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Abstract

This paper presents a software package that implements Bayesian model averaging for
gretl, the GNU regression, econometrics and time-series library. Bayesian model averaging
is a model-building strategy that takes account of model uncertainty in conclusions about
estimated parameters. It is an efficient tool for discovering the most probable models and
obtaining estimates of their posterior characteristics. In recent years we have observed an
increasing number of software packages devoted to Bayesian model averaging for different
statistical and econometric software. In this paper, we propose the BMA package for
gretl, which is an increasingly popular free, open-source software for econometric anal-
ysis with an easy-to-use graphical user interface. We introduce the BMA package for
linear regression models with jointness measures proposed by Ley and Steel (2007) and
Doppelhofer and Weeks (2009).
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1. Introduction

We know from elementary statistical theory that linear regression attempts to model the
relationship between two or more variables by fitting a simple linear equation to observed
data. In the classical approach, we usually rely on ordinary least squares (OLS) or maximum
likelihood (ML) estimates and popular model selection criteria, i.e., the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), to find the “best” model. A
problem with this approach arises when we have to select a “good” subset of variables from a
large set of regressors. When the number of possible exogenous variables is K, the number of
possible linear models is 2K . If we have, for example, K = 30 possible regressors, the number
of possible combinations of variables to be included or not equals 1073741824. This means
that it is very difficult, if not impossible, to find the estimates for all combinations. Moreover,
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Raftery, Madigan, and Hoeting (1997) show that standard variable selection procedures lead
to different estimates and conflicting conclusions about the main questions of interest.
Bayesian model averaging is a useful alternative to other variable selection procedures, because
it incorporates model uncertainty into conclusions about the estimated parameters. Bayesian
model averaging is a standard Bayesian solution to model uncertainty, where the inference on
parameters is based on a weighted average over all possible models under consideration, rather
than on one single regression model. These weights are the Bayesian posterior probabilities
of the individual models.
There is a recent and growing literature on Bayesian model averaging. Examples of appli-
cations of Bayesian model averaging can be found in a number of works (see, for example,
Hoeting, Madigan, Raftery, and Volinsky 1999, Steel 2011 for a recent overview). Our soft-
ware package for parameter estimation and model comparison of linear regression models is
based on Fernández, Ley, and Steel (2001a,b) and Koop (2003). We use the Markov chain
Monte Carlo model composition (MC3) sampling algorithm developed by Madigan, York, and
Allard (1995) to select a representative subset of models.
Doppelhofer and Weeks (2005, 2009) define a jointness measure of dependence among ex-
planatory variables that appear in the linear regression models. We use this measure to
identify whether two variables are substitutes, complements or neither. A similar jointness
measure was also proposed by Ley and Steel (2007).
In this paper, we propose Bayesian model averaging package for gretl, (gretl Team 2015)
named BMA. We can list several reasons why, in our opinion, it is important to address this
topic. gretl is an increasingly popular, free, open-source software for econometric analysis,
both for students and academics. It is written in pure C “by econometricians for econo-
metricians” with the international community gathered around two men: Allin Cottrell and
Riccardo “Jack” Lucchetti. Since 2009 the community has been meeting every two years at
the gretl conference. The last conference was held in Berlin on June 12–13, 2015. gretl is
licensed under the GPL-3 license (http://www.gnu.org/copyleft/gpl.html) and has been
reviewed several times in various international journals. The best known reviews were written
by Baiocchi and Distaso (2003), Yalta and Yalta (2007) and Rosenblad (2008). Some brief in-
formation about gretl was also presented in Lucchetti (2011) and Adkins (2011). Unlike most
other statistical software packages gretl has an easy-to-use graphical user interface (GUI).
Our software package is, therefore, a free and easy-to-use tool for Bayesian model averaging.
The rest of the paper is organized as follows: Section 2 briefly outlines Bayesian model aver-
aging for linear regression models with the MC3 sampling algorithm and jointness measures.
Section 3 provides an overview of the gretl packages for Bayesian model averaging. Section 4
includes an overview of Bayesian model averaging software packages. Section 5 presents an
empirical illustration. The final section concludes.

2. Bayesian inference in normal linear regression models
In this section, we briefly introduce the main features of Bayesian inference in linear regression
models. We present Bayesian estimation and prediction with normal-gamma natural conju-
gate priors and many explanatory variables, as well as model selection and Bayesian model
averaging techniques. Finally, in this section we present the basics of the Markov chain Monte
Carlo model composition sampling algorithm and jointness measures.

http://www.gnu.org/copyleft/gpl.html
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2.1. Bayesian estimation, model selection, and prediction

Let us consider normal linear regression models which differ in their explanatory variables
(see Koop 2003 for further details). Suppose that we have K potential explanatory variables,
which means there are 2K possible models and let Mr for r = 1, . . . , 2K denote the 2K
different models under consideration. Suppose also that yi and xi denote the observed data
on the dependent and explanatory variables for i = 1, . . . , N . The observations are placed
in a (N × 1) vector y and a (N × kr) matrix Xr containing the set of regressors included in
model Mr

1. Thus, we can write our model as

y = αιN +Xrβr + ε,

where ιN is a (N × 1) vector of ones, βr is a (kr × 1) vector of unknown parameters, ε is a
(N×1) vector of errors which are assumed to be normally distributed, ε ∼ N(0N , h−1IN ) and
h is the error precision, which is defined as h = 1

σ2 . N(µ,Σ) denotes a normal distribution
with mean µ and variance Σ. Following Koop (2003), the prior for βr is normally distributed,

βr | h,Mr ∼ N
(

0kr , h
−1
[
gX>r Xr

]−1
)
,

while we use a noninformative prior for the intercept and precision,

p(α) ∝ 1, p(h) ∝ 1
h
.

