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Abstract

Except for n=1, only the limit as n→∞ for the distribution of the Anderson-Darling test for uniformity
has been found, and that in so complicated a form that published values for a few percentiles had to be
determined by numerical integration, saddlepoint or other approximation methods. We give here our method
for evaluating that asymptotic distribution to great accuracy—directly, via series with two-term recursions.
We also give, for any particular n, a procedure for evaluating the distribution to the fourth digit, based on
empirical CDF’s from samples of size 1010.

1 Introduction

For an ordered set x1 < x2 < · · · < xn of purported uniform [0,1) variates, the Anderson-Darling goodness-
of-fit test uses the statistic

An = −n − 1

n
[ln(x1(1 − xn)) + 3 ln(x2(1 − xn−1)) + 5 ln(x3(1 − xn−2)) + · · · + (2n − 1) ln(xn(1 − x1))].

This is a special case of the Cramer-von Mises approach: use
∫ 1

0
w(x)[Fn(x)−x]2 dx, the squared area between

the sample CDF Fn(x) (the staircase) and the diagonal y = x, using a suitable weight function w(x). That
approach: use the weighted square of the area, is in contrast to the Kolmogorov approach: use the maximum
distance from the staircase to the diagonal, (for which the distribution has only recently become available
[6]). Choice of the weight function w(x) = 1

x(1−x)
was suggested by L.J. Savage, as it divides the distances

from the diagonal to the corners of the staircase by their standard deviations. That choice leads to the
statistic An above, for which Anderson and Darling [1] derived a complicated expression for the asymptotic
distribution.

Thus, with Fn(x) the sample CDF of a set {X1, ..., Xn} of iid random variables in [0,1),

Fn(x) =
number of X1, X2, . . . , Xn that are ≤ x

n
,

the Anderson-Darling statistic for testing that the X’s came from a uniform distribution is

An = n

∫ 1

0

[Fn(x) − x]2

x(1 − x)
dx = n

∫ 1

0

[Fn(x) − x]2

x
d x + n

∫ 1

0

[Fn(x) − x]2

1 − x
d x.

Since Fn(x) is a step function, expressing the above integral as a sum in two parts leads to a collection of
elementary integrals from which a little manipulation provides the form

An = −n − 1

n
[ln(x1(1 − xn)) + 3 ln(x2(1 − xn−1)) + 5 ln(x3(1 − xn−2)) + · · · + (2n − 1) ln(xn(1 − x1))],

in which x1 < x2 < · · · < xn are the n sample X values put into increasing order.
For n = 1 the distribution of A1 is

Pr[A1 < z] = Pr[−1 − ln(x1(1 − x1)) < z] =
√

1 − 4e−1−z, for z > ln(4) − 1 = .38629 · · · .

Even for n = 2 the distribution is difficult to evaluate (via numerical integration), and for specific n > 2, all
that seems available is some tabled values for n ≤ 8 based on simulations by Lewis [4] —simulations limited
by CPU speeds and sampling methods circa 1960. But current speeds of CPU’s, and fast methods for
generating an ordered sample of uniform variates by means of the ziggurat method for exponential variates,
make it feasible to generate 1010 random values of An for n’s in the hundreds, and thus determine the
distribution with considerable accuracy. We do this for n = 8, 16, 32, 64, 128 and the results lead to formulas
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for in-between n’s that seem to provide Pr(An < z) with accuracies to the fifth digit, inferred from the size
of the samples used to derive them and supported by extensive testing.

The limiting distribution of An also suffers from lack of a method for its accurate determination. Ander-
son,Darling [2] and Lewis [4] both give the same values for the 90,95 and 99 percentiles (their 99th percentile,
3.857 is actually 3.878125...). Other approximations are given by Sinclair and Spurr [7], while Giles [3] has
recently suggested a saddlepoint method.

We provide here a method for determining that asymptotic distribution to arbitrary precision, with a C
version to double precision accuracy, roughly 13-15 digits.

We first describe the method for evaluating the asymptotic distribution, limn→∞ Pr(An < z), to desired
accuracy, and then show how it may be used to determine, for given n, Pr(An < z) by means of adjustments
based on simulations of size 1010.

2 The limiting distribution of An.

An expression for the limiting distribution of An was given by Anderson and Darling [1]. The method was
based on a development of Doob for the absorption probability of a diffusion model. They gave

lim
n→∞

Pr(An < z) =

√
2π

z

∞
∑

j=0

(

− 1
2

j

)

(4j + 1) e−(4j+1)2π2/(8z)

∫

∞

0

e
z

8(1+w2)
−w2(4j+1)2π2/(8z)

d w.

