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Abstract

Pattern-mixture models have gained considerable interest in recent years. Pattern-
mixture modeling allows the analysis of incomplete longitudinal outcomes under a vari-
ety of missingness mechanisms. In this manuscript, we describe a SAS program which
combines R functionalities to fit pattern-mixture models, considering the cases that miss-
ingness mechanisms are at random and not at random. Patterns are defined based on
missingness at every time point and parameter estimation is based on a full group-by-
time interaction. The program implements a multiple imputation method under so-called
identifying restrictions. The code is illustrated using data from a placebo-controlled clin-
ical trial. This manuscript and the program are directed to SAS users with minimal
knowledge of the R language.
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1. Introduction

Many experiments are concerned with analysis of longitudinal studies with outcomes suffer-
ing from missing values. In clinical trials, a main cause of missingness is subject dropout.
Outcome values are missing at random (MAR) if the dropout mechanism is independent of
missing outcome values, conditionally on the observed ones. If the covariates are fully ob-
served, additional dependence on covariates is allowed for too. When MAR fails to hold,
missing outcome values are said to be missing not at random (MNAR). MNAR means that
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the probability of dropout depends on an outside variable not in the model or is related
to unobserved outcome values at the time of dropout and possibly afterwards. The conse-
quence of MNAR is that missing outcome values cannot be reliably imputed using observed
measurements (i.e., covariate and outcome values). More precisely, explicit modeling of the
dropout mechanism is needed. Pattern-mixture modeling (PMM) is a framework that can
be considered when the dropout mechanism is MNAR; see, e.g., Verbeke and Molenberghs
(2000). PMM stratifies the sample of subjects based on outcome patterns and formulates
distinct models to estimate parameters within each stratum. The program described in this
manuscript implements PMM analysis using a multiple imputation (MI) method under so-
called identifying restrictions. Patterns are defined based on dropout at every time point.
The estimation models incorporate a full group-by-time interaction for fixed effects and an
unstructured error covariance matrix.

As the parameters of the estimation models identify each time point, some of these parame-
ters are unidentified in incomplete patterns. These consequences can be overcome by using
information available in other patterns. The identifying restrictions simply indicate from
which patterns missing information is borrowed. The program described in this manuscript
implements PMM analysis under several identifying restrictions. The complete-case missing
values (CCMV) approach, introduced by Little (1993), stipulates that missing information
is borrowed from completers (i.e., from subjects with complete outcome profile). In the
neighboring-case missing values (NCMV) approach, the closest neighboring pattern is used.
In other words, missing information at a time point is borrowed from the nearby pattern for
which outcome values are observed at this time point, but unobserved later. The available-
case missing values (ACMV) approach offers a compromise between CCMV and NCMV as
missing information is borrowed from all available patterns weighted by occurrence of each
pattern. ACMV has a particular status since this is the natural counterpart of MAR in the
PMM framework. In practice, analysis under MAR can be a starting point for sensitivity
analyses under MNAR. Another type of identifying restrictions, termed non-future missing
values (NFMV), offers a relevant alternative because the user has full freedom to choose the
distributions of the first unobserved values (which are termed the present values), given the
previous measurements. Under NFMV, the missingness mechanism depends on the past and
the present, but not on future unobserved outcome values.

The American National Academy of Sciences underscored the need to develop programs of
analysis assuming MNAR; see National Research Council (2010, p. 114). New features in
version 9.4 of SAS PROC MI (SAS Inc. 2014) allow one to generate imputations in the PMM
framework under CCMV and NCMV. In earlier work, I-BioStat (2007) developed a SAS
program which generates multiple imputations based on a mixed model for repeated measures
(MMRM). However, some computations use approximations to ease matrix operations. The
program described in this manuscript takes up the main aspects of algorithm but performs
exact calculations. To do so, we use new features in SAS PROC IML (SAS Inc. 2011) that
enable to call R functions from within the IML procedure. This automatic link is available
from version 9.3 of SAS under Windows and Linux. Nevertheless, if another operating system
(OS) is used and/or if SAS PROC IML version 9.3 or later is not available, thorough instructions
are provided to execute the program anyway. The case study, which is used to illustrate the
code, is a placebo-controlled clinical trial to assess the effect of a test drug in the treatment
of macular degeneration.

The program is directed to SAS users with minimal knowledge of the R language (R Core
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Team 2015b). Different aspects of PMM analysis are summarized in the next section. The
algorithm and environment requirements are exposed in Section 3. Information to initiate
program execution is provided in Section 4, whereas Section 5 describes the different stages of
a case study analysis. Section 6 shows results of analyses under all the identifying restrictions
available in the program. Additional information to specify other model parameterizations is
given in Section 7.

2. PMM analysis

2.1. Identifying restrictions

In our context, patterns are defined based on dropout at every time point, except baseline.
More precisely, if the tth outcome value is the last observed one and subject drops out after
this point, this subject belongs to pattern t, t = 1, . . ., T . The rationale for PMM stems from
a particular decomposition of the joint distribution of the outcome variable together with the
dropout indicator.

The pattern-mixture distribution of complete outcome values y1, . . ., yT is given by:

f(y1, . . ., yT ) =

T∑
t=1

αtft(y1, . . ., yT ), (1)

where αt denotes the proportion of pattern t and ft(y1, . . ., yT ) stands for f(y1, . . ., yT |t).
In (1), the distribution of the whole population is expressed in terms of a mixture of the
distributions of pattern populations. These in turn can be decomposed as:

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1, . . . , yT |y1, . . . , yt)

= ft(y1, . . . , yt)

T∏
s=t+1

ft(ys|y1, . . ., ys−1). (2)

The first component in (2) is identified from the observed outcome values. The second com-
ponent is a product of conditional pattern distributions that are unidentified because the
values of ys are unobserved. Identification of unidentified parameters is a crucial aspect as
the conditional pattern distributions form the basic framework for the imputation process.
The identifying restrictions enable to overcome this problem: Unidentified parameters of in-
complete patterns are set equal to appropriate functions of the parameters describing the
distributions of other patterns.

We now describe the identifying restrictions available in the program. Further descriptions
can be found in Thijs, Molenberghs, Michiels, Verbeke, and Curran (2002). Under CCMV,
identification is based on the pattern of completers, which is pattern T . This identification
can be formalized as:

ft(ys|y1, . . ., ys−1) = fT (ys|y1, . . ., ys−1), s = t+ 1, . . ., T. (3)

Under NCMV, the neighboring pattern is used. We then have:

ft(ys|y1, . . ., ys−1) = fs(ys|y1, . . ., ys−1), s = t+ 1, . . ., T. (4)
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Identification can also be based on all identified patterns as specified in the formulation:

ft(ys|y1, . . ., ys−1) =
T∑

j=s

ωsjfj(ys|y1, . . ., ys−1), s = t+ 1, . . ., T. (5)

We will use ωs as shorthand for the set of positive ωsj ’s. Every ωs that sums to 1 provides
a valid identification scheme. Note that (5) results in the special case (3) by setting ωsT = 1
and all other ωsj =0 and to the special case (4) by setting ωss=1 and all other ωsj =0.

