Journal of Statistical Software

July 2004, Volume 11, Issue 4. http:/ /www.jstatsoft.org/

Evaluating the Normal Distribution

George Marsaglia
Florida State University

Abstract

This article provides a little table-free C function that evaluates the normal distribution
with absolute error less than 8 x 10716, A small extension provides relative error near
the limit available in double precision: 14 to 16 digits, the limits determined mainly by
the computer’s ability to evaluate exp(-t) for large t. Results are compared with those
provided by calls to erf or erfc functions, the best of which compare favorably, others do
not, and all appear to be much more complicated than need be to get either absolute
accuracy less than 1071° or relative accuracy to the exp()-limited 14-16 digits. Also
provided: A short history of the error function erf and its intended use, as well as, in the
‘browse files’ attachment, various erf or erfc versions used for comparison.

Keywords: normal distribution, Phi, cPhi, error function, erf, erfc, accuracy.

1. Introduction

Let ¢(t) be the standard normal density function, ¢(t) = e_%tz/\/27r and let ®(z), Phi(x)
and cPhi(x) be the corresponding distribution and complementary distribution functions:

(z) = Phi(z) = /; é(t)dt, cPhi(z) = /;O S(t)dt = 1 — B(x).

I support the common, but unfortunately not universal, notation ®(x) for the standard normal
distribution when math fonts are available, or Phi(x) and cPhi(x) for ®(z) and 1 —®(z) when
referring to programming language functions.

This little C function:

double Phi(double x)

{long double s=x,t=0,b=x,q=x*x,i=1;

while(s!=t) s=(t=s)+(b*=q/(i+=2));

return .5+s*exp(-.5%q-.91893853320467274178L) ;}

http://www.jstatsoft.org/

2 Evaluating the Normal Distribution
produces the following output, with the true value displayed below the value provided by
Phi(x):
b'd Phi (%) b'e Phi (x) b'd Phi (x)
0.1 .539827837277029 4.5 .999996602326875 -1.1 .1356660609463827
.539827837277028981. .. .999996602326875699. . . .1356660609463826751. ..
1.2 .884930329778292 5.6 .999999989282410 -3.3 .0004834241423840
.884930329778291731. .. .999999989282409741. .. .0004834241423837772. ..
2.3 .989275889978324 6.7 .999999999989579 -5.5 .0000000189895631
.989275889978324194. .. .999999999989579023. .. .0000000189895624658. . .
3.4 .999663070734323 7.8 .999999999999997 =7.7 .0000000000000065
.999663070734323119... .9999999999999969046. . . .0000000000000068033. ..
A study over the full range for Phi(x) shows a worst error of about 8 x 10716, but that is

absolute, not relative error. Concerning relative error, here is a little, but not-quite-as-little

C

function that uses nine tabled values to provide tail values of the normal distribution, i.e.

cPhi(z) = 1—®(x), to about the 14-16 digit limit available in double precision for a function

th

at uses exp():

double cPhi(double x)
{int i,j=.5*(fabs(x)+1); long double R[9]=
{1.25331413731550025L, .421369229288054473L, .236652382913560671L,
.162377660896867462L, .123131963257932296L,.0990285964717319214L,
.0827662865013691773L, .0710695805388521071L, .0622586659950261958L} ;
long double pwr=1,a=R[j],z=2%j,b=a*z-1,h=fabs(x)-z,s=a+h*b,t=a,q=h*h;
for(i=2;s!=t;i+=2){a=(atz*b)/i; b=(b+z*a)/(i+l); pwr*=q; s=(t=s)+pwr*(a+th*b);}
s=s*exp (-.5*x*x-.91893853320467274178L) ;
if (x>=0) return (double) s; return (double) (1.-s);
}

Values for the standard normal distribution are often obtained by means of library functions
erf or erfc, with obligatory changes of scale and argument, such as .5+.5*%erf (x/sqrt(2.)),

or

by using functions based on erf or erfc, with adjustments to the many coefficients in the

polynomial or rational function approximations used in most erf or erfc implementations.

We will compare accuracies of the two short C functions above with those obtained from

va
th

rious erf and erfc implementations. Absolute error will be displayed as — log; |tru-approx|,
at is, the negative of the exponent in expressing the absolute error as a power of 10. Relative

error will be displayed as —log; |(tru-approx)/tru|.