This is a strange distribution function. Anderson and Darling [2] used numerical integration to find
the 90, 95 and 99 percentiles. (They are reported as 1.933,2.492 and 3.857; the true values to 20 places
are 1.9329578327415937304, 2.4923671600494096176 and 3.8781250216053948842.) Lewis [4], also using
numerical integration, published a table giving lim Pr(An < z) with 4-place accuracy for selected z values,
as well as the same three percentiles with the wrong 3.857 value for 3.878125.... Other values have been
provided by Sinclair and Spurr [6], (approximate inversion of the characterisitic function), and Giles [3],
(saddlepoint approximations). In all, it seems that relatively few values or percentiles have been provided,
all by approximation methods and sometimes giving less than the claimed 3-4 digits of accuracy. Note that
Sinclair and Spur report a better value, 3.880 as the 99 percentile 3.878125..., which Giles disputes in a
footnote, sticking to 3.857 as the ‘true’ value, presumably because it was given by both Anderson-Darling
[2] and Lewis [4].

We will provide a method for evaluating the above distribution with accuracy limited to the computer’s
ability to distinguish between floating point numbers, give a C program for implementing it, and also give
a quick-and-easy approximation that gives accuracy better than .000002 for probabilities less than .9 and
.0000008 for those beyond.

We designate the limiting distribution by ADinf(z), and put it in the form

lim
n→∞

Pr(An < z) = ADinf(z) =
1

z

∞
∑

j=0

(

− 1
2

j

)

(4j + 1)f(z, j),

where

f(z, j) =
√

2πe−tj

∫

∞

0

e
z

8(1+w2)
−w2tj

dw, tj = (4j + 1)2π2/(8z).

The difficulty is in evaluating f(z, j). To do that, we expand exp( z
8(1+w2)

) in a series:

f(z, j) = c0 + c1
z

8
+ c2(

z

8
)2/2! + c3(

z

8
)3/3! + c4(

z

8
)4/4! + · · · ,

with, for given j, and tj ,

cn =
√

2πe−tj

∫

∞

0

e−w2tj

(1 + w2)n
d w.

We then have, all with fixed j and t = tj = (4j + 1)2π2/(8z):

c0 = πe−t(2t)−1/2,

c1 = π(π/2)1/2erfc(t1/2),

and—the key to accurate evaluation of ADinf()—the recursion:

cn+1 =
(n − 1

2
− t)cn + tcn−1

n
.

Using these recursions, for fixed j in the series for f(z, j), we may then evaluate ADinf(z) as a series,
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ADinf(z) =
1

z
[f(z, 0) − 1

2

5

1!
f(z, 1) +

1

2

3

2

9

2!
f(z, 2) − 1

2

3

2

5

2

13

3!
f(z, 3) +

1

2

3

2

5

2

7

2

17

4!
f(z, 4) − · · ·]

The accompanying C version will evaluate ADinf(z) to around fifteen places, checked with a 30-digit
Maple version. Note that for the two initial values of the recursions, the second requires erfc, the comple-
mentary error function. Our version of the complementary normal distribution function, cPhi(x), is included
and recommended for use, as it is more accurate than many of the available erf(x) or erfc(x) routines in C
compiler libraries.

Figure 2 shows the distribution and density of A∞. The distribution is infinitely flat (every derivative is
zero) at z = 0 and nearly flat as z passes 6 or so, with a slow approach to 1. The C (or Maple) procedure gives
ADinf(9) = .999960465988611 (.999960465988612484992562014458), and ADinf(10) = .999986184964588
(.999986184964589314168018038088).

0

1

2 4 6 8 10
z

Figure 1: The density and distribution function of A∞.

The above method for evaluating ADinf(z) to unlimited accuracy, requiring the normal integral and a
loop within a loop, might be more complicated and/or have more power than many users want to invoke—
certainly in applications where 6-digit accuracy may be more than adequate. For that reason we offer the
following two-piece formula, with accuracies indicated, (using lowercase adinf rather than the mixed ADinf):

adinf(z) =











for 0 < z < 2, with |error| < .000002 :

z−1/2e−1.2337141/z (2.00012 + (0.247105−(.0649821−(.0347962−(.0116720−.00168691z)z)z)z)z)
for 2 ≤ z < ∞, with |error| < .0000008 :

exp(− exp(1.0776−(2.30695−(.43424−(.082433−(.008056−.0003146z)z)z)z)z)).