Molenberghs, Michiels, Kenward, and Diggle (1998) determined ωs such that (5) corresponds
to ACMV. The coefficients are defined as:

ωsj =
αjfj(y1, . . ., ys−1)∑T
l=s αlfl(y1, . . ., ys−1)

, j = s, . . ., T. (6)

Alternatively, non-future dependence is an assumption under which missingness is allowed
to depend on the past and the present, but given these not on the future. Kenward and
Molenberghs (2003) determined the identifying restriction, named NFMV, which corresponds
to non-future dependence. Under NFMV, the conditional pattern distributions of present
outcome values are left unconstrained. For the sake of clarity, these are noted gt in what
follows.

Our program implements two types of NFMV. Under NFMVCC, the gt functions are set equal
to their fT counterparts in the spirit of CCMV. In addition, the user has the possibility to
introduce a location parameter ∆. An explicit formulation of this is given by:

gt(yt+1|y1, . . . , yt) = fT (yt+1+∆|y1, . . . , yt).

Under NFMVNC, the gt functions are set equal to their ft+1 counterparts in the spirit of
NCMV. We then have:

gt(yt+1|y1, . . . , yt) = ft+1(yt+1+∆|y1, . . . , yt).

Once the gt functions are determined, the conditional pattern distributions of ys for s =
t+2, . . ., T are given by:

ft(ys|y1, . . ., ys−1) = ωs,s−1gs−1(ys|y1, . . ., ys−1) +
T∑

j=s

ωsjfj(ys|y1, . . ., ys−1) (7)

with

ωs,s−1 =
αs−1gs−1(y1, . . ., ys−1)

αs−1gs−1(y1, . . ., ys−1) +
∑T

l=s αlfl(y1, . . ., ys−1)
,

ωsj =
αjfj(y1, . . ., ys−1)

αs−1gs−1(y1, . . ., ys−1) +
∑T

l=s αlfl(y1, . . ., ys−1)
, j ≥ s.

(8)
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2.2. Multiple imputation method

The program implements a PMM analysis for Gaussian outcome variables, following the
standard three-stage MI way, as described in Rubin (1987).

Pattern parameter estimation

Distinct models are formulated to fit the outcome variable within each pattern. The program
uses MMRMs with a full group-by-time interaction at every time point for the fixed effects
and an unstructured error covariance matrix. Time is treated as a class variable and no
random effects are specified.

Let us denote by Yi = (yi,1, . . . , yi,T ) the complete outcome vector for the ith subject of
pattern t and Yi,obs = (yi,1, . . . , yi,t) its observed part. The MMRMs per pattern can be
expressed as:

Yi,obs = Xiβt + εi, (9)

where εi ∼N(0,Σt), Σt is unstructured, and the εi’s are independent. The matrix Xi contains
the known fixed-effects covariates whereas βt contains the unknown parameters.

This first stage provides the estimates β̂t, V̂AR(β̂t), Σ̂t, and V̂AR(col(Σ̂t)), where col(Σ̂t) is
the vector containing the coefficients of the diagonal and the lower part of Σ̂t.

Imputation

Imputation of missing outcome values is conducted sequentially by value. We describe here-
below how to obtain a run of M imputed values of yi,t+1. Multiple imputation of yi,t+2, . . ., yi,T
follows the same process by considering the previous imputed values as observed ones.

The imputed values of yi,t+1 are drawn from conditional pattern distributions. The selection
of the pattern of imputation is driven by the identifying restriction chosen. In our illustration,
we first suppose that pattern r (t+1 ≤ r ≤ T ) is used. Let us introduce µi,r for the mean
of Yi, which is µi,r = Xiβr. Based on appropriate parts of µi,r and Σr, we further define
the distributions of Yi components as Yi,obs ∼ N(µi,r,1,Σr,11) and yi,t+1 ∼ N(µi,r,2,Σr,22).
Their covariances are denoted Σr,12 and Σr,21. Using 2|1 as notation for yi,t+1|yi,1, . . ., yi,t, the
conditional pattern distribution of yi,t+1 given yi,1, . . ., yi,t is described by:

fr(yi,t+1|yi,1, . . . , yi,t) ∼ N(µi,r,2|1,Σr,2|1),

where

µi,r,2|1 = µi,r,2 + Σr,21[Σr,11]
−1(Yi,obs − µi,r,1),

Σr,2|1 = Σr,22 − Σr,21[Σr,11]
−1Σr,12.

(10)

Uncertainty pertaining to the pattern parameters βr and Σr is incorporated through their
Bayesian posterior predictive distributions. On the basis of Gaussian distributions and non-

informative Jeffreys’ priors, the values of β̂
(m)

r and Σ̂
(m)
r , m = 1, . . . ,M, are respectively ran-

domly drawn from the posterior distributions N(β̂r,V̂AR(β̂r)) and N(col(Σ̂r), V̂AR(col(Σ̂r))).

After the derivation of µ̂
(m)
i,r , the imputed values of yi,t+1 are drawn from the conditional

pattern distributions which are expressed by:

f (m)
r (yi,t+1|yi,1, . . . , yi,t) ∼ N(µ̂

(m)
i,r,2|1, Σ̂

(m)
r,2|1), m = 1, . . . ,M. (11)
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Under ACMV and NFMV, (5) and (7) indicate that imputation of a missing yi,t+1 value is
based on a sum of conditional distributions of several patterns weighted by occurrence of
each pattern. In the MI setting, this weighted summation is handled via random pattern
selection over imputations. For each imputation, we calculate the coefficients ωsj in (6) and
(8), which characterize pattern probabilities. Random pattern selection by imputation is

based on coefficient values, noted ω
(m)
sj , and another value U (m) which is drawn from the

uniform distribution. So, pattern p is selected if:

Σp−1
j=sω

(m)
sj ≤ U

(m) < Σp
j=sω

(m)
sj . (12)

Pooled analysis

The complete data sets are fitted using the modeling strategy described in (9) for pattern
parameter estimation. The MMRM approach incorporates a full group-by-time interaction
at every time point for the fixed effects and an unstructured error covariance matrix. The
analysis model can be expressed as:

Yi = Xiβ
∗ + ε∗i , (13)

where ε∗i ∼N(0,Σ), Σ is unstructured, and the ε∗i ’s are independent. The vector β∗ contains
the unknown parameters of fixed effects.

The principle of MI is to combine the inferences made on the M imputations into a single one.

Let us define β̂
∗(m)

, m = 1, . . .,M , the estimators of β∗ by imputation and β̂
∗

the pooled
estimator of β. In the usual Rubin’s formulation

β − β̂
∗
∼ N(0, V ),

β̂
∗

is the average of β̂
∗(m)

’s whereas the pooled variance V is given by

V = W +

(
M + 1

M

)
B,

where W is the average of V̂AR(β̂
∗(m)

) and B is the between-imputation variance:

B =
M∑

m=1

(β̂
∗(m)
− β̂

∗
)(β̂
∗(m)
− β̂

∗
)>

M − 1
.