The factor of proportionality g is part of the so-called Zellner’s g-prior (Zellner 1986). This
prior is a convenient way to specify the prior variance matrix, because it reduces the number
of prior variance parameters and considerably simplifies posterior computations. The gretl
package offers the five most popular alternative Zellner’s g-priors (see Fernández et al. 2001a
and Moral-Benito 2010).

• Unit information prior (g-UIP), recommended by Kass and Wasserman (1995):

g = 1
N
. (1)

• Risk inflation criterion (g-RIC), proposed by Foster and George (1994):

g = 1
K2 . (2)

• Benchmark prior, recommended by Fernández et al. (2001a):

g =
{

1
K2 for N ≤ K2,
1
N for N > K2.

(3)

• g-HQ prior which mimics the Hannan and Quinn criterion, see Fernández et al. (2001a):

g = 1
(lnN)3 . (4)

1We subtract the mean from all regressors as in Fernández et al. (2001a).
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• Root of g-UIP, see Fernández et al. (2001a):

g =
√

1
N
. (5)

By Bayes’ rule, the mean of the posterior distribution of the slope parameters βr, conditional
on model Mr, can be written as

E(βr | y,Mr) =
[
(1 + g)X>r Xr

]−1
X>r y. (6)

It is easy to see that if g ≈ 0 the mean of the posterior distribution (see Equation 6) equals
the OLS estimates. The posterior variance of βr, conditional on model Mr, is given by

VAR (βr | y,Mr) = Ns2
r

N − 2
[
(1 + g)X>r Xr

]−1
, (7)

where

s2
r =

1
1+gy

>PWry + g
1+g (y − ȳιN )> (y − ȳιN )

N

and PWr = IN −Wr

(
W>r Wr

)−1
W>r for Wr = (ιN , Xr).

The marginal data density, conditional on model Mr, may be written as

p(y |Mr) ∝
(

g

1 + g

) kr
2
[ 1

1 + g
y>PWry + g

1 + g
(y − ȳιN )> (y − ȳιN )

]−N−1
2
. (8)

In the Bayesian approach of comparing models, it is considered useful to employ probabilities
to represent the degree of belief associated with the alternative models. For the normal
linear regression models we can easily test two mutually exclusive (non-nested) and jointly
exhaustive models with different subset of variables. Using Bayes’ theorem, the posterior
odds ratio for a model Ml against model Mn is given by

P(Ml | y)
P(Mn | y) = P(Ml)

P(Mn)
p(y |Ml)
p(y |Mn) , (9)

where P(Ml)
P(Mn) is the prior odds ratio and p(y|Ml)

p(y|Mn) is the Bayes factor. If the ratio P(Ml|y)
P(Mn|y) is

larger than 1, we can say that the data supports model Ml over model Mn. In our package,
we use two popular model priors.

• Binomial prior:
P(Mr) = θkr (1− θ)K−kr for r = 1, . . . , 2K . (10)

Note that for θ = 0.5 we have a uniform prior on the model space, i.e., P(Mr) = 2−K .

• Binomial-beta prior (see Gelman, Carlin, Stern, and Rubin 1997):

P(Ξ = kr) = Γ(K + 1)
Γ(kr + 1)Γ(K − kr + 1) ·

Γ(a+ kr)Γ(K + b− kr)
Γ(a+ b+ kr)

· Γ(a+ b)
Γ(a)Γ(b) , (11)

where Ξ denotes model size.



Journal of Statistical Software 5

In our package, we only need to specify the prior expected model size E(Ξ) ∈ (0,K]. Note
that in case of the binomial prior we have E(Ξ) = Kθ and the choice of E(Ξ) automatically
produces a value for the prior inclusion probability θ. If we have the binomial-beta prior, the
average model size will satisfy E(Ξ) = a

a+bK. Here, we follow Ley and Steel (2009) and fix
a = 1 hence obtaining the value of the second hyperparameter as b = K−E(Ξ)

E(Ξ) .
One of the most widely accepted norms of scientific investigation is Occam’s razor. Simply
speaking, Occam’s razor states that the simplest hypothesis is also the most probable (see for
example Madigan and Raftery 1994). In the BMA package we penalize large models through
the prior model probabilities (Osiewalski and Steel 1993). Note that one can make P(Mr) a
decreasing function of kr simply by defining the prior expected model size E(Ξ). The smaller
the prior expected model size E(Ξ), the less probable are large models.
It is easy to show that the posterior probability of model Ml is given by

P(Ml | y) = P(Ml)p(y |Ml)∑2K

r=1 P(Mr)p(y |Mr)
.

The posterior density of vector β is the average of the posterior densities p(βr | y,Mr)
conditional on the models

p(β | y) =
2K∑
r=1

P(Mr | y)p(βr | y,Mr).

Once the model posterior probabilities have been calculated, we can also easily evaluate the
mean and variance of the posterior distribution of slope parameters (see Leamer 1978).

