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DESCRIPTION AND PURPOSE

Given values of h and a, the function T calculates
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Owen (1956, equation 3.4 and Figure 1) gives an alternative formulation of T(h,a) in terms of

an integral over an area of the standardized bivariate normal distribution with zero

correlation.  Cooper (1968b) has provided an algorithm FUNC for calculating T(h,a) using an

approximation due to Nicholson (1943) and a series expansion based on equation (3.9) of

Owen (1956).  This algorithm is unsatisfactory for large values of h.  Young and Minder

(1974) and Thomas (1986) use 10 point Gaussian quadrature in their functions TFN and
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TFNX.  The accuracy of these is limited by the accuracy of the quadrature points and weights

used.

The function T listed here uses six methods of evaluation, selecting the appropriate method

for the given values of h and a.  A relative error of less than 75 times the machine precision is

attained on a machine working up to at least 16 figure accuracy.

The T-function is used to calculate bivariate normal probabilities, (Sowden and Ashford,

1969; Donelly, 1973) which in turn are used to calculate multivariate normal probabilities,

(Schervish, 1984).  A wide variety of uses of bivariate normal probabilities including

applications to measurement errors, calibration and quality control are described by Owen

(1959).  A further use of the T-function is in evaluating the non-central t-distribution (Cooper,

1968c).

Maximizing likelihood functions which are in turn functions of bivariate normal probabilities

is made considerably easier when such probabilities are evaluated to high accuracy,

especially when this can be done efficiently.

METHOD

The required range of evaluation of T(h,a) is reduced from (− ∞ < h, a < ∞) to (h ≥ 0,

0 ≤ a ≤ 1) by utilising in turn the following results given by Owen (1956)

T(h, −a) = −T(h, a)

T(−h, a) = T(h, a) (2)

T(h, a) = 1
2 Φ(h) + 1

2 Φ(ah) − Φ(h) Φ(ah) − T(ah, 1/a),

where Φ(.) denotes the cumulative distribution function of the standard normal distribution.
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The six methods of calculation of T(h, a) over h ≥ 0, 0 ≤ a ≤ 1 are:-

T1:  Evaluation of the first term m terms of the series expansion given by Owen (1956,

equation (3.9)) i.e.
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T2:  Approximating ( ) 121
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+ x  by terms up to order 2m in a power series expansion, i.e.
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T3:  Approximating ( ) 121+
−

x  by the polynomial of degree 2m in x which minimizes the

maximum absolute error over [−1, 1], Hornecker (1958) i.e.
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The coefficients {C2i} are obtained from the coefficients of Chebyshev polynomials as

detailed by Borth (1973).  Note the minor change in notation in that Borth denotes C2i above

by C2(i−1).  Integrating (1) gives
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where zi is given by (4).

T4:  The expression for zi given by (4) may be re-arranged as
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Substituting for 1z +i  using (6) and re-arranging results in

( ) ( ){ } ( ) ( )1 2 2 2 21
2

0 =0
( , ) 2 exp 1 -

∞ −−

=
= − + −∑ ∑

ii i j

ji
i j

T h a a h a a hπ γ

which is approximated to order 2m + 1 in a by
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T5:  Gauss’ 2m-point quadrature formula for approximating the integral of an arbitrary

function f(x) over [−1, 1] is

1
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where values of the abcissas, xi, and weights, wi are given, for example by Abramowitz and

Stegun (1965).  For f(x) = ( ){ } ( )2 2 21
2exp 1 / 1− + +h x x
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which is the expression utilised by Young and Minder (1974) and Thomas (1986).  However,

as f(x) is an even function a computationally simpler approximation is obtained using
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Using (7) to approximate this integral results in
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T6:  When a = 1, T(h,1) = 1
2 ( )[1 ( )]−h hΦ Φ  (Owen, 1956)

φ

Fig. 1.  T(h,a) as an integral over the standardized bivariate normal density
with zero correlation, showing a sector of the circle of radius r.
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When a is near one a geometrical argument similar to that of Cadwell (1951) is used.  For X,

Y independent standard normal variables, from Owen (1956)

T(h,a) = P(X ≥ h, 0 ≤ Y ≤ aX); 0 ≤ a < 1

Hence

T(h,a) = T(h,1) − P(X ≥ h, aX ≤ Y ≤ X).

Transforming X,Y to independent variables 2 2 1/ 2 1( ) ,    = tan ( / )−= +R X Y Y Xθ 

T(h,a) = T(h,1) − P(R2 ≥ r2 , tan−1(a) ≤ θ  ≤ π/4)

+ P(X,Y ε A1) − P(X,Y ε A2)

Figure 1 illustrates the regions A1 and A2 and an arc of the circle of radius r for which A1 and

A2 are of equal area, i.e.

r2 = h2(1 − a)/φ

where φ = π/4 − tan−1(a) = tan−1{(1 − a)/(1 + a)}.