The pooled estimator β̂
∗

is consistent under MNAR. The F -distributions of the tests of fixed
effects are given in Li, Raghunathan, and Rubin (1991).

3. Algorithm and environment

3.1. Algorithm

The programming strategy was driven by the respective strengths of SAS and R. The use of
SAS to handle and analyze data is widespread in some industries, such as the pharmaceutical
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industry. Consequently, many statisticians are familiar with pre-programmed SAS procedures
such as SAS PROC MIXED to fit continuous longitudinal outcomes and SAS PROC MIANALYZE to
combine inferences in the MI setting. On the other hand, R provides an optimized environment
for operations on matrices and, in our context, is more indicated for the imputation stage
which requires many calculations of this type.

The algorithm is described for each of the three tasks of standard MI. For each task, we
specify which functionalities of SAS and R are used. The algorithm is described as follows:

1. Pattern parameter estimation:

. Use SAS PROC MIXED to fit outcome per pattern and estimate parameters.

2. Imputation: Use R to

. Generate pattern parameter values by imputation.

. Draw missing outcome values from conditional pattern distributions of all available
patterns.

. Impute using the patterns specified by the identifying restriction chosen.

3. Pooled analysis:

. Use SAS PROC MIXED to analyze complete data sets.

. Use SAS PROC MIANALYZE to combine inferences.

Two important remarks concern the imputation stage:

� Intermittent missing values (i.e., values missing not due to dropout) are multiply im-
puted by drawing values from the conditional distribution of the subject pattern, given
all the other available outcome values. So, if a subject belongs to pattern t, imputation
is based on parameters of this pattern.

� Some cases may require a large number of imputations (information about the number
of imputations needed is provided in Section 6). This number strongly impacts program
execution time because of data handling with R, which slows down the program process
as the number of imputations increases. To gain time, multi-step functionality that
enables execution of successive batches of imputations has been introduced. The gain
becomes rapidly substantial: In the case study, a total of 500 imputations is set by
default; the program execution with five batches of 100 imputations is twice faster than
with a unique batch of 500 imputations.

The call of R from SAS PROC IML is available from version 9.3 of SAS under Linux and
Windows OS. If the user’s environment does not enable an automatic link between SAS and
R, the structure of the program nevertheless allows for execution. However, the multi-step
functionality for imputation is no longer available. To do so, the three stages of the MI
procedure must be executed separately as follows:

1. Pattern parameter estimation:

. Select lines 1–223 in the SAS code and execute.
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2. Imputation:

. Select lines 2–374 in the R script and execute.

This selection excludes the statements related to the link with SAS PROC IML which
are submit / R; and endsubmit;.

3. Pooled analysis:

. Select lines 251–279 in the SAS code and execute to analyze complete data sets.

. Remove the character string ‘+ &nImputations * (&batch - 1)’ in lines 280 and
281, and execute them. Also select and execute lines 284–285.

. Select lines 307–310 and execute to combine inferences.

The combination of the SAS and R functionalities and the call of R from SAS was a deliberate
choice, as the program is primarily targeted at SAS users. However, the clear separation be-
tween the three stages, i.e., (1) pattern parameter estimation, (2) imputation, and (3) pooled
analysis, of the program allows alternative implementation strategies. For example, it is quite
feasible to invert the initial user’s environment and call SAS from R.

3.2. Environment requirements

Some environment parameters must be set-up prior to the first program execution. To call R,
the SAS system must be launched with the -RLANG command. This command can definitively
be inserted in the file SASV9.cfg, which is stored in the folder \nls\en of the user’s SAS
environment. The -RLANG command allows the execution of the RLANG option in the SAS
program using the syntax: proc options option=RLANG;. Under Windows, a reason of
failure may be that the path to the R directory (and not to the file R.exe) is not registered as
a Windows environment variable. In this case, the user must enter this information manually
(e.g., Variable=R_HOME, Value=C:\Program\Files\R R-2.15.1).

The functionalities of SAS PROC IML which enable to call R are available from SAS 9.3. The
interface with R until version 2.15.3 is supported in SAS 9.3. However, the interface with R
3.0.x is not supported in SAS 9.3, but is supported in SAS 9.4.

The part of the program written in SAS is contained in the file PMM.sas whereas PMM.R

contains the R script. SAS PROC IML calls the R script via the command:

\%include "\&Path2WorkDir/PMM.R";

The SAS data files produced throughout program execution are stored in the working direc-
tory. Import/export of data files between SAS and R is done using R functions. Note that
such functionalities also exist in SAS PROC IML, but only concern numerical data in matrix
format.

Program execution requires the three R packages Hmisc (Harrel 2015), foreign (R Core Team
2015a), and MASS (Venables and Ripley 2002; Ripley 2015) to be installed. If these packages
are not available in the user’s R environment, these can be downloaded from the Comprehen-
sive R Archive Network at http://CRAN.R-project.org/ by removing the hash sign # in the
following three lines at the top of the R script:

http://CRAN.R-project.org/
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# install.packages("Hmisc")

# install.packages("foreign")

# install.packages("MASS")

We strongly recommend the user to install the packages in the R environment, i.e., without
using SAS to launch R, by executing the three commands here-above in the R editor. It is also
important to put back the hash signs once the packages are installed. More generally, any
substantial modification in the R script should be done in the R environment, using either
the R editor or any R interface such as RStudio or Tinn-R (Faria, Grosjean, Jelihovschi,
Pietrobon, and Silva Farias 2015).

4. Initiation of program execution

To initiate program execution, the user must put the three files PMM.sas, PMM.R, and Data

.sas7bdat in a working directory, which is for example C:/WorkDir. The SAS file PMM.sas

and the R file PMM.R contain the program code, whereas the SAS data file Data contains the
data of the case study. In this section, we describe how to initiate execution of the case study.
We also provide information to use the program in other circumstances.

4.1. Description of the case study

The case study arises from a randomized clinical trial comparing a test drug with a corre-
sponding placebo in the treatment of subjects with age-related macular degeneration. Sub-
jects with macular degeneration progressively lose vision. In the trial, the subjects’ visual
acuity was assessed through subjects’ ability to read lines of letters on standardized vision
charts. These charts display lines of 5 letters of decreasing size, which the patient must read
from top (largest letters) to bottom (smallest letters). The subjects’ visual acuity is the total
number of letters correctly read.

Subjects were asked to undergo a pre-randomization visit (baseline) and four post-rando-
mization visits, i.e., visit 1 at 4 weeks, visit 2 at 12 weeks, visit 3 at 24 weeks, and visit 4 at
52 weeks. Treatment-effect inferences on visual acuity at visit 4 is the primary focus of the
statistical analysis.

An overview of the different missingness patterns is given in Table 1. Note that 188 of the
226 profiles are complete, which is a percentage of 83.2%, while 16.8% (38 subjects) exhibit
monotone missingness.