E(β | y) =
2K∑
r=1

P(Mr | y)E(βr | y,Mr) (12)

and

VAR(β | y) =
2K∑
r=1

P(Mr | y)VAR(βr | y,Mr) +
2K∑
r=1

P(Mr | y) (E(βr | y,Mr)− E(β | y))2 (13)

In a similar manner, we can find other characteristics of the posterior distribution (see for
example Koop 2003, p. 266). We might be also interested in the estimates of the posterior
inclusion probability P(i | y) (PIP), i.e., the probability that, conditional on the data, but
unconditional with respect to a specific model, the variable xi is relevant in explaining the
dependent variable y (see Leamer 1978; Mitchell and Beauchamp 1988; Doppelhofer and
Weeks 2009). The PIP is calculated as the sum of the posterior model probabilities for all of
the models including variable xi.
In Bayesian model averaging approach, predictions of the dependent variable are made by
taking a weighted average of the individual model forecasts. As described in Fernández et al.
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(2001b), prediction of an unobserved data point yf is based on calculating

p(yf | y) =
2K∑
r=1

fS(yf | N − 1, ȳ + 1
g + 1x

>
f,rβ

∗
r ,

N − 1
Ns2

r

{1 + 1
N

+ 1
g + 1x

>
f,r(X>j Xj)−1xf,r}−1)P(Mr | y), (14)

where fS(yf | v, b, a) denotes the univariate Student-t density with v degrees of freedom,
mean b and precision a (with variance v/{a(v−2)}). In addition, β∗r =

[
X>r Xr

]−1
X>r y is the

ordinary least squares estimator for βr and xf,r groups the r elements of xf corresponding to
the regressors in model Mr.

2.2. MC3 sampling algorithm

Our MC3 sampling algorithm is based on the Metropolis-Hastings algorithm, and was origi-
nally developed by Madigan et al. (1995). It simulates a chain of modelsM (s) for s = 1, . . . , S
to find the equilibrium distribution P(Mr | y) of the posterior model probabilities. We do
this as follows: We construct a candidate set of models, containing all models constructed by
deleting one independent variable fromM (s−1) or adding one independent variable toM (s−1),
where M (s−1) is the previously accepted model M (s−1). The chain is then constructed by
drawing a model M ′ from this candidate set and the acceptance probability has the form

α
(
M (s−1),M ′

)
= min

{ P(M ′)p(y |M ′)
P(M (s−1))p(y |M (s−1))

, 1
}
.

In order to assess the reliability and the convergence of the chain, we look at the Pearson’s
correlation between the analytical and MC3 posterior model probabilities. Convergence is
concluded to be achieved if the correlation is above 0.99 (see Fernández et al. 2001b and
Koop 2003). Note that we measure correlation between the analytical and MC3 posterior
model probabilities only for the top ranked models. If the number of top ranked models is
very small, this may lead to a high value of Pearson’s correlation even when convergence has
not been achieved.

2.3. Jointness measures

The main implementations of Bayesian model averaging are concerned with the selection
of variables when model uncertainty is present. Another relevant issue which arises in this
framework is to identify whether different sets of two variables xi and xj are substitutes,
complements or neither over the model space. For that reason, Ley and Steel (2007) and
Doppelhofer and Weeks (2009) define ex-post jointness measures of dependence between dif-
ferent sets of explanatory variables. The logarithm of the jointness statistic proposed by Ley
and Steel (2007) has the form

JLS = ln
[ P(i ∩ j | y)

P(i | y) + P(j | y)− 2P(i ∩ j | y)

]
, (15)

where P(i ∩ j | y) represents the sum of the posterior probabilities of those models that
contain both variables xi and xj , P(i | y) and P(j | y) are the PIPs of xi and xj . JLS can
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Evidence Jointness statistics
Strong substitutes JLS , JDW ≤ −2
Significant substitutes −2 < JLS , JDW ≤ −1
Not significantly related −1 < JLS , JDW < 1
Significant complements 1 ≥ JLS , JDW < 2
Strong complements JLS , JDW ≥ 2

Table 1: Classification of strength of jointness measures.

be interpreted as the posterior odds ratio of the models including both i and j vs the models
that include them only individually (see Ley and Steel 2007).
An alternative jointness measure was proposed by Doppelhofer and Weeks (2009). It can be
written as follows

JDW = ln
[

P(i ∩ j | y)P(̃i ∩ j̃ | y)
P(i ∩ j̃ | y)P(̃i ∩ j | y)

]
, (16)

where P(̃i ∩ j̃ | y) denotes the sum of the posterior probabilities of the regression models in
which neither xi and xj are included, P(i ∩ j̃ | y) corresponds to the sum of the posterior
probabilities of all models in which xi is included and xj is excluded. The last probability
P(̃i ∩ j | y) is defined analogously.
JDW corresponds to the posterior odds of including i, given that j is included, divided by the
posterior odds of including i given that j is not included (see Doppelhofer and Weeks 2009).
According to Doppelhofer and Weeks (2009), we use the classification of jointness among the
variables given in Table 1.

3. Implementation in gretl
In this section, we describe the code as well as the use of the gretl package for Bayesian model
averaging, together with the accompanying jointness measures. First, we will characterize our
code and the use of the GUI, then we will present how to use BMA via a script. Finally, we
will show the outputs that are returned.

3.1. Hansl programming language

“Hansl (the name expands, in recursive fashion, to “Hansl’s a neat scripting language”) is
gretl’s scripting language.” (Cottrell and Lucchetti 2015c, p. 1). Hansl’s syntax is very
similar to the C language, including the passing of pointers to functions. What is very
useful for the end user is that Hansl provides a friendly mechanism for building GUIs for
functions/packages. Such packages consist of (at least) one “public” function and zero or
more “private” helper functions (see Cottrell and Lucchetti 2015b). This differentiation gives
programmers flexibility in writing packages for gretl and allows them to split the code into
small pieces (functions) responsible for logically separated computations.
The BMA package consists of 1 public and 17 private functions, but only 16 of them are used
regularly. The name of each function starts with the prefix BMA_.
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3.2. The core of the BMA code

The main function

The core package function which runs and controls the main loop is

function matrix BMA_main (
list big_list "List of all variables for BMA (Y must be the first one)",
int acc_type[1:2:1] "Model prior" {"Binomial", "Binomial-beta"},
scalar av_model_size[0::1] "Prior average model size",
scalar alpha[0:1:0.6] "Significance level for the initial model",
int l_rank[2::10] "Number of the top ranked models",
int g_type[1:5:1] "g-prior type" {"Benchmark prior",

"Unit Information Prior (g-UIP)", "Risk Inflation Criterion (g-RIC)",
"Hannan and Quinn HQC", "Root of g-UIP"},

int do_joint[0:2:0] "Jointness analysis" {"None", "Ley-Steel Measure",
"Doppelhofer-Weeks Measure"},

int h_predict[0::] "Number of out-of-sample forecasts",
int Nrep[1000000] "Total number of replications",
int burn[0:99:10] "Percentage of burn-in draws",
int verbosity[1:2:1] "Verbosity")

The words in quotation marks are the labels for the GUI shown in Figure 2.