As 2 2
2~ ,χR  θ ~ U(0,2π) and the bivariate normal density of X and Y is smaller throughout A1

than at any point in A2,

( ) ( )1 21
2( , ) ( ,1) 2 exp−< − −T h a T h rπ φ .

This upper bound on T(h,a) is used as an approximation for a near 1,  i.e.
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T7:  In addition the following expression for T(h,a) is useful in evaluating T(h,a) accurately.

Substituting equation (6) for zi into (5)
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This computational procedure for T(h,a) is not incorporated into the code for the function T,

but was used in high precision calculations for validation purposes.

Fig. 2. Method used for computing T(h,a), (h ≥ 0, a ≥0).
Key:  1 = (Method 1, Order 2);  2 = (1,3);  3 = (1,4);  4 = (1,5);  5 = (1,7);  6 = (1,10);

7 = (1,12);  8 = (1,18);  9 = (2,10);  10 = (2, 20);  11 = (2,30);  12 = (3,20);
13 = (4,4);  14 = (4,7);  15 = (4, 8);  16 = (4, 20);  17 = (5,13);  18 = (6,0).
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NUMERICAL METHOD

The double precision function T(H,A) (– ∞ < H, A < ∞) first uses relations (2) and then calls

the double precision function TF(H,A,AH) (H ≥ 0, 0 ≤ A ≤ 1).  This in turn selects the

appropriate method (T1,…, T6) for computing T(H,A) on that basis of the input values of H

and A according to the ranges given in Figure 2.  In addition, for methods T1, ...,T5 the

appropriate order m (the number of terms in the series approximation or half the number of

Gaussian Quadrature points) is given in the key to Figure 2.

The boundaries in Figure 2 were chosen so that minimum computing effort is required to

achieve maximum precision by comparing the results of using each method with an

accurately computed value of T(h,a).  The choice of boundaries is not critical as around the

boundary between two methods both those methods were found to be satisfactory.

SOFTWARE

The software is written in FORTRAN and can be compiled using FORTRAN77 or

FORTRAN95 compilers.  It is in double precision, but can readily be changed to single

precision if required.

DOUBLE PRECISION FUNCTION T(H,A)

Formal Parameters

H Double precision input; h

A Double precision input; a

T Double precision output; T(h,a) for − ∞ < h, a < ∞
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DOUBLE PRECISION FUNCTION TF(H,A,AH)

Formal Parameters

H Double precision input; h (h ≥ 0)

A Double precision input; a (0 ≤ a ≤ 1)

AH Double precision input; a × h

TF Double precision output; T(h,a) for  h ≥ 0, 0 ≤ a ≤ 1

Failure indications:  None.  Function TF does not check that h and a are in the required

ranges or that AH is equal to a × h as these are unnecessary when called from T.

Auxiliary algorithms:  Functions T and TF require algorithms for calculating the standard

normal integrals

ZNORM1(x) = P(0 ≤ Z ≤ x);   ZNORM2(x) = P(x ≤ Z < ∞)

where Z is standard normal.  These have been given in the statement functions

ZNORM1(x) = 1 1
2 2erf ( / 2);     ZNORM2( ) = erfc( / 2)√ √x x x

using N.A.G. (1997) library routines S15AEF and S15ADF respectively and can readily be

replaced by the built-in functions ERF and ERFC if available or by routines, for example

function ALNORM of Algorithm AS66, Hill (1973), for calculating the normal integral.

However, using

ZNORM1(x) = ALNORM(x,.FALSE.) − 0.5;  ZNORM2(x) = ALNORM(x,.TRUE.)

will at best achieve 12 figure accuracy and also incur additional errors in ZNORM1(x) for x

small.  Other methods of calculating the normal integral are given by Cooper (1968a), Adams

(1969), Hill and Joyce (1967) and Kerridge and Cook (1976).  Double precision versions of

the functions ERF and ERFC are in the DCDFLIB library of routines for Cumulative
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Distribution Functions which contains source in FORTRAN77 and documentation.  It is

downloadable from the website http://odin.mdacc.tmc.edu/anonftp/page_2.html

The built-in routines DABS (used by T) and DEXP, DATAN and DFLOAT (used by TF) are

declared in statement functions prior to the executable commands in order that they may

readily be changed from double precision.

Constants:  All double precision constants are declared in DATA statements so that they may

easily be changed to single precision.  These include

RTWOPI = ( ) 12 −π ;     RRTPI = ( ) 1/ 22 −π  ;     RROOT2 = 2−1/2;

the array C2 of 21 coefficients required for T3(h,a,20) and the length 13 arrays PTS and WTS

given by PTS(i) = 2
ix , WTS(i) = / 2iw π  required for T5(h,a,13).  All double precision

constants are given to 20 figures accuracy.