Pattern Visit 1 Visit 2 Visit 3 Visit 4 Pattern distribution
Freq Percent

1 O O O O 188 83.2
2 O O O M 24 10.6
3 O O M M 8 3.5
4 O M M M 6 2.7

Table 1: Missingness patterns and the frequencies with which they occur. ‘O’ indicates
observed and ‘M’ indicates missing.
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4.2. Data file characteristics

Program execution requires a SAS data file with standard variable characteristics. SAS vari-
ables should be standardized as follows:

. Subject: Subject number (positive integer).

. Rep: Repetition or occasion number (positive integer).

. Cov1: First covariate (real number), if any.

. Cov2: Second covariate (real number), if any,

. . . .

. Group: Group number (positive integer).

. Outcome: Outcome values (real number), where ‘.’ indicates missing values.

It is important to note that the name of covariates should start with ‘Cov’. The program does
not handle data sets with missing values in the first outcome value and/or in covariates, if
any.

In the case study, the contents of Data for subjects 1, 2, 3 take the form:

Subject Rep Cov1 Group Outcome

1 1 59 2 55

1 2 59 2 45

1 3 59 2 .

1 4 59 2 .

2 1 65 2 70

2 2 65 2 65

2 3 65 2 65

2 4 65 2 55

3 1 40 1 40

3 2 40 1 37

3 3 40 1 17

3 4 40 1 .

4.3. Specification of paths to access files

The program needs to access files. The path to access the working directory must be specified
at the top of the SAS file PMM.sas in the SAS macro variable &Path2WorkDir. In the case
study, the default path is specified as:

%let Path2WorkDir = "C:/WorkDir";

Then, the paths to access the working directory and the file SAS.exe must be specified at the
top of the R file PMM.R. This can be done using the R editor or any other text editor (e.g.,
WordPad). In the case study, the default paths are specified as:
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Path2WorkDir = "C:/WorkDir"

path2SASexe = "C:/Program Files/SASHome/SASFoundation/9.3"

Nothing else needs to be specified in the R script.

4.4. Specification of model parameters

The user must indicate the fixed-effect parameters in the SAS macro variable &Covariates.
The full group-by-time interaction should be specified with parameters Int1, Int2, . . . for
each time point effect and Group1, Group2, . . . . for between-group differences at each time
point. Covariates should be specified with Cov1, Cov2, . . . . as for the SAS variables in the
data file.

In the case study, the fixed-effect parameters are specified as:

%let Covariates = Cov1 Int1 Int2 Int3 Int4 Group1 Group2 Group3 Group4;

The columns of the design matrix of fixed effects, except covariates, can be derived in the
data step DefineColumns. In the case study, these are derived as follows:

data DefineColumns;

set DataFile.Data;

Int1 = 0; Int2 = 0; Int3 = 0; Int4 = 0;

Group1 = 0; Group2 = 0; Group3 = 0; Group4 = 0;

if Rep = 1 then Int1 = 1;

if Rep = 2 then Int2 = 1;

if Rep = 3 then Int3 = 1;

if Rep = 4 then Int4 = 1;

if Rep = 1 and Group = 2 then Group1 = 1;

if Rep = 2 and Group = 2 then Group2 = 1;

if Rep = 3 and Group = 2 then Group3 = 1;

if Rep = 4 and Group = 2 then Group4 = 1;

run;

4.5. Parameterization of imputation stage

The user must specify parameter values for imputation in several SAS macro variables:

� &nBatches: Number of batches of imputations (positive integer).

� &nImputations: Number of imputations by batch (positive integer).

� &Restriction: Identifying restriction to be chosen among CCMV, ACMV, NCMV,
NFMV-CC (for NFMVCC), and NFMV-NC (for NFMVNC).

� &Delta: Location parameter under NFMVCC and NFMVNC.

� &Rounding: Number of decimals of the imputed outcome values (positive integer).
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A value of &Delta is required if the identifying restriction chosen is either NFMVCC or
NFMVNC. Otherwise, &Delta is ineffective.

In the case study, the default values of imputation parameters are set to:

%let nSteps = 5;

%let nImputations = 100;

%let Restriction = NFMV-CC;

%let Delta = 2;

%let Rounding = 1;

This parameterization means that PMM analysis will be conducted under the identifying
restriction NFMV-CC with the location parameter ∆ = 2 based on five batches of 100 im-
putation, that is 500 imputations totally. Missing outcome values will be imputed with a
rounding of one decimal.

Nothing else needs to be specified for program execution.

5. Analysis of the case study

5.1. Pattern parameter estimation

Pattern parameters are estimated using SAS PROC MIXED which fits longitudinal outcome
values with the fixed effects specified in the SAS macro variable &Covariates and an un-
structured error covariance matrix. The syntax used for this is:

proc Mixed data = OutcomeSort method = ml noclprint noitprint asycov covtest;

class Subject Rep;

model Outcome = %str(&Covariates) / noint s covb;

ods output solutionf = Solution;

ods output covb = CovB;

ods output covparms = CovParms;

ods output asycov = AsyCov;

repeated Rep / subject = Subject type = UN r;

by Pattern;

run;

SAS PROC MIXED produces the SAS data files Solution, CovB, CovParms, and AsyCov, that
respectively contain the estimates β̂t, V̂AR(β̂t), col(Σ̂t), and V̂AR(col(Σ̂t)), t = 1, . . ., T . These
estimates are then stored in the SAS data file Estimates2R.

At the end of this stage, three SAS data files are exported to R:

� Estimates2R which contains the pattern parameter estimates.

� Outcome2R which contains the outcome values and the derived variables:

– MissInter: Indicator of intermittent missing values.

– MissDrop: Indicator of missing values due to dropout.
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– Pattern: Subject pattern number.

– nValues: Number of outcome values before subject dropout.

� MIparameters2R contains the parameter values for imputation.

5.2. Imputation

Imputation is entirely conducted using R. The file PMM.R consists of four parts which are
described here-below. Further details about programming rules are given in the script.

R functions

Four R functions are defined at the top of the script:

. rMVNorm(n, Mu, Cov) generates n random vectors which are drawn from a multi-
normal distribution with mean Mu and variance matrix Cov.

. MVCond(Y, X, Beta, S, IndicY1, IndicY2) derives the conditional mean and vari-
ance matrix of Y vector values given others. X denotes the design matrix, Beta contains
the parameter values, and S is the variance matrix of Y. IndicY1 indicates the observed
values of Y and IndicY2 the given ones.

. fMatrix(Col) produces a complete symmetric matrix from the vector Col which con-
tains the coefficients of the diagonal and the lower part of the matrix.

. Under ACMV and NFMV, fRdraw(OutcomeS, BetaImput, SigmaImput, IndicColS,

nPatterns, nPatternsSIv, imput, val) is used to select the pattern of imputation
for the imputth imputation of the valth missing outcome value. OutcomeS is a data

frame which contains subject information, BetaImput contains the values of the β̂
(m)

t ’s

and SigmaImput the values of the col(Σ̂
(m)
t )’s, whereas IndicColS indicates the design

matrix columns among the OutcomeS columns. Last, nPatterns is the total number
of patterns and nPatternsSIv is the number of patterns available for imputation. To
select the pattern of imputation, fRdraw() produces the vector OmegaCumSIv which

contains the ascending values of Σk
j=sω

(m)
sj and the scalar U which contains the value of

U (m) as specified in (12).