The function ADinf(z) starts like 2z−1/2eπ2/(8z), and π2/8 = 1.23370055 is changed to 1.2337141 to ensure
(7-place) continutity at z = 2, with a fifth degree polynomial in Horner form as a multiplier for the range

0 < z ≤ 2. With increasing z, we might expect a standard extreme-value form: e−ea−bz

, and examination
shows that ln(− ln(ADinf(z))) looks quite linear. But a linear form in that top exponent does not provide
the accuracy we seek, and a Horner polynomial to degree 5 is used.

3 Getting the distribution of An by simulation.

Until now, little was known about the distribution of An for various n. Lewis [4] gave tables for small n,
based on simulations conducted at the IBM Research Center, but was unable to go beyond n = 8. He
concluded that the convergence of the distribution of An to that of A∞ is “quite rapid”. Such confidence
in a rapid approach seems to hold only for probabilities greater than about .8. We think that use of A∞’s
distribution for that of An is not good enough for modern computer-aided statistical procedures. The worst
error in using A∞ for a particular An is about .044/n, near the 33rd percentile. But there is some support for
Lewis’s confidence: the approach is more rapid than that for the limiting form of Kolmogorov’s distribution,
which has worst error of about .278/

√
n, also around the 33rd percentile [6].

By developing very fast ways to generate a sequence of ordered uniform variables, we will be able to get
samples of An large enough (typically 1010 with each of n = 8, 16, 32, 64, 128) to provide accuracies better
than .00005 for determining Pr(An < z) or for converting an observed An to a p-value.

To do this, we need a way to partition the possible values of An into cells with approximately equal
probabilities. But this need not be done directly. When applying a goodness-of-fit test to the values
x1 < x2 < · · · < xn, whatever version of the Kolmogorov-Smirnov class of tests we use, it is necessary to
convert the resulting statistic to a uniform variable, a p-value, in [0,1). We do not need Pr(An < z) directly,
but, rather, we need a way to convert the observed value to a uniform [0,1) value.

We do that in the following way: Since the distribution of An is close to that of A∞, if Z is a random
value with distribution of An, then ADinf(Z) should be close to uniformly distributed in [0,1). Therefore,
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if we divide the unit interval into 1000 cells, 0 to .001, .001 to .002, . . .,.999 to 1, then count the number of
times that ADinf(Z) falls into those intervals. We need only make a small adjustment to make the resulting
empirical distribution quite close to uniform in [0,1)—provided our mean cell counts are large enough to
provide the necessary accuracy. Our mean cell counts are around 107.

Thus there is an error function, say errfix(n, x), 0 < x < 1, such that

Pr(An < z) = ADinf(z) + errfix(n, ADinf(z)).

A computer approximation to the true errfix(n, x) needs to have sufficient accuracy to ensure that the
composite result, ADinf(z) + errfix(n, ADinf(z)) will be close enough to uniform for practical applications.

The error function errfix(n, x), 0 < x < 1 given below is based on extensive simulation. For a given value
of the random variable Z = An, we evaluate x = ADinf(Z), then convert that x to a uniform [0,1) random
variable p by means of p = x + errfix(n, x). Graphs of errfix(n, x), 0 < x < 1 are given in Figure 3, for
n = 8, 16, 32, 64, 128.
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0.003

0.004
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0.2 0.4 0.6 0.8 1

Figure 2: The error curves for converting ADinf(z) to a uniform distribution

Here, we get lucky. We are able to adequately represent, piecewise, any one of those error curves by means
of three fixed functions g1, g2, g3, adjusting the scale as a function of 1/n and providing stretch factors in
the g’s arguments. Each error curve is made of three parts, an initial dip that reaches the x-axis at a point
c = c(n) and can be adequately represented as g1(x/c) times a function of 1/n. Then the second region
from c to .8 can be adequately represented as a function of 1/n times g2(x − c)/(.8 − c), and finally, a last
dip from .8 to 1 than can be represented as g3(x)/n. For each error curve, the right crossing is satisfactorily
close to x = .8 for all n, but the left crossing, c, varies enough to require an empirical function of n:

c(n) = .01265 + .1757/n.

With that c(n), the following piecewise function serves to accurately represent, (to within ±.00005), the
error in converting an observed An into a uniform [0,1) variable, at least for specific n = 8, 16, 32, 64, 128:

errfix(n, x) =

{

(.0037/n3 + .00078/n2 + .00006/n)g1(x/c(n)) if x < c(n)
(.04213/n + .01365/n2)g2((x − c(n))/(.8 − c(n))) if c(n) ≤ x < .8
g3(x)/n if .8 < x

g1(x) =
√

x(1 − x)(49x − 102),

g2(x) = −.00022633 + (6.54034 − (14.6538 − (14.458 − (8.259 − 1.91864x)x)x)x)x,

g3(x) = −130.2137 + (745.2337 − (1705.091 − (1950.646 − (1116.360 − 255.7844x)x)x)x)x.