RESTRICTIONS

The input values of h and a should be such that overflow does not occur when calculating h2,

ah, or a2.  A value of zero (underflow) is returned for values of h and a for which |T(h,a)| is

less than the smallest double precision number that can be stored.

PRECISION

The software has been developed and tested on a VAX 750 in double precision using 64 bit

real arithmetic (the N.A.G Library being implemented in double precision).  Single precision

should be used on machines that achieve this accuracy without resorting to double precision.

If S15AEF and S15ADF are required the N.A.G Library will generally be implemented in

single precision on such machines.
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TIME

The software calculates T(h,a) fastest for small h and a using T1(h,a,2).  Denoting this time

by 100 time units, the algorithm is slowest over 0 ≤ a ≤ 1 in the rectangular region h > 4.8,

0.36 < a ≤ 0.50 of Figure 2, where on average 503 time units are taken to evaluate T2(h,a,30).

Average times to evaluate T(h,a) over a grid of values of h and a within each of the 18

regions of Figure 2 are given in Table 1 using each of the functions T (this software), FUNCT

of Algorithm AS4 with the argument EPS equal to 10−15 (Cooper, 1968b) and TFNX of

algorithm ASR65 (Thomas, 1986).

Function T is slowest in Region 11, the union of the two regions h > 4.8, 0.36 < a ≤ 0.50 and

h ≥ 4.8/a, 2 ≤ a < 2.77778.  The timings for all regions are the average over an equal number

of points with a > 1 and a < 1.  As, when a > 1, both the functions T and TFNX use (2), the

time taken to evaluate T(h,a) is generally greater than for a < 1.  For h2(1 + a2) > 0.01, TFNX

Table 1.  Average time to evaluate T(h,a) for each region of Figure 2
(time to evaluate T(0.01,0.01) using function T = 100 units)

Region T FUNCT TFNX

1 172 139 117
2 197 165 122
3 216 218 201
4 239 265 311
5 270 298 374
6 325 394 415
7 359 683 426
8 464 810 427
9 358 1650 464

10 469 2920 465
11 586 2715 472
12 515 1587 480
13 191 366 400
14 228 520 423
15 242 732 424
16 388 1134 426
17 554 2080 427
18 265 1122 428
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uses 10 point Gaussian quadrature and hence its timing is not very dependent on h and a.

The function FUNCT is relatively inefficient for larger values of h.

On average, over all values of h and a at which T(h,a) was evaluated, the function T was

quickest and the function FUNCT slowest.

ACCURACY

Values of T(h,a) accurate to thirty figures were calculated using 128 bit arithmetic by

evaluating (9) with m = 48, the summation over k being continued until additional terms did

not alter the result.  The resultant values Tacc(h,a) say, were validated by evaluating (8) with

m = 48 (i.e. 96 point Gaussian quadrature).

The relative error in evaluating T(h,a) using any of the three functions is

e(h,a) = |T(h,a) – Tacc(h,a) | /Tacc(h,a)

and a straightfoward measure of accuracy is −log10{e(h,a)}, approximately the number of

correct significant figures in T(h,a).  Median values of this accuracy measured over a grid of

approximately 200 values of h and a within each of the regions of Figure 2 are given in Table

2 for each of the functions T, FUNCT and TFNX.

The function T is clearly the most accurate.  For a ≤ 1 its relative error was always less than

75 times the machine precision (on a VAX 750 with machine precision = 2.78 × 10−17).  It is

expected that this relative accuracy of 2.09 × 10−15 (= 10−14.7; i.e. more than 14 significant

figure accuracy) or better will be achieved on machines working as precisely or more

precisely than the VAX 750 but not for machines operating less accurately.  For a > 1, and

large values of h, some loss of relative accuracy may be expected due to relative errors in the
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Table 2.  Median accuracy – log10{e(h,a)} for each region of Figure 2

Region T FUNCT TFNX

1 17.2 10.3 8.3
2 17.1 10.3 7.7
3 17.2 10.3 7.8
4 16.9 10.3 6.7
5 17.1 10.3 7.0
6 16.7 10.3 6.8
7 16.4 10.3 7.1
8 16.4 10.3 6.8
9 16.1 9.4 9.8

10 15.9 8.5 9.1
11 15.7 6.3 8.8
12 15.7 6.4 6.7
13 17.2 10.3 8.3
14 16.9 10.3 7.4
15 16.5 10.3 7.3
16 16.3 10.3 7.3
17 16.1 10.3 6.8
18 16.0 10.3 6.7

N.A.G routine S15ADF.  For example, for h = 12 and a slightly above 1 the relative error in

the function T is 10−14.2.  This problem could be overcome by using a more accurate method

of evaluating normal probabilities.