Generation of βt values by imputation

The values of β̂
(m)

t , m = 1, . . .,M , are randomly generated from distributions N(β̂t, V̂AR(β̂t)),
t = 1, . . ., T , using rMVNorm(). Values are then stored in the data frame BetaImput in which

β̂
(m)

t coefficients are numbered according to the ordering number of the fixed effects specified
in &Covariates.

In the case study, the nine fixed effects specified in &Covariates are Cov1 Int1 Int2 Int3

Int4 Group1 Group2 Group3 Group4. For example, Cov1 Int1 Group1 are the three iden-
tified parameters in Pattern 1. These correspond to the first, the second, and the sixth fixed

effects in &Covariates. This numbering is kept for β̂
(1)

1 coefficients in BetaImput as shown
here-below:
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R> subset(BetaImput, pattern == 1 & imputation == 1)

pattern imputation number value

1 1 1 -0.45256755

1 1 2 98.79422220

1 1 3 0.00000000

1 1 4 0.00000000

1 1 5 0.00000000

1 1 6 -25.40001710

1 1 7 0.00000000

1 1 8 0.00000000

1 1 9 0.00000000

Generation of Σt values by imputation

The values of col(Σ̂
(m)
t ), m = 1, . . .,M , are randomly generated from the distributions

N(col(Σ̂t), V̂AR(col(Σ̂t))), t = 1, . . ., T, using rMVNorm(). Values are then stored in the data

frame SigmaImput in which col(Σ̂
(m)
t ) coefficients are numbered according to their ordering

number by column by row after transposition into a virtual T × T -dimensional matrix.

In the case study, the virtual matrix is 4×4-dimensional and contains T(T+1)/2 = 10 co-
efficients in its diagonal and lower triangular part. The values and the numbering of the

coefficients of col(Σ̂
(1)
1 ) and col(Σ̂

(1)
2 ) in SigmaImput are shown here-below:

R> subset(SigmaImput, (pattern == 1 | pattern == 2) & imputation == 1)

pattern imputation number value

1 1 1 19.4057844

1 1 2 0.0000000

1 1 3 0.0000000

.......................................

.......................................

2 1 1 106.7157113

2 1 2 117.3420276

2 1 3 0.0000000

2 1 4 0.0000000

2 1 5 137.4193741

2 1 6 0.0000000

2 1 7 0.0000000

2 1 8 0.0000000

2 1 9 0.0000000

2 1 10 0.0000000

Imputation of missing outcome values

The program imputes first intermittent missing outcome values using subject pattern. Sup-
pose that the ith subject belongs to pattern t and denote by Yi,obs the vector of observed
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outcome values and Yi,miss the vector of intermittent missing ones. The conditional mean

µ̂
(m)
i,t,2|1 and variance matrix Σ̂

(m)
t,2|1, where 2|1 stands for Yi,miss |Yi,obs , are derived using

MVCond(). Then, outcome values are randomly drawn from the conditional pattern dis-

tributions f
(m)
t (Yi,miss |Yi,obs) ∼ N(µ̂

(m)
i,t,2|1, Σ̂

(m)
t,2|1), m = 1, . . .,M , using rMVNorm().

We now describe how the program imputes missing outcome values due to dropout. We
illustrate the process with the case study through one of the imputations, say imputation 1
(m = 1), in subject 11. This subject has only one observed outcome value, y11,1 = 50, and
so, the three outcome values y11,2, y11,3, y11,4 need to be imputed.

Initial information about subject 11 is shown here-below:

R> subset(Outcome, subject == 11)

subject rep group cov1 outcome missdrop missinter pattern nmeasures

11 1 2 58 50 0 0 1 1

11 2 2 58 NA 1 0 1 1

11 3 2 58 NA 1 0 1 1

11 4 2 58 NA 1 0 1 1

int1 int2 int3 int4 group1 group2 group3 group4

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

After each imputation in each subject, the R script produces:

� A matrix MatOutcomeSI which contains the random draws of missing outcome values in
all available patterns (row number indicates outcome value number and column number
indicates pattern number).

� A vector YSI which contains the observed and the imputed values of outcome.

In the case study, matrices MatOutcomeSI are 4×4 dimensional. In subject 11, the first row of
MatOutcomeSI is not filled as y11,1 is observed. Then, imputation of missing outcome values
is conducted sequentially by value.

If the identifying restriction chosen is either CCMV, NCMV, or ACMV, random values of
y11,2 are first drawn in all available patterns from:

. ft(y11,2|y11,1) ∼ N(µ̂
(1)
11,t,2|1, Σ̂

(1)
t,2|1), t = 2, 3, 4,

where 2|1 stands for y11,2|y11,1. Values are stored in the second row of MatOutcomeSI which,
in our example, takes the form:

R> MatOutcomeSI

[,1] [,2] [,3] [,4]

[1,] 0 0.00000 0.00000 0.00000
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[2,] 0 39.76904 65.83838 45.91795

[3,] 0 0.00000 0.00000 0.00000

[4,] 0 0.00000 0.00000 0.00000

Then, the rule to select the pattern of imputation is driven by the identifying restriction
chosen. Under CCMV, the missing y11,2 value is imputed with 45.91795 of Pattern 4. Under
NCMV, the imputed value is 39.76904 of Pattern 2.

Under ACMV, the pattern of imputation is selected as described in (12) using fRdraw().

fRdraw() produces the vector OmegaCumSIv which contains the cumulative values Σt
j=2ω

(1)
2j .

In our example, OmegaCumSIv takes the form:

R> OmegaCumSIv

[1] 0.00000000 0.09073205 0.33557261 1.00000000

fRdraw() also produces the scalar U which contains a random draw from the uniform distri-
bution. In our example, U takes the value:

R> U

[1] 0.1322

Since U = 0.1322 is comprised between Σ3
j=2ω

(1)
2j = 0.09073205 and Σ4

j=2ω
(1)
2j = 0.33557261,

y11,2 is imputed with the value of Pattern 3, which is 65.83838. This value is put into YSI

which becomes:

R> YSI

[1] 50.00000 65.83838 0 0

The procedure described here-above is repeated to impute y11,3 and y11,4 by replacing Yi,obs

by YSI. When the process is completed, MatOutcomeSI takes the form:

R> MatOutcomeSI

[,1] [,2] [,3] [,4]

[1,] 0 0.00000 0.00000 0.00000

[2,] 0 39.76904 65.83838 45.91795

[3,] 0 0.00000 36.42852 39.41290

[4,] 0 0.00000 0.00000 37.42869

The complete vector YSI obtained is:

R> YSI

[1] 50.00000 65.83838 39.41290 37.42869
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Now, if the identifying restriction chosen is either NFMVCC or NFMVNC, y11,2 is imputed
with a random value drawn from:

. g
(1)
1 (y11,2|y11,1) ∼ N(µ̂

(1)
11,4,2|1+∆, Σ̂

(1)
4,2|1) under NFMVCC,

. g
(1)
1 (y11,2|y11,1) ∼ N(µ̂

(1)
11,2,2|1+∆, Σ̂

(1)
2,2|1) under NFMVNC,

where 2|1 stands for y11,2|y11,1.
Imputations of y11,3 and y11,4 are based on multiple random draws. Then, the pattern of
imputation is selected as under ACMV using fRdraw().