• The big_list is a gretl’s object “named list” which is just a set of K + 1 variables
(defined by names or dataset ID). What is very important is the fact that the first
member of the big_list is treated as y variable and the rest of the members are treated
as K explanatory variables. Furthermore, the big_list cannot contain a const (gretl’s
internal and automatically generated constant term).

• The acc_type[1:2:1] is an integer indicating model prior type (the default is binomial,
see Equations 10 and 11).

• The scalar av_model_size[0::1] is the scalar of the prior average model size. Note,
if av_model_size = K

2 and the model prior is set to binomial, we get the uniform prior
on the model space. The default value is 1.

• The scalar alpha[0:1:0.6] is the significance level in OLS estimation. An indepen-
dent variable enters the initial model if its p value is less than the significance level
(see Koop 2003). The default value is α = 0.6, but setting α = 1 results in a model
consisting of 0 to K randomly chosen explanatory variables.

• The int l_rank[2::10] is the number of the top ranked models. The default value is
10.

• The int g_type[1:5:1] indicates the type of g-prior to be used (the default value is
1: “Benchmark prior”), see Equations 1, 2, 3, 4 and 5.

• The int do_joint[0:2:0] indicates whether we do jointness analysis and if so, which
measure to use. The default value is 0: “None”, see Section 2.3.
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• The h_predict[0::] is the number of out-of-sample forecasts.

• The int Nrep[1000000] is the total number of replications in the Monte Carlo simu-
lation. The default value is 1000000.

• The int burn[0:99:10] is the percentage of burn-in draws ranging from 0% to 99%.
The default value is 10%.

• The int verbosity[1:2:1] indicates the level of verbosity of the BMA package for
printing results. The default value is 1, i.e., silent mode.

The main loop

The main loop of the BMA package is split into four parts:

1. Setting up the MC3 sampling algorithm.

2. Constructing the initial model.

3. Markov chain Monte Carlo simulation.

4. Results printing.

In the first part of the main loop (Setting up the MC3 sampling algorithm), we set up the
internal variables and also check the correctness of the arguments passed to the package. We
use two private functions here:

1. function string BMA_parse (list big_list, const scalar *k,
const scalar *av_model_size, const scalar *l_rank);

2. function void BMA_scaling_factors (matrix *factors,
const scalar *k, scalar *y_sq, const int g_type, const matrix *Y);

where arguments indicated by the * modifier are pointers, see Cottrell and Lucchetti (2015b)
for explanation. If there is no error, we run the function BMA_scaling_factors which calls
the function scalar BMA_gprior (const scalar *k, int type) to compute the g-prior
according to Equations 1, 2, 3, 4, and 5. and sets up some scalars needed for further compu-
tations.
In the second part of the main loop (Constructing the initial model.), we construct the initial
model for MC3 sampling and set up some additional internal variables. Here we use five
private functions:

1. function list BMA_initial_model (const series *Y, list X,
const scalar *alpha, scalar *k, matrix var_order);

2. function void BMA_new_X_matrix (const matrix *big_mat_dem,
const matrix *Ones, const scalar *k, matrix *X_new_num,
matrix *X_new, list X_list, const scalar *k_new,
const matrix *var_numbers2, const matrix *big_mat_dem_predict[null],
matrix *X_new_predict[null], const scalar *h_predict);
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3. function void BMA_matrix_precompute (const matrix *Y, matrix *X,
const scalar *k, const matrix *Ones, const matrix *factors,
matrix *XtY, matrix *XtXinv, scalar *yMy,
matrix *ZtZinv[null], const scalar h_predict);

4. function void BMA_ols (const matrix *factors, matrix *XtY,
matrix *XtXinv, scalar *yMy, matrix *bhat, matrix *bvar);

5. function matrix BMA_model_structure (matrix *X_new_num,
const scalar *k, matrix *models_rank[null],
const scalar *l_models_rank[null], bool start_model[0]);

The function BMA_initial_model returns X_old_l – the list of explanatory variables in the
initial model according to the scalar *alpha. Next, the function BMA_new_X_matrix con-
structs X_new – the matrix of demeaned explanatory variables based on X_old_l. Further-
more, the X_new matrix is taken by the function BMA_matrix_precompute for the linear
algebraic calculations necessary to compute Equations 6, 7, and 8. Then we run the following
code snippet to compute Equation 8:

lprob_old = scaling_f[5] * (k_new + 1) - scaling_f[6] *
log(scaling_f[3] * yMy + scaling_f[4])

Subsequently, we run the function BMA_ols to compute Equations 6 and 7. Finally, we call
the function BMA_model_structure, which returns the 1×K row vector with a 1 indicating
that the explanatory variable was in the initial model and 0 otherwise.
In the third part of the main loop (Markov chain Monte Carlo simulation), we discard the first
Nburn = round(burn / 100 * Nrep) draws as burn-in replications and then we simulate a
chain of models. The most important code snippets are:

1. Drawing a candidate model.

potential_var = randint(0, k)
...

if (potential_var > 0)
if (mod_struct[potential_var] == 1)

X_new_l = X_old_l - var_numbers[potential_var + 1]
else

X_new_l = X_old_l var_numbers[potential_var + 1]
endif
...