For function FUNCT the accuracy measure −log10{e(h,a)} in Table 2 is equal to 10.3 at best

as the algorithm as published specifies the constant ( ) 12 −π  to 10 figures only.  However, for

regions 9, 10, 11 and 12 this accuracy was not generally achieved.  There are two distinct

flaws in the function FUNCT.  Firstly, for ha > 4, T(h,a) is approximated by T(h,∞) =

1
2 [1 ( )]− hΦ ; for example

T(3.2, ∞) = 3.435689690 × 10−4    (to 10 figures) and

T(3.2,1.5) = 3.435687966 × 10−4  and so the approximation is in error in the 7th figure.

Incidentally, the computational method used by FUNCT to evaluate T(h,∞) leads to yet

further inaccuracies.  Secondly, for ha ≤ 4, FUNCT uses the following form of Owen’s

(1956) equation (3.9)
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The term S(h,a) is calculated within FUNCT to the relative accuracy specified by EPS but the

subtraction from tan−1(a) leads to high relative errors in T(h,a) when the relative difference

between tan−1(a) and S(h,a) is small, i.e. when h is large.  For example, FUNCT calculates

T(6,0.5) to only seven figure accuracy and T(8.2,0.4) results in purely machine rounding error

on a VAX 750.

For a ≤ 1 and h2(1 + a2) > 0.01, TFNX uses Gaussian quadrature with points and weights

accurate to 7 decimal places and generally achieves a relative accuracy of about 7 significant

figures.  For a > 1, equation (2) is implemented with the result that in regions 9, 10 and 11

T(h,a) is evaluated to about 11 figure accuracy and hence the median accuracy over equal

numbers of points with a < 1 and a > 1 given in Table 2 is about 9 figures.  As noted by

Young and Minder (1974) more quadrature points will lead to more accuracy (if the points

and weights are specified accurately).  This would be the effect of implementing (8) but it

was found that the implementation of T5 with m = 13 (26 point quadrature) in the function T

was computationally more efficient.

TEST DATA

For six values of h and a, each arising using a different method as determined by Figure 2,

the ‘correct’ value Tacc(h,a) of T(h,a) to 30 figures and the values calculated by the three

functions T, FUNCT and TFNX are given in Table 3.
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Table 3.  Values of Tacc, T, FUNCT and TFNX

h = 0.0625 a = 0.25
Tacc = 3.89119302347013668966224771378 × 10−2

T = 3.8911930234701367 × 10−2 (using T1)
FUNCT = 3.8911930236682883 × 10−2

TFNX = 3.8911929530240984 × 10−2

h = 6.5 a = 0.4375
Tacc = 2.00057730485083154100907167685 × 10−11

T = 2.0005773048508315 × 10−11   (using T2)
FUNCT = 2.0005786131039544 × 10−11

TFNX = 2.0005777346505738 × 10−11

h = 7 a = 0.96875
Tacc = 6.39906271938986853083219914429 × 10−13

T = 6.3990627193898682 × 10−13  (using T3)
FUNCT = 1.3370679563529109 × 10−11

TFNX = 6.3990646989124663 × 10−13

h = 4.78125 a = 0.0625
Tacc = 1.06329748046874638058307112826 × 10−7

T = 1.0632974804687464 × 10−7  (using T4)
FUNCT = 1.0632974805367003 × 10−7

TFNX = 1.0632976713382256 × 10−7

h = 2 a = 0.5
Tacc = 8.62507798552150713113488319155 × 10−3

T = 8.6250779855215069 × 10−3   (using T5)
FUNCT = 8.6250779859607231 × 10−3

TFNX = 8.6250794575035250 × 10−3

h = 1 a = 0.9999975
Tacc = 6.67418089782285927715589822405 × 10−2

T = 6.6741808978228586 × 10−2  (using T6)
FUNCT = 6.6741808981627293 × 10−2

TFNX = 6.6741820559913328 × 10−2

RELATED ALGORITHMS

Donelly (1973) has written an algorithm BIVNOR(h,k,r) to evaluate P(X > h, Y > k) for two

standard normal variates X and Y whose correlation is r.  His function incorporates the

evaluation of Owen’s T-function using the series given by Owen (1956, equation 3.9).

From Owen (1956, equation 2.1)

P(X > h, Y > k) = Q(h,ah) + Q(k,ak) ; h, k ≥ 0 (10)
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where

[ ]1
2 1 ( ) ( , ) ;      0,  0

( , )
0  ;       = 0, >0   

 − − ≥
= 


h

h

h T h a h > k
Q h a

h k

Φ
(11)

and

( ) ( )
1
22/ 1= − −ha k h r r   ;  h > 0.