For y11,3, the random values are drawn from:

. g
(1)
2 (y11,3|y11,1, y11,2) ∼ N(µ̂

(1)
11,4,2|1+∆, Σ̂

(1)
4,2|1) under NFMVCC,

. g
(1)
2 (y11,3|y11,1, y11,2) ∼ N(µ̂

(1)
11,3,2|1+∆, Σ̂

(1)
3,2|1) under NFMVNC,

. f
(1)
3 (y11,3|y11,1, y11,2) ∼ N(µ̂

(1)
11,3,2|1, Σ̂

(1)
3,2|1),

. f
(1)
4 (y11,3|y11,1, y11,2) ∼ N(µ̂

(1)
11,4,2|1, Σ̂

(1)
4,2|1),

where 2|1 stands for y11,3|y11,1, y11,2.
For y11,4, the random values are drawn from:

. g
(1)
3 (y11,4|y11,1, y11,2, y11,3) ∼ N(µ̂

(1)
11,4,2|1+∆, Σ̂

(1)
4,2|1),

. f
(1)
4 (y11,4|y11,1, y11,2, y11,3) ∼ N(µ̂

(1)
11,4,2|1, Σ̂

(1)
4,2|1),

where 2|1 stands for y11,4|y11,1, y11,2, y11,3.
We provide here-below an example of MatOutcomeSI obtained under NFMVCC and ∆ = 2
which is the default program parameterization. MatOutcomeSI takes the form:

R> MatOutcomeSI

[,1] [,2] [,3] [,4]

[1,] 0.00000 0.00000 0.00000 0.00000

[2,] 47.02344 0.00000 0.00000 0.00000

[3,] 0.00000 48.68755 44.07891 51.08928

[4,] 0.00000 0.00000 51.45901 42.98866

At the end of this stage, imputed outcome values are stored in the R data file OutcomeImput2SAS,
which is exported to SAS.

5.3. Pooled analysis

The program fits outcome values by imputation using MMRM which incorporates a full
group-by-time interaction at every time point for the fixed effects and an unstructured error
covariance matrix. The syntax of the SAS PROC MIXED for this is:
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proc Mixed data = OutcomeForPooledAnalysis method = ml noclprint noitprint

covtest;

title2 "Longitudinal outcome analysis by imputation";

class Subject Rep;

model Outcome = %str(&Covariates) / noint s covb;

ods output solutionf = Solution;

ods output covb = CovB;

repeated Rep / subject = Subject type = UN r;

by Imputation;

run;

Results are stored in the two SAS data files:

� SolutionTotal which contains the parameter estimates of fixed effects.

� CovBTotal which contains the variance matrix coefficients.

In the case study, the contents of SolutionTotal for the first imputation takes the form:

Effect Estimate StdErr DF tValue Probt _Imputation_

Cov1 0.8940 0.03572 225 25.03 <.0001 1

Int1 4.7352 2.1080 225 2.25 0.0257 1

Int2 3.7895 2.2431 225 1.69 0.0925 1

Int3 0.005495 2.3485 225 0.00 0.9981 1

Int4 -5.2882 2.4977 225 -2.12 0.0353 1

Group1 -2.6765 1.0772 225 -2.48 0.0137 1

Group2 -3.7053 1.5354 225 -2.41 0.0166 1

Group3 -3.0734 1.8285 225 -1.68 0.0942 1

Group4 -5.1362 2.1944 225 -2.34 0.0201 1

Then, the pooled analysis is performed using SAS PROC MIANALYZE with the syntax:

proc MIanalyze parms = SolutionTotal covb(effectvar = rowcol) = CovBTotal;

title2 "Combined analysis for fixed effects (Proc MIanalyze)";

modeleffects &Covariates;

run;

An example of SAS output for the case study with the default program parameterization
nSteps = 5, nImputations = 100, Restriction = NFMV-CC, Delta = 2 is given in Table 1.
Results exhibits a treatment-effect estimate at visit 4 of −4.45 (2.37) with a significance level
of p = 0.06.

6. Results under different identifying restrictions

Any inference should account for the uncertainty attributable to missing data so that the type
I error rate is valid under the assumptions made. In clinical trials, the primary statistical ap-
proach is often based on the MAR assumption, under which MMRM provides valid inferences.
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Pattern-mixture model under NFMV-CC identifying restriction and location parameter Delta=2

Pooled analysis of fixed effects

The MIANALYZE Procedure

Model Information

PARMS Data Set WORK.SOLUTIONTOTAL

COVB Data Set WORK.COVBTOTAL

Number of Imputations 500

Variance Information

Relative Fraction

-----------------Variance----------------- Increase Missing Relative

Parameter Between Within Total DF in Variance Information Efficiency

Cov1 0.000058534 0.001277 0.001336 258883 0.045919 0.043911 0.999912

Int1 0.177738 4.447967 4.626061 336689 0.040039 0.038504 0.999923

Int2 0.172711 5.026062 5.199119 450385 0.034432 0.033290 0.999933

Int3 0.196343 5.577757 5.774493 429893 0.035272 0.034074 0.999932

Int4 0.367578 6.288040 6.656353 162982 0.058574 0.055344 0.999889

Group1 0.000013640 1.159998 1.160012 3595E9 0.000011782 0.000011782 1.000000

Group2 0.040866 2.337020 2.377968 1.68E6 0.017521 0.017221 0.999966

Group3 0.176145 3.460291 3.636788 211866 0.051006 0.048540 0.999903

Group4 0.715017 4.906453 5.622899 30736 0.146021 0.127473 0.999745

Parameter Estimates

t for H0:

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0 Parameter=Theta0 Pr > |t|

Cov1 0.897253 0.036550 0.8256 0.96889 258883 0.874079 0.921698 0 24.55 <.0001

Int1 4.557453 2.150828 0.3419 8.77301 336689 3.210413 5.834442 0 2.12 0.0341

Int2 3.602813 2.280158 -0.8662 8.07185 450385 2.290362 4.732946 0 1.58 0.1141

Int3 -0.161689 2.403017 -4.8715 4.54815 429893 -1.385394 1.020038 0 -0.07 0.9464

Int4 -5.276138 2.579991 -10.3329 -0.21941 162982 -7.448545 -3.678467 0 -2.05 0.0409

Group1 -2.674981 1.077038 -4.7859 -0.56402 3595E9 -2.686167 -2.663180 0 -2.48 0.0130

Group2 -4.008669 1.542066 -7.0311 -0.98627 1.68E6 -4.567307 -3.457197 0 -2.60 0.0093

Group3 -3.033814 1.907036 -6.7716 0.70393 211866 -4.297201 -1.992340 0 -1.59 0.1116

Group4 -4.451317 2.371265 -9.0991 0.19646 30736 -6.861047 -1.153242 0 -1.88 0.0605

Figure 1: Example SAS output for the case study with the default program parameterization.