2. Making the decision of accepting the candidate model.

if (log(randgen1(u, 0, 1)) < BMA_accept_prob(acc_type, &lprob_new,
&lprob_old, &k_new, &k_old, &k, &a, &b, &c))

...
endif;

3. Constructing/modifying the analytical and numerical model rankings.
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function void BMA_build_rank (matrix *mod_rank,
matrix *mod_rank_prob, matrix *mod_nume_prob,
const matrix *mod_struct, const scalar *l_rank,
const scalar *lprob_old);

4. Computing Bayesian model averaging stuff.

mod_size += k_new
var_prob += mod_struct
loop for i = 1..k_new --quiet

bhat_avg[X_new_num[i] - 1] += bhat[i + 1]
bvar_avg[X_new_num[i] - 1] += (bvar[i + 1] + bhat[i + 1]^2)

endloop;

5. Out-of-sample forecasting (if needed).

if (h_predict > 0 && k_new > 0)
Yhat = X_new_predict * bhat[2:k_new + 1] + y_mean
Yhat_avg += Yhat
precision = (($nobs - 1) / dj) * ((1 + 1 / $nobs + scaling_f[3]
* diag(X_new_predict * ZtZinv * X_new_predict')).^-1)

Yhat_var_avg += (($nobs - 1) / (precision * ($nobs - 3)) + Yhat.^2)
endif;

6. Analyzing jointness (if needed).

function void BMA_jointness_matrix (const matrix *mod_struct,
const scalar *k, matrix *jointness_m);

At Step 1 we draw the number of a variable ranging from 0 to K using the gretl’s built-
in function randint() which uses the SIMD-oriented fast Mersenne twister (SFMT) random
number generator (see Cottrell and Lucchetti 2015a; Yalta and Schreiber 2012)2. If the drawn
variable was in the last model, this variable is removed from it, otherwise it is added to the
last model.
At Step 2 we make the decision whether to accept the new draw (model) or not. We call the
BMA_accept_prob function, which implements the posterior odds ratio (see Equation 9).
At Step 3 we call the BMA_build_rank function, which is responsible for creating analytical,
as well as numerical rankings.
At Step 4 we do some counting needed for the Bayesian model averaging computations for-
mulated in Equations 12 and 13, that is the mean and variance of the posterior distribution
of slope parameters, as well as the average model size and the PIP.
At Step 5 if out-of-sample forecasts were selected we compute mean and variance of predictions
according to Equation 14.

2The code of the BMA package contains the private function ran2 which implements the so-called “ran2”
random number generator (RNG) by L’Ecuyer with Bays-Durham shuffle and added safeguards (see Press,
Flannery, Teukolsky, and Vetterling 1988). We implemented this RNG for convenience of replication of the
earlier published results, see Fernández et al. (2001b) and Ley and Steel (2007). In the BMA’s main loop
code there can be switched from SFMT to ran2 RNG. Note that our ran2 function is much slower than gretl’s
internal RNG.
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PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev. x1 x2 x3 . . . xK
x1
x2
x3 JLS or JDW
...
xK

Figure 1: Structure of the matrix returned by the BMA package.

Finally at Step 6, if jointness analysis was selected, we call the BMA_jointness_matrix func-
tion, which counts each coexistence (jointness) of every pair of explanatory variables in the
given draw.
In the last part of the main loop (Results printing), we finally call the BMA_print_results
function in order to print the MC3 sampling results. A detailed description of the structure
of the results printed here will be depicted in Section 3.3.

The matrix returned by the BMA package
The BMA package can optionally return a matrix containing substantial results obtained
in the analysis. The structure of that matrix is shown in Figure 1. The result matrix
has K rows, one for each explanatory variable. The first five columns are: the posterior
inclusion probabilities, the posterior mean and standard deviation of each coefficient (Mean
and Std.Dev.) and the posterior mean and standard deviation of each coefficient conditional
on the variable being included in the model (Cond.Mean and Cond.Std.Dev.), see page 15 for
details. The next K columns appear only if any of the jointness measures was selected and
contain the values of one of the jointness measures: Ley-Steel or Doppelhofer-Weeks.

3.3. Usage of the BMA package

The GUI way
Once you start gretl, you must open a data file and then you can load the relevant BMA
package from the gretl server. In the main window, go to Tools > Function packages >
On server heading. By selecting BMA, you will open a window similar to the one shown in
Figure 2:
According to Figure 2, we can specify the following entries in the GUI BMA window

• List of all variables for BMA (Y must be the first one) – Loading variables
from the database, which must have been opened previously. The dependent variable
must be the first one in the list of the variables currently available. Notice that by
default we assume that you want to estimate an intercept; therefore, a constant is
implicitly included in the list of the variables.

• Model prior – Indicates the choice of model prior. One can employ the binomial model
prior or the binomial-beta model prior. Note that the uniform model prior is a special
case of the binomial model prior. Therefore, in fact, our package allows for three types
of priors.



Journal of Statistical Software 13

Figure 2: Main window for BMA.

• Prior average model size – Specifies the prior expected model size E(Ξ). The ex-
pected model size may range from 0 to K. The default value equals 1. It is the smallest
reasonable prior expected model size. It means that we penalize large models and we
assign high probability to small ones following Occam’s razor philosophy.
Note that for the binomial model prior and with E(Ξ) = 0.5K one can define the uniform
prior on the model space. For example, for K = 10 regressors we can define the uniform
prior with E(Ξ) = 5. For E(Ξ) < 5 we assign high probability to small models. The
smaller the prior expected model size E(Ξ), the less probable are larger models.