For  h = k = 0,

P(X > 0, Y > 0)  =  11 1  sin
4 2

−+
π

(r).

Care should be taken when computing (11) as, although the function T is accurate to at least

14 significant figures, the subtraction can lead to a loss of relative accuracy in computing Q

and hence in the resultant bivariate normal probability.  If, for instance, 1>ha , then using (2),

(11) may be computed as

[ ] [ ]1
2( , ) ( ,1/ ) ( ) 1 ( )= − − −h h h hQ h a T a h a h a hΦ Φ

where the last term is the product of the two error functions ZNORM1 and ZNORM2.  Code

for the functions BIVPRB and Q which evaluate (10) and (11) respectively, is listed after the

code for functions T and TF.

P(X > h, Y > k) was calculated for selected values of h, k (both > 0) and the correlation r

using the function BIVPRB and also using Donelly’s algorithm BIVNOR, both results being

compared with accurate values of the probability calculated to 30 figure accuracy and

presented in Table 4.

Using equation (10) is generally more accurate and slightly faster than BIVNOR, which
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Table 4.  Errors in computing bivariate normal probabilities

h k r Relative errors
Using

c.p.u. times (µs per 1000
evaluations)

BIVPRB BIVNOR BIVPRB BIVNOR

1.0 3.0 0.5 2.9 × 10−18 4.6 × 10−15 400 407

3.0 3.393 0.99 7.3 × 10−16 2.2 × 10−13 523 545

2.0 6.0 0.85385 3.2 × 10−16 6.9 × 10−8 531 725

2.5 7.5 0.85385 7.8 × 10−16 2.0 × 10−3 531 784

achieves 15 decimal place accuracy but is poor in relative accuracy terms for low

probabilities.  For instance, with h = 2.5, k = 7.5, r = 0.85385, BIVPRB gives a probability of

3.19089167291086 × 10−14, which is accurate to 15 significant figures, but using BIVNOR

results in 3.1845 × 10−14 which is accurate to 15 decimal places but only 2 significant figures.

However, because of the subtractions involved in computing Q, further work is needed to

develop code to compute bivariate normal probabilities to high relative accuracy for all h, k

and r.

ADDITIONAL COMMENTS

The accuracy of the function T depends somewhat on the machine used and the accuracy of

computing normal integrals.  Slightly less accuracy than on a VAX may be achieved on PC

and UNIX systems.  Increased accuracy, for example using a 128 bit word length can be

achieved using T7 with C2i , i = 1, … m+1 re-calculated to the required accuracy.  T3 could

similarly be made more accurate.  T1, T2, and T4 can be evaluated with m larger than the

values given in Figure 2, or with m unspecified and the terms in the series evaluated until

numerical convergence.  However, it is unwise to evaluate T1 with m unspecified as the

sequence {dj} (equation 3), which theoretically approaches zero, may numerically diverge.

Hence methods of evaluating bivariate normal probabilities such as given by Sowden and

Ashford (1969) and Donelly (1973) cannot be reliably used for accurate calculations.  The
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problem is overcome at the expense of more computing time by Cooper (1968b) who, in

effect, evaluates 2 jd  by

( )21
2 21

2 2
2

e /
∞−

=
= ∑

ih
j

i j

d h i!

and

( )21
2

2 121
2 1 2 2e /(2 1)

−−
− = − − −

jh
j jd d h j !

Similarly care should be taken evaluating T2 and T3 as although, for |a| < 1, zi should

approach zero as i increases, numerically the sequence {zi} decreases to near zero and then

diverges for i large.

Increased accuracy can be attained using T5 with large m and the quadrature points and

weights re-calculated to the required accuracy.  Accuracy to 30 figures is generally possible

with m = 48.  For T2, T3 and T6 and all methods with |a| > 1, standard normal integrals (or

error functions) need to be evaluated with at least the accuracy required in T(h,a).
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CODE FOR THE FUNCTIONS T, TF, BIVPRB AND Q