However, the sensitivity of inferences to departures from MAR should be thoroughly inves-
tigated via sensitivity analyses under plausible MNAR mechanisms, although MNAR cannot
be tested. This latter aspect has been discussed, demonstrated and exemplified in Molen-
berghs, Beunckens, Sotto, and Kenward (2008). If the conclusion assuming MAR differs from
conclusions under plausible MNAR mechanisms, then careful scrutiny is necessary.

In the PMM framework, ACMV is the natural counterpart to MAR whereas the other iden-
tifying restrictions describe MNAR mechanisms. Here-below, we provide results of PMM
analyses of the case study data under different identifying restrictions available in the pro-
gram. Analyses are based on 10,000 imputations, which is a large number compared to what
is generally recommended. Arguments to justify the number of imputations are given first.

The number of imputations is an important issue as it directly influences result accuracy and
program execution time. Several aspects need to be considered and there is no obvious formal
answer. Beyond the intuitive rule that the greater the number of imputations, the greater is
result accuracy, the identifying restriction chosen and the amount of observations per pattern
(e.g., majority completer versus spread over many patterns) are two important aspects to
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Identifying restriction ∆ Mean Standard error p value

CCMV −4.75 2.37 0.044
ACMV −4.69 2.42 0.053
NCMV −4.30 2.52 0.088

NFMVCC 0 −4.66 2.39 0.051
NFMVNC 0 −4.46 2.47 0.071
NFMVCC 2 −4.44 2.38 0.062
NFMVNC 2 −4.25 2.46 0.085
NFMVCC 4 −4.24 2.38 0.075
NFMVNC 4 −4.03 2.46 0.102

Table 2: Treatment-effect estimates at visit 4 under CCMV, ACMV, NCMV, NFMVCC, and
NFMVNC obtained with 10,000 imputations.

be considered. CCMV is more precise if there are a lot of completers, as opposed to some
neighboring patterns that are rather lightly filled.

As shown in Section 4.1, the case study exhibits a moderate dropout rate of 16.8%. The
relative increase in variance due to missingness can be used to quantify how missingness
contributes to inferential uncertainty. In the SAS output shown in Section 5, the value 0.146
for the treatment-effect parameter at visit 4 characterizes a moderate contribution. This
information can be supplemented by the relative efficiency, introduced by Rubin (1987), which
indicates the magnitude of the point estimate’s standard error of the current run rather than
based upon an infinite number of imputations. In our example, the relative efficiency is
greater than 0.999 and tends to demonstrate that the default size of 500 imputations is
largely sufficient to obtain accurate inferential results. However, the systematic use of such
diagnostic tools to determine the number of imputations raises several criticisms because the
true value of these quantities is unknown and varies across distinct runs for the same data
and analysis; see, e.g., Bodner (2008). Moreover, one can easily execute several times the
case study based on 500 imputations and observe that results exhibit some variation across
different runs.

A practical alternative to this approach consists of pre-defining accuracy levels on desired
inferential parameters in line with the objectives of the study. On the basis of several runs
of different sizes, the user selects the number of imputations that guarantees the stability
of results at the pre-defined accuracy levels. Such investigation should be conducted under
NCMV or NFMVNC, which generate greater between-imputation variances than CCMV or
NFMVCC, respectively.

A simple exploratory analysis requires less accuracy than an analysis directed to regulatory
bodies. In the case study, a size of 100 to 500 imputations is perfectly conceivable for a
quick exploration, whereas 1000 imputations guarantee an accuracy level of 1 decimal to the
treatment-effect estimate at visit 4. A size of 10,000 imputations guarantees accuracy levels
of two decimals to the estimate and three decimals to the significance level. Table 2 shows the
treatment-effect estimates at visit 4 under CCMV, ACMV, NCMV, NFMVCC, and NFMVNC

obtained with 10,000 imputations. Under NFMVCC and NFMVNC, ∆ was set to 0, 2 and 4.

The difference between the result under ACMV and the results under the MNAR mechanisms
is moderate, although this difference may have an impact on the statistical conclusion if
the significance level is set to 0.05. NFMV assumes that any dropout is associated with an
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outcome decrease by ∆ at the first unobserved visit. The decrease of treatment-effect estimates
under NFMV as the value of ∆ increases was expected since there are twice more dropout
subjects in the test group, 25/111 (22.5%), than in the placebo group, 13/115 (11.3%).

7. Specifications of other PMM analyses

The great flexibility of the program allows different kinds of investigation. This flexibility is
illustrated with the case study through the implementation of four PMM analyses.

7.1. Introduction of a class effect

Analysis of a class effect in the PMM framework requires the user to ensure that enough
subjects are available by class modality per pattern to allow pattern parameter estimation.
We now add a fictitious center effect with three modalities (i.e., three different investigation
sites) to the statistical model of the case study. We also assume that a variable Centre

identifies centers with values 1, 2, and 3 in the SAS data set Data.

The Centre effect is incorporated in the model via two fixed-effect parameters. According
to Section 4, the names of these parameters must start by ‘Cov’ as they will be analyzed as
any other covariate. The center-effect parameters will be denoted by CovInv1 and CovInv2

in what follows. The model is specified in the SAS macro variable &Covariates as:

%let Covariates = Cov1 CovInv1 CovInv2 Int1 Int2 Int3 Int4

Group1 Group2 Group3 Group4;

Then, the columns of the design matrix associated with the center-effect parameters are
obtained from the indicator SAS variables CovInv1 and CovInv2. These can be derived in
the data step DefineColumns using the syntax:

CovInv1 = 0; CovInv2 = 0;

if Centre = 1 then CovInv1 = 1;

if Centre = 2 then CovInv2 = 1;

7.2. Introduction of an interaction term

We now describe how to incorporate an interaction of baseline by visit in the case study. Let
us denote by Cov11 Cov12 Cov13 Cov14 the parameters of the baseline values by visit, the
model is specified in the SAS macro variable &Covariates as:

%let Covariates = Cov11 Cov12 Cov13 Cov14 Int1 Int2 Int3 Int4

Group1 Group2 Group3 Group4;

Then, the columns of the design matrix associated with the interaction terms are obtained
from the SAS variables Cov11 Cov12 Cov13 Cov14. These can be derived in the data step
DefineColumns using the syntax:

Cov11 = 0; Cov12 = 0; Cov13 = 0; Cov14 = 0;

if Rep = 1 then Cov11 = Cov1;
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if Rep = 2 then Cov12 = Cov1;

if Rep = 3 then Cov13 = Cov1;

if Rep = 4 then Cov14 = Cov1;

In the case study, this model implies that SAS PROC MIANALYZE does not provide pooled
inferences for the treatment effect at visit 1 since the between-imputation variance is zero.
Such a situation is not uncommon in a more general context as there may always be parameters
for which there is no missing information. Anyway, treatment-effect inferences at visit 1 can be
retrieved from any of the individual imputations, because all complete data sets will provide
the same results for that particular parameter.