• Significance level for the initial model – Defines the significance level which
is used to build the initial model. An explanatory variable enters the initial model
if its p value is less than the significance level. If the significance level equals 1, the
initial model will be randomly chosen (with equal probability) from all available models.
Note that if all available explanatory variables enter the initial model, you will get the
following gretl error message “No independent variables were omitted”.

• Number of top ranked models – Specifies the number of best models for which de-
tailed information is stored.

• g-prior type – One can choose between four Zellner’s g-priors for the regression coeffi-
cients. Choices include: benchmark prior, unit information prior, risk inflation criterion,
Hannan and Quinn prior, root of g-UIP.
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• Jointness analysis – If "None" (the default), the jointness analysis is omitted. Alter-
natively, one can choose the jointness measures of Ley and Steel (2007) or Doppelhofer
and Weeks (2009).

• Number of out-of-sample forecasts – Defines the total number of out-of-sample
forecasts of the dependent variable.

• Total number of replications – Defines the total number of iteration draws to be
sampled.

• Percentage of burn-in draws – Specifies the number of burn-in replications, calcu-
lated as the percentage of the total number of iteration draws.

• Verbosity – An integer value of 1 or 2; the default is 1, which allows to see the basic
Bayesian model averaging results. If Verbosity equals 2, a more detailed description
of the analysis is provided (initial model, speed of convergence, estimation results for
top ranked models).

• matrix – The output can be saved under a specified name to the current session.

Script

The BMA package can also be used inside Hansl scripts. A very minimal code could be as
follows:

open greene9_1.gdt
include BMA.gfn

list greene = dataset

BMA_main(greene, 1, 1.5, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

The above example consists of three blocks.
The first block defines just the opening of the so-called greene9_1 dataset, which is bundled
in every standard gretl installation. This dataset contains the cross-sectional data on the
manufacturing of transportation equipment presented in Greene (1999)3 and it consists of
the following variables: valadd – output, capital – capital input, labor – labor input and
nfirm – number of firms.
The second block is the definition of the greene list which contains all variables available in
the greene9_1 dataset. The first variable – valadd – will be the dependent variable.
The third block contains the specification of the Bayesian model averaging analysis: binomial
model prior, prior average model size set to 1.5 (which means that we have the uniform model
prior), significance level for the initial model set to 0.6, 4 top ranked models, Benchmark g-
prior, without jointness analysis, without out-of-sample forecasts, 1000000 replications with
10% burn-in draws and basic output (verbosity set to 1).

3This dataset is also available at link http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.
txt.

http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.txt
http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.txt


Journal of Statistical Software 15

Suppose we want to run the same analysis but following Occam’s razor philosophy. The
simplest way to do this, is to set the prior average model size to 1. The code would be as
follows:

BMA_main(greene, 1, 1, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

In this case, we penalize large models by assigning high probabilities to small ones. Apart
from the binomial model prior, we can use the binomial-beta prior. To do this, we have to
set the model prior to 2. The code would be as follows

BMA_main(greene, 2, 1, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

Suppose we want to set the g-prior to risk inflation criterion, select the uniform model prior,
do jointness analysis with the Ley-Steel measure, compute forecasts for 3 observations and
print additional information (verbosity set to 2). The code would then be as follows:

BMA_main(greene, 1, 1.5, 0.6, 4, 3, 1, 3, 1000000, 10, 2)

Finally, if we want to save results of the above Bayesian model averaging analysis in the
matrix named results_mat, the code should be as follows

results_mat = BMA_main(greene, 1, 1.5, 0.6, 4, 3, 1, 3, 1000000, 10, 2)

Outputs

If you select the appropriate entries in the GUI BMA window, our package returns: PIP,
Mean, Std.Dev., Cond.Mean, Cond.Std.Dev. Furthermore, the package also returns the pre-
dictive results of the dependent variable (Mean and Std.Dev.).
Let us consider the data used in Fernández et al. (2001b) (denoted FLS hereafter). This data
comprises the information about 72 countries and 41 potential growth determinants for the
period 1960 to 19924. The initial estimation sample consists of indices i = 1, . . . , 69 and the
out-of-sample evaluation indices are from 70 to 72.
For example, for the FLS data, the following estimates should appear

Posterior moments (unconditional and conditional on inclusion):
PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev

GDPsh560 0.998378 -1.444579 0.305391 -1.446927 0.300031
Confuncious 0.890878 0.427081 0.189631 0.479393 0.123638

Life_Exp 0.932297 0.988063 0.404005 1.059816 0.314688
Equip_Inv 0.904971 0.549653 0.250217 0.607370 0.184734
SubSahara 0.654270 -0.431560 0.369153 -0.659606 0.240550

Muslim 0.363769 0.130498 0.197138 0.358739 0.157977
4The dataset is publicly available on the Journal of Applied Econometrics online data archive (http://

qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/). The reported chain (3000000 replications
with 33% burn-in draws) took about 51 minutes of CPU time on a PC with AMD Phenom II X6 1100T CPU,
6.0 Gb of RAM running under Debian GNU/Linux. We used gretl 1.10.2 compiled by GCC 5.2.1. The seed
for RNG was set to 1000000. The dependent variable is the growth rate from 1960–1992.

http://qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/
http://qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/
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Rule_of_Law 0.416318 0.206002 0.271416 0.494818 0.184491
Yrs_Open 0.547074 0.312026 0.318952 0.570354 0.196508

... ... ... ... ... ...
----------------------------------
Posterior probability of models:
Model 1: 0.007899
Model 2: 0.005294
Model 3: 0.004204
Model 4: 0.003960
Model 5: 0.003378