      DOUBLE PRECISION FUNCTION T(H, A)
C
C        COMPUTES OWEN'S T-FUNCTION OF H AND A
C        WITH H,A ANY REAL (DOUBLE PRECISION) NUMBERS
C
      DOUBLE PRECISION A, ABSA, ABSH, AH, CUT, H, HALF, ONE, QUART,
     *  TF, X, RROOT2, ZERO, NORMH, NORMAH, ZABS, ZNORM1, ZNORM2,
     *  DABS, S15AEF, S15ADF
      INTEGER IFAIL
      DATA ZERO, QUART, HALF, CUT, ONE /0.0D0, 0.25D0, 0.5D0, 0.67D0,
     *   1.0D0/, RROOT2 /0.70710678118654752440D0/
      ZABS(X)=DABS(X)
      ZNORM1(X) = HALF * S15AEF(RROOT2 * X, IFAIL)
      ZNORM2(X) = HALF * S15ADF(RROOT2 * X, IFAIL)
      ABSH=ZABS(H)
      ABSA=ZABS(A)
      AH = ABSA * ABSH
      IF (ABSA.LE.ONE) THEN
         T = TF(ABSH, ABSA, AH)
      ELSE
         IF (ABSH.LE.CUT) THEN
            T = QUART - ZNORM1(ABSH) * ZNORM1(AH)
     *          - TF(AH, ONE / ABSA, ABSH)
         ELSE
            NORMH = ZNORM2(ABSH)
            NORMAH = ZNORM2(AH)
            T = HALF * ( NORMH + NORMAH ) - NORMH * NORMAH
     *          - TF(AH, ONE / ABSA, ABSH)
         ENDIF
      ENDIF
      IF (A.LT.ZERO) T = -T
      RETURN
      END

