x1, x2, x3, x4, x5, x6, x7, x8, y0, y1, y, T)

datfc[, c(2, 5, 6, 8)] <- lapply(datfc[, c(2, 5, 6, 8)], factor)

datfc[, 12] <- as.numeric(datfc[, 12])

As in Section 4.3, we use kernel smoothing in the selection algorithms as this data contains
categorical covariates.

R>
+
R>

$X.
[1]

$Q.
[1]

$Q.
[1]

$X.
[1]

$X.
[1]

$z.
[1]

ans <- cov.sel(T = datfc$T, Y = datfc$y, X = datfc[, 1:8], type = "np",
NULL, alpha = 0.1, thru = 0.5, thro = 0.25, thrc = 100)

alg = 3, scope
ans

T
llxlll ||X2ll "X3“ IIX4II ||X7ll IIX8l|

0
IIX1II "X2" "X4“

1
llxlll ||X2ll IIX4l| IIX8|I

0
IIX1II “X4" "X5“ IIX6II

1
IIX1II "X4" "X5“ "X6"

0
IIX1II “X4" IIX5||
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$z.1
[1] IIX1II “X4" "X5||

$bandwidthsQ.O
[1] 0.425579270 0.002582504 0.324867709

$bandwidthsQ. 1
[1] 0.27246792 0.00594458 0.33618826 2.10872755

$bandwidthsZ.0
[1] 0.54726004 0.56496781 0.01344475

$bandwidthsZ.1
[1] 0.54726131 0.56496582 0.01344468

$regtype
[1] "Local-Constant"

$bwtype
[1] "fixed"

$covar
[1] "Xl" ||X2ll "X3|| "X4" ||X5ll "X6“ ||X7|| “X8"

attr(,"class")
[1] "cov.sel"

Similarly to the data in Section 4.3, X1, Xo, X3, X4, X5 and Xg are all correlated with 7" but X,
and Xj affect T"mainly through Xs and X3. Using the same reasoning as in Section 4.3 we have
that Xp = {Xl,XQ,Xg,,Xg}, Qo =Q; = {Xl,XQ,Xg}, Xp = X = {Xl,X4,X5,X6} and
Zo =7y = {X1, X4, X5}. Here, the subsets returned by Algorithm 2 is identical to the true
subsets. Algorithm 1 returned subsets of reduced dimension, sufficient for unconfoundedness
to hold, although none of the returned subsets equals the true subsets.

4.4. Real data: LaLonde

For the LaLonde data we set the arguments in cov.sel as follows: T is set equal to treat and
Y to re78, columns 1 and 12 in lalonde, respectively. The rest of the variables in the data
frame are given as covariates, X. Since both continuous (age, educ) and categorical covariates
are included we set type equal to "np". We begin with running Algorithm 1, alg = 1, with
the default threshold values for the bandwidths, and store the result in cs.

R> cs <- cov.sel(T = lalonde[, 1], Y = lalonde[, 12], X = lalonde[, 2:11],
+ type = "np", alg = 1, thru = 0.5, thro = 0.25, thrc = 100)

Looking at the resulting covariate selection we see that in Step 1 X.T includes age, black,
nodegr, u74 and u75 and in Step 2 the subsets Q.0 and Q.1 both consist of age, nodegr, u74
and u75.

15
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R> cs

$X.T
[1] uagen "black" nnodegrn uu74n uu75n

$Q.0
[1] llagell llnodegrll |Iu74ll |Iu75ll

$Q.1
[1] llagell "nodegrll ||u74ll ||u75"

$bandwidthsQ.O
[1] 4.289575022 0.211009655 0.087257373 0.002986449

$bandwidthsQ.1
[1] 32.14950550 0.16942699 0.06907088 0.08516276

$regtype
[1] lllcll

$bwtype
[1] "fixed"

$covar
[1] "age" "educ" "black" "hisp" "married" "nodegr" '"re74"
[8] "re75" nu74n na7s"

attr(,"class")
[1] "cov.sel"

Next we change to Algorithm 2, alg = 2, but leave everything else unchanged:

R> cs <- cov.sel(T = lalonde[, 1], Y = lalonde[, 12], X = lalonde[, 2:11],
+ type = "np", alg = 2, thru = 0.5, thro = 0.25, thrc = 100)

Here, in Step 1 the covariates age, black, educ, hisp, nodegr and u74 are retained in X.0
while X.1 includes educ, hisp, married and nodegr. In Step 2 these sets remain unchanged,
ie,Z.0=X.0and Z.1 = X.1; see De Luna et al. (2011) and Section 5 for a discussion on
differences between Algorithms 1 and 2.

> cs

$X.0
[1] llagell llblackll IIeduCll ||hispll llnodegrll llu74||

$X.1
[1] "educ" "hisp" "married" "nodegr"
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$Z.0

[1] llagell llblackll Ileducll ||hispll llnodegrll llu74||
$z.1

[1] "educ" "hisp" "married" "nodegr"

$bandwidthsZ.0
[1] 2.188735e+00 4.500190e-02 2.197854e+00 8.929507e-02 1.942976e-14
[6] 6.620783e-02

$bandwidthsZ.1
[1] 1.05345229 0.01691264 0.06745027 0.09992094

$regtype
[1] "1C"

$bwtype
[1] "fixed"

$covar
[1] "age" "educ" "black" "hisp" "married" "nodegr" '"re74"
[8] llre75Il |Iu74ll llu75ll

attr(,"class")
[1] "cov.sel"

5. Summary

We have described the R package CovSel which implements the covariate selection algorithms
developed in De Luna et al. (2011) and Persson et al. (2013) using model-free backward
elimination. The use of the package has been illustrated using a classic real world dataset
as well as simulated data. Controlling for confounding is an essential part in all evaluation
studies of effects of non-randomized treatments. Observational studies with a rich reservoir
of covariates are nowadays common, for instance with record linkage databases. Package
CovSel has the potential to help empirical scientists performing such evaluation studies by
identifying relevant covariate sets for estimating average causal effects.

Further insights on how to use package CovSel can be found in Persson et al. (2013), where a
large set of simulations experiments are reported. There, different selected covariate sets are
evaluated by comparing empirical bias, variance and MSE in the estimation of the average
causal effect. In particular, this Monte Carlo study indicates that Algorithm 2 is to be pre-
ferred to Algorithm 1, the former yielding often lower MSE. Moreover, basing the estimation
on the covariate set Xg U X yields lower variance but not necessarily lower bias, and either
Xo U X or Zg U Z; may yield lower MSE depending on the data generating mechanism.
These finite sample properties are in line with the theoretical results derived earlier in De
Luna et al. (2011).
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