... ...
Total probability of the models in ranking (numerical): 0.058997
Correlation coefficient between the analytical
and numerical probabilities of the above models: 0.997518
----------------------------------
Predictive results:

Growth Mean Std.Dev.
Obs.70 2.714600 1.590657 1.279354
Obs.71 2.067600 2.006087 0.941517
Obs.72 1.889700 2.465582 0.981258

The BMA estimate function accepts a scalar, which sets the verbosity of the output. Its default
value is 1, which causes the estimation output to be printed out. A value of 2 forces the BMA
function to print out all the details of the estimation. You can print out the above-mentioned
results and additionally the following information: the total CPU time, type of model prior,
prior average model size, significance level for the initial model, type of g-prior, total number
of iterations and, finally, the number of burn-in draws. Moreover, the BMA estimate function
produces the estimation results for the initial and top ranked models. The jointness analysis
is inactive by default. If it is active, you will get: posterior joint probability of explanatory
variables, jointness statistic as given in Equations 15 or 16 and classification of jointness
measures. The jointness analysis for the previous example should look like this:

Posterior joint probability of variables:
GDPsh560 Confuncious Life_Exp Equip_Inv ...

GDPsh560 0.000000 0.889256 0.932182 0.903349 ...
Confuncious 0.000000 0.000000 0.826208 0.816956 ...

Life_Exp 0.000000 0.000000 0.000000 0.839068 ...
Equip_Inv 0.000000 0.000000 0.000000 0.000000 ...

... ... ... ... ... ...
Jointness statistics (Ley-Steel Measure):

GDPsh560 Confuncious Life_Exp Equip_Inv ...
GDPsh560 0.000000 2.083161 2.643181 2.235000 ...

Confuncious 0.000000 0.000000 1.576599 1.618373 ...
Life_Exp 0.000000 0.000000 0.000000 1.662559 ...

Equip_Inv 0.000000 0.000000 0.000000 0.000000 ...
... ... ... ... ... ...

Strong substitutes:
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Rev_Coup,Area -4.516140
Rev_Coup,Publ_Edu_pct -4.459739

... ...
Significant substitutes:

GDPsh560,Hindu -1.997989
Mining,War_Dummy -1.989541

... ...
Significant complements:
Confuncious,Life_Exp 1.576599

Confuncious,Equip_Inv 1.618373
... ...

Strong complements:
DPsh560,Confuncious 2.083161
GDPsh560,Equip_Inv 2.235000

... ...

4. Comparison to other BMA software packages
Several Bayesian model averaging software packages have been developed by many researchers5.
The most popular in the literature are R packages. A recent and comprehensive overview of
Bayesian model averaging software in R is given in Amini and Parmeter (2011). They out-
line the following BMA packages: BMS by Zeugner and Feldkircher (2015), BAS by Clyde,
Littman, and Ghosh (2012) and BMA by Raftery, Hoeting, Volinsky, Painter, and Yeung
(2014). According to their research the BMS package provides the most accurate results and
it is also the most flexible with numerous options. Table 2 presents the main features of the
above mentioned packages. Furthermore we compare our BMA package to the FLSBMA
program developed in Fortran 77 by Fernández et al. (2001b).
The most flexible package according to the model sampling category is R-BAS which contains
three sampling algorithms: Bayesian adaptive sampling (BAS), adaptive MCMC (AMCMC)
and Bayesian adaptive sampling with MCMC for the initial replications (BAS+MCMC). All
packages offer different model priors. The most limited is R-BMA with only a fixed model
prior, while the most comprehensive is R-BMS which contains the following model priors:
fixed, uniform, binomial, binomial-beta and custom (user-controlled prior probabilities). Fur-
thermore, the number of g-priors may differ depending on the package starting from one for
R-BMA, to nine for R-BAS and FLSBMA.
gretl-BMA and FLSBMA are the only packages which offer Bayesian model averaging together
with accompanying jointness statistics. FLSBMA contains one jointness measure (Ley-Steel)
while gretl-BMA contains two measures (Ley-Steel and Doppelhofer-Weeks). The estimation
of out-of-sample forecasts is possible in almost all packages excluding R-BMA, where this
option is not available. Three out of five packages enable full control of the replication
algorithm. In R-BMS, FLSBMA and gretl-BMA, the user can set the number of burn-in
draws, replication draws and detailed information about top ranked models. Unlike other
packages gretl-BMA offers an easy-to-use GUI for the Bayesian model averaging approach.

5Useful information about Bayesian model averaging software packages are available at link http://bms.
zeugner.eu/resources/.

http://bms.zeugner.eu/resources/
http://bms.zeugner.eu/resources/
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Main features R-BMS R-BMA R-BAS FLSBMA gretl-BMA

Model sampling MC3 BIC BAS, AMCMC, MC3 MC3
BAS+MCMC

Model priors 5 1 3 2 3
Zellner’s g-priors 6 1 9 9 5
Jointness analysis X X
Jointness measures 1 2
Out-of-sample forecast X X X X
No. of burn-in draws X X X X
No. of draws X X X X X
No. of top ranked models X X X
Graphical user interface X

Table 2: Main features of the selected Bayesian model averaging software packages. Model
sampling: Type of model sampling algorithms. Model priors: Number of available model
priors. Zellner’s g-priors: Number of available Zellner’s factors of proportionality. Jointness
analysis: Information if the package provides jointness analysis. Jointness measures: Number
of available jointness measures. Out-of-sample forecast: Information about which package
can be used for out-of-sample forecasting. No. of burn-in draws. No. of draws and no. of
top ranked models: Number of user-defined parameters in the sampling algorithm. Graphical
user interface: Presence of a GUI in the package.