      DOUBLE PRECISION FUNCTION TF(H, A, AH)
C
C        COMPUTES OWEN'S T-FUNCTION OF H AND A
C        H.GE.0 AND 0.LE.A.LE.1 ; INPUT AH MUST EQUAL A * H
C
      DOUBLE PRECISION PTS(13), WTS(13), C2(21), HRANGE(14), ARANGE(7),
     *  RTWOPI, Z, ZI, X, VI, RRTPI, RROOT2, ZERO, MHALF, HALF, ONE,
     *  H, HS, DHS,  AS, A, AJ, YI, DJ, GJ, R, AI, Y, NORMH, AH,
     *  ZEXP, ZATAN, ZFLOAT, ZNORM1, ZNORM2,
     *  DEXP, DATAN, DFLOAT, S15AEF, S15ADF
      INTEGER METH(18), ORD(18), SELECT(15,8), IHINT, IAINT, M, J,
     *  JJ, I, MAXII, II, ICODE, IFAIL
      DATA RTWOPI /0.15915494309189533577D0/,
     *     RRTPI  /0.39894228040143267794D0/,
     *     RROOT2 /0.70710678118654752440D0/,
     *     ZERO, MHALF, HALF, ONE /0.0D0, -0.5D0, 0.5D0, 1.0D0/
      DATA C2 /                         0.99999999999999987510D+00,
     *    -0.99999999999988796462D+00,  0.99999999998290743652D+00,
     *    -0.99999999896282500134D+00,  0.99999996660459362918D+00,
     *    -0.99999933986272476760D+00,  0.99999125611136965852D+00,
     *    -0.99991777624463387686D+00,  0.99942835555870132569D+00,
     *    -0.99697311720723000295D+00,  0.98751448037275303682D+00,
     *    -0.95915857980572882813D+00,  0.89246305511006708555D+00,
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     *    -0.76893425990463999675D+00,  0.58893528468484693250D+00,
     *    -0.38380345160440256652D+00,  0.20317601701045299653D+00,
     *    -0.82813631607004984866D-01,  0.24167984735759576523D-01,
     *    -0.44676566663971825242D-02,  0.39141169402373836468D-03/
      DATA PTS /                        0.35082039676451715489D-02,
     *     0.31279042338030753740D-01,  0.85266826283219451090D-01,
     *     0.16245071730812277011D+00,  0.25851196049125434828D+00,
     *     0.36807553840697533536D+00,  0.48501092905604697475D+00,
     *     0.60277514152618576821D+00,  0.71477884217753226516D+00,
     *     0.81475510988760098605D+00,  0.89711029755948965867D+00,
     *     0.95723808085944261843D+00,  0.99178832974629703586D+00/
      DATA WTS /                        0.18831438115323502887D-01,
     *     0.18567086243977649478D-01,  0.18042093461223385584D-01,
     *     0.17263829606398753364D-01,  0.16243219975989856730D-01,
     *     0.14994592034116704829D-01,  0.13535474469662088392D-01,
     *     0.11886351605820165233D-01,  0.10070377242777431897D-01,
     *     0.81130545742299586629D-02,  0.60419009528470238773D-02,
     *     0.38862217010742057883D-02,  0.16793031084546090448D-02/
      DATA METH / 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6/
      DATA ORD /  2, 3, 4, 5, 7,10,12,18,10,20,30,20, 4, 7, 8,20,13, 0/
      DATA HRANGE /0.02D0, 0.06D0, 0.09D0, 0.125D0, 0.26D0, 0.4D0,
     *  0.6D0,  1.6D0,  1.7D0,  2.33D0,  2.4D0,  3.36D0, 3.4D0, 4.8D0/
      DATA ARANGE /0.025D0,0.09D0,0.15D0,0.36D0,0.5D0,0.9D0,0.99999D0/
      DATA SELECT/  1, 1, 2,13,13,13,13,13,13,13,13,16,16,16, 9,
     *              1, 2, 2, 3, 3, 5, 5,14,14,15,15,16,16,16, 9,
     *              2, 2, 3, 3, 3, 5, 5,15,15,15,15,16,16,16,10,
     *              2, 2, 3, 5, 5, 5, 5, 7, 7,16,16,16,16,16,10,
     *              2, 3, 3, 5, 5, 6, 6, 8, 8,17,17,17,12,12,11,
     *              2, 3, 5, 5, 5, 6, 6, 8, 8,17,17,17,12,12,12,
     *              2, 3, 4, 4, 6, 6, 8, 8,17,17,17,17,17,12,12,
     *              2, 3, 4, 4, 6, 6,18,18,18,18,17,17,17,12,12/
      ZEXP(X) = DEXP(X)
      ZATAN(X) = DATAN(X)
      ZFLOAT(I) = DFLOAT(I)
      ZNORM1(X) = HALF * S15AEF(RROOT2 * X, IFAIL)
      ZNORM2(X) = HALF * S15ADF(RROOT2 * X, IFAIL)
C
C  DETERMINE APPROPRIATE METHOD FROM T1...T6
C
      DO 10 IHINT=1,14
      IF (H.LE.HRANGE(IHINT)) GOTO 20
   10 CONTINUE
      IHINT=15
   20 DO 30 IAINT=1,7
      IF (A.LE.ARANGE(IAINT)) GOTO 40
   30 CONTINUE
      IAINT=8
   40 ICODE = SELECT(IHINT,IAINT)
      M = ORD(ICODE)
      GOTO (100,200,300,400,500,600), METH(ICODE)
C
C  T1(H, A, M) ; M = 2, 3, 4, 5, 7, 10, 12 OR 18
C  JJ = 2J - 1 ; GJ = EXP(-H*H/2) * (-H*H/2)**J / J!
C  AJ = A**(2J-1) / (2*PI)
C
  100 HS = MHALF * H * H
      DHS = ZEXP(HS)
      AS = A * A
      J = 1
      JJ = 1
      AJ = RTWOPI * A
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      TF = RTWOPI * ZATAN(A)
      DJ = DHS - ONE
      GJ = HS * DHS
  110 TF = TF + DJ * AJ / ZFLOAT(JJ)
      IF (J.GE.M) RETURN
      J = J + 1
      JJ = JJ + 2
      AJ = AJ * AS
      DJ = GJ - DJ
      GJ = GJ * HS / ZFLOAT(J)
      GOTO 110
C
C  T2(H, A, M) ; M = 10, 20 OR 30
C  Z = (-1)**(I-1) * ZI ; II = 2I - 1
C  VI = (-1)**(I-1) * A**(2I-1) * EXP[-(A*H)**2/2] / SQRT(2*PI)
C
  200 MAXII = M + M + 1
      II = 1
      TF = ZERO
      HS = H * H
      AS = -A * A
      VI = RRTPI * A * ZEXP(MHALF * AH * AH)
      Z = ZNORM1(AH) / H
      Y = ONE / HS
  210 TF = TF + Z
      IF (II.GE.MAXII) GOTO 220
      Z = Y * (VI - ZFLOAT(II) * Z)
      VI = AS * VI
      II = II + 2
      GOTO 210
  220 TF = TF * RRTPI * ZEXP (MHALF * HS)
      RETURN
C
C  T3(H, A, M) ; M = 20
C  II = 2I - 1
C  VI = A**(2I-1) * EXP[-(A*H)**2/2] / SQRT(2*PI)
C
  300 I = 1
      II = 1
      TF = ZERO
      HS = H * H
      AS = A * A
      VI = RRTPI * A * ZEXP(MHALF * AH * AH)
      ZI = ZNORM1(AH) / H
      Y = ONE / HS
  310 TF = TF + ZI * C2(I)
      IF (I.GT.M) GOTO 320
      ZI = Y  * (ZFLOAT(II) * ZI - VI)
      VI = AS * VI
      I = I + 1
      II = II + 2
      GOTO 310
  320 TF = TF * RRTPI * ZEXP(MHALF * HS)
      RETURN
C
C  T4(H, A, M) ; M = 4, 7, 8 OR 20;  II = 2I + 1
C  AI = A * EXP[-H*H*(1+A*A)/2] * (-A*A)**I / (2*PI)
C
  400 MAXII = M + M + 1
      II = 1
      HS = H * H
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      AS = -A * A
      TF = ZERO
      AI = RTWOPI * A * ZEXP(MHALF * HS * (ONE - AS))
      YI = ONE
  410 TF = TF + AI * YI
      IF (II.GE.MAXII) RETURN
      II = II + 2
      YI = (ONE - HS * YI) / ZFLOAT(II)
      AI = AI * AS
      GOTO 410
C
C  T5(H, A, M) ; M = 13
C  2M - POINT GAUSSIAN QUADRATURE
C
  500 TF = ZERO
      AS = A * A
      HS = MHALF * H * H
      DO  510  I = 1 , M
      R = ONE + AS * PTS(I)
  510 TF = TF + WTS(I) * ZEXP(HS * R) / R
      TF = A * TF
      RETURN
C
C  T6(H, A);  APPROXIMATION FOR A NEAR 1, (A.LE.1)
C
  600 NORMH = ZNORM2(H)
      TF = HALF * NORMH * (ONE - NORMH)
      Y = ONE - A
      R = ZATAN(Y / (ONE + A))
      IF (R.NE.ZERO) TF = TF - RTWOPI * R * ZEXP(MHALF * Y * H * H / R)
      RETURN
      END