7.3. Use of different models for imputation and analysis

If different models are used for imputation and analysis, the SAS macro variable &Covariates
cannot specify both models anymore. If &Covariates is used to specify the imputation model,
the analysis model must be specified manually in SAS PROC MIXED, line 272, and in SAS PROC

MIANALYZE, line 309.

7.4. Pooling of patterns

In applications with many time points, or when sample size by pattern is too low, it may
be more reasonable (or necessary due to sparseness) to just define patterns of early, middle,
and late dropouts. However, the program handles patterns that are defined based on dropout
at every time point, except baseline. To overcome this, pattern numbers must be decoupled
from time point numbers. We now show how to reduce the number of patterns in the case
study to three by pooling Patterns 2 and 3.

The pooling of patterns can be specified in the SAS data step Outcome2R by incorporating
first Pattern 3 into Pattern 2 and then Pattern 4 into Pattern 3. This is done, below line 105,
by inserting the syntax:

data DataFile.Outcome2R;

set DataFile.Outcome2R;

if Pattern = 3 then Pattern = 2;

if Pattern = 4 then Pattern = 3;

run;

No other modifications are needed in the SAS code.

Next, the instruction to calculate the number of available patterns for the imputation of each
missing value must be modified in the R script. The default instruction nPatternsSIv =

nPatterns - val + 1 appears twice.

Line 274, to calculate the number of available patterns for imputation under CCMV, ACMV,
and NCMV, the default instruction must be replaced by the syntax:

if (val <= 2) {

nPatternsSIv = nPatterns - val + 1

} else

nPatternsSIv = nPatterns - val + 2
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Line 324, to calculate the number of available patterns for imputation under NFMV, the
default instruction must be replaced by the syntax:

if (val <= 3) {

nPatternsSIv = nPatterns - val + 1

} else

nPatternsSIv = nPatterns - val + 2

7.5. Extension to linear mixed-effects models

In experiments with many time points, MMRM as specified in (9) may be inappropriate to
fit outcome values over time. Alternatively, the so-called random-coefficients model toward
extends the regression model to longitudinal outcomes.

Let us assume, in the case study, that the outcome values are described by an average trend in
function of the time since randomization. We further base the model on the assumption that,
for every subject i who belongs to group g, this trend can be modeled by a quadratic regression,
but with subject-specific coefficients. This explicitly allows the outcome trajectories to vary
by subject.

Denoting the time since randomization at visits by Timek, k = 1, . . . , t (t < T ), one formally
obtains

ygik = (β0g + b0gi) + (β1g + b1gi)Timek + (β2g + b2gi)Time2k + εgik, (14)

where εi = (εgi1, εgi2, . . . , εgit) is assumed to be normally distributed with mean vector zero
and some covariance matrix Σi. Because subjects are randomly sampled from a population of
subjects, it is natural to assume that the subject-specific coefficients in bi = (b0gi, b1gi, b2gi)

>

are normally distributed with mean zero and covariance G.

The above model is a special case of the general linear mixed-effects model which assumes
that Yi,obs satisfies

Yi,obs |bi = Xiβ + Zibi + εi,

bi ∼ N(0, G),
(15)

where Xi contains the known fixed-effects covariates and Zi contains the known subject-
specific covariates. We have bi ∼ N(0, G) and εi ∼ N(0,Σi), where the bi’s and εi’s are
independent. The error covariance matrix sometimes simplifies to Σi = σIni or other struc-
tures. To specify model (14), times of measurement must be incorporated into Xi and Zi.

Implementation of linear mixed-effects models in the PMM framework is straightforward from
Section 2.2. If patterns are based on missingness at every time point, PMM can be specified
from (15) by replacing the parameters β, G, and Σi by the pattern-specific parameters βt,
Gt, and Σt. If patterns are based on combinations of visits, the decoupling between pattern
number and visit number is accommodated in the program (see indications in the Section 7.4).

Missing outcome values are drawn from conditional pattern distributions where patterns are
selected by the identifying restriction chosen. As in Section 2.2, we now suppose that a
pattern r is used to impute yi,t+1 whereas yi,1, . . . , yi,t are observed. The mean and variance
of conditional pattern distributions are directly and simply obtained by replacing Σr by
Vi = ZiGrZ

>
i + Σr in the formulas yielding (11).
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The uncertainty pertaining to the matrix Gr is incorporated through the Bayesian posterior
predictive distribution of coefficients, as for the error covariance matrix Σr. On the basis of

non-informative Jeffreys’ priors in the Gaussian setting, the values of Ĝ
(m)
r by imputation,

m = 1, . . . ,M, are randomly drawn from the posterior distributions N(col(Ĝr)),V̂AR(col(Ĝr)),
where col(Ĝr) is the vector containing the coefficients of Ĝr.

The values of yi,t+1 are imputed after the derivation of V̂
(m)
i = ZiĜ

(m)
r Z>i + Σ̂

(m)
r . As de-

scribed in Section 2.2 and using the notation of (11), the imputed values are drawn from the
conditional pattern distributions, which are expressed by:

f (m)
r (yi,t+1|yi,1, . . . , yi,t) ∼ N(µ̂

(m)
i,r,2|1, V̂

(m)
i,2|1), m = 1, . . . ,M.

The implementation of model (14) with the program requires:

� In PMM.sas: To specify the random effects in SAS PROC MIXED with the statement
Random and to estimate Gt’s coefficients and correlations with the options G GCORR.
Note that the specification of the error covariance matrix structure requires to copy the
variable for time in another variable that will be included in the statements Class and
Repeated (see Verbeke and Molenberghs 2000, p. 94).

� In PMM.sas: To put estimates into the export data file Estimate2R to R.

� In PMM.R: To generate the values Ĝ
(m)
r by imputation and derive V̂

(m)
i,2|1 .

7.6. Extension to other applications

The program implements MMRM with full group-by-time interaction and an unstructured
error covariance matrix. As shown in the previous section, it is perfectly feasible to implement
alternative modeling strategies such as linear mixed-effects models, but also non-linear models
using SAS PROC NLMIXED. Under this perspective, the present version of the program can be
seen as a general framework whose algorithm can be adapted to different contexts.

The combination of the SAS and R functionalities and the call of R from SAS was a deliber-
ate choice, as the program is primarily directed to SAS users. However, multiple imputation
under identifying restriction is implemented in the R script. SAS is only used for parameter
estimation and pooled analysis and can be replaced by any other software, including R pack-
ages, that have capabilities similar to SAS PROC MIXED and SAS PROC MIANALYZE. Moreover,
implementing all the program in R would save execution time by avoiding the calls from SAS
to R.
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