Run time R-BMS R-BMA R-BAS FLSBMA gretl-BMA
Without jointness analysis 317 92 53 1423 1852
With jointness analysis 1423 3073

Table 3: Run time in seconds of Bayesian model averaging software packages for FLS data.

In order to compare run times of the above mentioned packages we used the FLS dataset with
the following options: benchmark g-prior, 1000000 burn-in draws, 2000000 iterations. Model
prior was set to uniform. We considered two scenarios for our experiment: with or without
jointness analysis.
According to the results presented in Table 3, the fastest Bayesian model averaging software
package is R-BAS, while the slowest one is gretl-BMA. We are aware of this disadvantage
of our package, but it strongly depends on the gretl development process, especially on the
improvements of the Hansl interpreter. It is possible that in the near future gretl will be much
faster than the current 1.10.2 version (see Section 6 for more details).

5. Empirical illustration
In this section we examine the ability of our package in replicating the results published by
Fernández et al. (2001b) and Ley and Steel (2007). We use the same original dataset to
attempt to replicate their results. In our empirical illustration, we discard the first 1 million
models and draw samples from the model space 2 million times. We specify the follow-
ing entries in the GUI BMA window: Model prior = Binomial, Prior average model
size = 20.5 (we set the model prior to the uniform distribution), Number of the top
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Regressors R-BMS R-BMA R-BAS FLSBMA gretl-BMA
Log GDP in 1960 1.00 1.00 1.00 1.00 1.00
Fraction Confucian 0.99 1.00 1.00 1.00 0.99
Life expectancy 0.93 1.00 1.00 0.95 0.94
Equipment investment 0.92 1.00 0.97 0.94 0.92
Sub-Saharan dummy 0.74 1.00 1.00 0.76 0.74
Fraction Muslim 0.65 0.60 0.43 0.66 0.65
. . . . . .
Population growth 0.04 0.04 0.09 0.02 0.04
British colony dummy 0.04 0.98 0.49 0.02 0.04
Outward orientation 0.04 0.86 0.44 0.02 0.04
Fraction Jewish 0.04 0.01 0.06 0.02 0.04
Revolutions and coups 0.03 n/a 0.06 0.02 0.03
Public education share 0.03 0.10 0.32 0.02 0.03
Area (scale effect) 0.03 n/a 0.06 0.02 0.03

Table 5: Posterior inclusion probabilities based on the Bayesian model averaging software
packages for FLS data. Abbreviation “n/a” means that R-BMA dropped the variable in the
pre-selection procedure. Bold font denotes identical results.

ranked models = 20, g-prior type = Benchmark prior, Total number of replications
= 3000000, Percentage of burn-in draws = 33. Tables 4 and 5 present the estimation re-
sults6. They report the posterior means, standard errors and PIPs of regressors calculated
by R-BMS, R-BMA, R-BAS and FLSBMA packages. These benchmarking results allow us to
compare and analyze the performance of our package. Bold font indicates identical results.
As is apparent in Tables 4 and 5, the only minor differences in the posterior results are
found between gretl-BMA and the results published in Ley and Steel (2007). All PIPs and
estimated posterior means or standard deviations are reasonably close in all cases and the
same variables are identified to be relevant. Note that the gretl package results are almost
identical to the results produced by the R-BMS package.
In our opinion, the main reason for the very similar results produced by R-BMS and gretl-
BMA is the implementation of the same RNG algorithm (the SIMD-oriented Fast Mersenne
Twister), while FLSBMA package uses an older RNG algorithm, i.e., “ran2” developed
by L’Ecuyer. The R-BMA and R-BAS packages are not capable to reproduce our results
(see Amini and Parmeter 2011 for additional information).

6. Conclusions
This paper has outlined a new software package that implements Bayesian model averaging
and jointness measures for gretl. Bayesian model averaging is a straightforward and natural
extension of standard Bayesian analysis and it is a useful and popular alternative to other
variable selection procedures, especially for a large set of regressors. Here we used gretl, which
is a free, open-source software for econometric analysis with an easy-to-use GUI. Our goal

6The reported chain took about 31 minutes of CPU time on a PC with AMD Phenom II X6 1100T CPU,
6.0 Gb of RAM running under Debian GNU/Linux. We used gretl 1.10.2 compiled by GCC 5.2.1. The seed
for RNG was set to 1000000.
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was to familiarize potential users with the features and the different options that our package
has to offer. We described how our package implements Bayesian model averaging, as well as
the outputs that are returned.
Recent trends in Bayesian model averaging still concern applications in various areas of em-
pirical research, i.e., economic growth (see Crespo Cuaresma, Doppelhofer, and Feldkircher
2014, Gazda and Puziak 2012), stock returns (see Beckmann and Schüssler 2014), geogra-
phy (see Baran 2014) and many more. One can also encounter new papers about theory of
Bayesian model averaging, for example: two-stage Bayesian model averaging (see Lenkoski,
Eicher, and Raftery 2014) or comparison of Bayesian model averaging to the weighted average
least squares method (see Luca and Magnus 2011).
The future development of the BMA package could be focused on two main aspects: speed
improvements and feature extensions. The first one is strongly correlated with the gretl de-
velopment process, especially with work on improvements in speed of the Hansl interpreter.
It is possible that the interpreter will be rewritten in the near future to achieve speed boost
with backward compatibility. The feature extensions would concern two aspects: implement-
ing new g-priors and model priors. In the literature we can find many types of g-priors (see
Fernández et al. 2001a). Moreover new model priors could be also considered. For instance,
Sala-I-Martin, Doppelhofer, and Miller (2004) proposed the so-called fixed model prior. These
implementations would surely improve the flexibility of the BMA package.
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