      DOUBLE PRECISION FUNCTION BIVPRB( H, K, R )
C
C  COMPUTES P( X.GT.H, Y.GT.K ) FOR X,Y STANDARD NORMAL WITH
C  CORRELATION R.    H.GE.0   K.GE.0
C
      DOUBLE PRECISION H, K, R, RR, RI, QUART, ZERO, HALF, ONE, X,
     *  Q, RROOT2, RTWOPI, ZNORM2, ZSQRT, ZASIN, DSQRT, DASIN, S15ADF
      INTEGER IFAIL
      DATA ZERO, QUART, HALF, ONE /0.0D0, 0.25D0, 0.5D0, 1.0D0/,
     *     RROOT2 /0.70710678118654752440D0/,
     *     RTWOPI /0.15915494309189533577D0/
      ZSQRT(X)=DSQRT(X)
      ZNORM2(X) = HALF * S15ADF(RROOT2 * X, IFAIL)
      ZASIN(X)=DASIN(X)
      IF (R.EQ.ZERO) THEN
         BIVPRB = ZNORM2(H) * ZNORM2(K)
      ELSE

 RR = ONE - R * R
 IF (RR.GT.ZERO) THEN
    RI = ONE / ZSQRT(RR)
    IF (H.GT.ZERO.AND.K.GT.ZERO) THEN
      BIVPRB = Q (H, (K/H - R) * RI ) + Q (K, (H/K - R) * RI )
    ELSEIF (H.GT.ZERO) THEN
      BIVPRB = Q (H, - R * RI )
    ELSEIF (K.GT.ZERO) THEN
      BIVPRB = Q (K, - R * RI )
    ELSE
      BIVPRB = QUART + RTWOPI * ZASIN(R)
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    ENDIF
 ELSEIF (R.GE.ONE) THEN
    IF (H.GE.K) THEN

               BIVPRB = ZNORM2(H)
            ELSE
               BIVPRB = ZNORM2(K)
            ENDIF

 ELSE
    BIVPRB = ZERO
 ENDIF

      ENDIF
      RETURN
      END

      DOUBLE PRECISION FUNCTION Q( H, AH )
C
C   COMPUTES Q = (1/2) * P( Z.GT.H ) - T ( H, AH )  ;  H.GT.0
C   THE RESULT FOR Q IS NON-NEGATIVE.
C   WARNING : Q IS COMPUTED AS THE DIFFERENCE BETWEEN TWO TERMS;
C   WHEN THE TWO TERMS ARE OF SIMILAR VALUE THIS MAY PRODUCE
C   ERROR IN Q.
C
      DOUBLE PRECISION H, AH, AHH, ONE, MINONE, HALF, RROOT2,
     *   X, T, TF, ZNORM1, ZNORM2, S15AEF, S15ADF
      INTEGER IFAIL
      DATA HALF, ONE, MINONE /0.5D0, 1.0D0, -1.0D0/,
     *     RROOT2 /0.70710678118654752440D0/
      ZNORM1(X) = HALF * S15AEF(RROOT2 * X, IFAIL)
      ZNORM2(X) = HALF * S15ADF(RROOT2 * X, IFAIL)
      IF (AH.GT.ONE) THEN

 AHH = AH * H
 Q = TF (AHH, ONE / AH, H) - ZNORM2( AHH ) * ZNORM1 ( H )

      ELSE
 Q = HALF * ZNORM2 ( H ) - T ( H, AH )

      ENDIF
      RETURN
      END
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