A polynomial will not serve near the origin, but
√

x times a simple polynomial works well.
For values of n between or beyond the designated 8,16,32,64,128, errfix(n,x) seems to give accuracies

better than .0005. To use errfix() in applying the Anderson-Darling test: for given n and sample values
x1 < x2 < · · · < xn, first compute

Z = An = −n − 1

n
[ln(x1(1 − xn) + 3 ln(x2(1 − xn−1)) + · · · + (2n − 1) ln(xn(1 − x1))].

Then the random variable ADinf(Z) + errfix(n, ADinf(Z)) should be uniformly distributed in the interval
[0,1).

Alternatively, if Z = An is the Anderson-Darling statistic arising from a (sorted) sample of n iid uniform
variates in [0,1), then

Pr(Z < z) = ADinf(z) + errfix(n, ADinf(z)).

Since the exact distribution of Z = An is not known, but only approximated from samples of 1010 for
various n, we base our claim on:
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The 1000 times 10,000 Test: For various n, do this:
A: Generate a sample of 10,000 Z’s, Z = −n − 1

n
[ln(x1(1 − xn)) + · · · + (2n − 1) ln(xn(1 − x1))],

converting each to values in [0,1) by ADinf(Z) + errfix(n, ADinf(Z)) as above.
B: Apply a KS test (the Kolmogorov test [6]) to the resulting 10000 ‘uniform’ values.

This will return a value in [0,1).
C: Repeat Steps A and B 1000 times to yield 1000 values in [0,1).

If those 1000 values, in turn, pass the Kolmogorov test,
then the error conversion formula may be considered suitable for practical purposes.

We found the error conversion procedure passed the ‘1000 times 10,000 test’ for each of
n = 10, 20, 30, . . . , 100—indeed, numerous times for each of those n’s and others.

4 Speeding up the simulation.

We describe here the method for generating an ordered set of n uniform [0,1) variates that makes feasible
the generation of some 1010 ordered sets. These are used to find the distribution of An, or rather, find the
function of An that converts it to a p-value for testing goodness-of-fit under the Anderson-Darling criterion.

The key to speed is the ability to generate exponential variates at the rate of 50 to 60 million per second.
This can be done using the ziggurat method of Marsaglia and Tsang [5], with the #define feature of C that
permits the fast part of the generating procedure to be done in-line. Given such a fast method for generating
exponential variates, the required set of ordered uniform variates can be generated as

x1 = y1/S, x2 = (y1 + y2)/S, . . . , xn = (y1 + · · · + yn)/S,

with y1, y2, . . . , yn, yn+1 exponential variates and S = y1 + · · · + yn+1.
With such a fast method for generating each ordered set of uniform variates, we were able to get samples

of size 1010 to find, empirically, the error adjustment that makes AD(Z)+errfix(n, AD(Z)) as close to being
uniform in [0,1) as practical applications are likely to require.
Summary for AD test: Generate a sample value Z of An. Then return ADinf(Z)+errfix(n, ADinf(Z)) as the
required p-value, uniformly distributed in [0,1) if the ordered set x1 < x2 < · · · < xn came from a sample of
n iid uniform’s, or, alternatively, Pr(An < z) = ADinf(z) + errfix(n, ADinf(z)).

5 Attachments

The browse files section for this article contains files ADinf.c and AnDarl.c. The first file contains
ADinf(double z) for the asymptotic distribution to full accuracy, with a main program for calling it.
The second file, AnDarl.c, provides AD(int n,double z) for finding Pr(An < z). It finds adinf(z), then
adjusts that result, returning adinf(z)+errfix(n,adinf(z)). The quick-and-easy adinf() is used, rather than
the full-precision ADinf(), since precision beyond 6-7 digits is likely to be wasted for the 4-5 digit accuracy
of the code in errfix(n,x). (If you want greater accuracy, try the more elaborate ADinf(z), but the effort is
likely to be wasted.)
The file AnDarl.c also contains the procedure ADtest(int n,double *u) that computes the Anderson-
Darling statistic Z = An from the (sorted) u array, then converts to a p-value by means of AD(n,Z).
The main() program for the AD() and ADtest() routines contains two sorted arrays of size 10, to illustrate
use of ADtest, and an infinite loop for arguments to AD(n,z), along with the adinf(z) and errfix(n,adinf(z))
that lead to the result.
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