Results concerning absolute or relative error can be misleading, or mistaken for “digits of

ac
19

curacy”. For example, the above Phi function returns Phi(7)=0.9999999999987196 (format
.16f), compared to .999999999998720187456..., the true value, and to many users, those

ten 9’s would be considered significant. For true values near 1, absolute and relative error
are much the same. But in some applications, particularly for solutions of diffusion or heat
equations, the region of interest may not be the statistician’s 0 < x < 5, say, but rather

10

< x < 14, where greater accuracy may be provided by means of the complementary

normal function cPhi(z) = [° ¢(t) dt. For that, use of 1-Phi(z) will not do as well, so many

us
ac

ers may want to have an alternative function such as cPhi(x) that provides greater relative
curacy.

Journal of Statistical Software

Our approach is to have two functions available: Phi(z) and cPhi(z). They happen to
use the same method, differing only in that Phi(z) is simpler with no tables, a Taylor se-
ries about zero, while cPhi(x) evaluates a Taylor series about © = z + h for tabled val-
ues cPhi(z),z = 0,2,4,6,...,16. Some implementations that rely on a single function—for
example, the function pnorm(x) mentioned below—will show a marked difference between
1-pnorm(x) and pnorm(-x), the latter providing much greater relative accuracy. See that
discussion in Section 3 and its impact on interpretation of Figure 4.

Precision for the above c¢Phi function seems limited by the accuracy of the exp() value in the
final step. Section 3 shows that the little Phi and cPhi functions provide results at least as
good as—and often better—than those obtained by conversion of erf or erfc from C compiler
libraries or their elaborate listings from internet sources.

For those who may want to assess the accuracy of the erf or erfc functions that they have access
to, here are values returned by the above cPhi(x) function, using format 20.14e, followed by
the true values expressed to that same format (obtained in Maple as .5*erfc(x/sqrt(2.)), using
Digits:=30): Also listed are the values returned by two of what appear to be among the best
available library or internet erfc functions, .5*erfc(x/sqrt(2.)) from Sun Microsystems (1993)
and .5*derfc(x/sqrt(2.)) from Ooura (1998), (exponents removed from last two to save space):

X cPhi(x) true Sun erfc Ooura derfc
0.1 4.60172162722971e-01 4.60172162722971e-01 4.60172162722971 4.60172162722971
1.2 1.15069670221708e-01 1.15069670221708e-01 1.15069670221708 1.15069670221708
2.3 1.07241100216758e-02 1.07241100216758e-02 1.07241100216758 1.07241100216758
3.4 3.36929265676880e-04 3.36929265676881e-04 3.36929265676881 3.36929265676881
4.5 3.39767312473006e-06 3.39767312473006e-06 3.39767312473006 3.39767312473006
5.6 1.07175902583109e-08 1.07175902583109e-08 1.07175902583109 1.07175902583109
6.7 1.04209769879652e-11 1.04209769879652e-11 1.04209769879652 1.04209769879652
7.8 3.09535877195868e-15 3.09535877195870e-15 3.09535877195867 3.09535877195867
8.9 2.79233437493963e-19 2.79233437493966e-19 2.79233437493966 2.79233437493966
10.0 7.61985302416052e-24 7.61985302416053e-24 7.61985302416050 7.61985302416047
11.1 6.27219439321695¢-29 6.27219439321703e-29 6.27219439321689 6.27219439321687
12.2 1.55411978638958e-34 1.55411978638959¢e-34 1.55411978638957 1.55411978638957
13.3 1.15734162836903e-40 1.15734162836904e-40 1.15734162836902 1.15734162836902
14.4 2.58717592540226e-47 2.58717592540226e-47 2.58717592540229 2.58717592540228
15.5 1.73446079179383e-54 1.73446079179387e-54 1.73446079179381 1.73446079179382
16.6 3.48454651995040e-62 3.48454651995041e-62 3.48454651995027 3.48454651995030

2. Evaluating cPhi(z) = [2°¢(t) dt

With the normal density ¢(z) = e 2% /V/2m, define the function R(x) by means of

R(z)é(x) = /m 7 g(t) dt, that is, R(z) = cPhi(z)/o(x).

4 Evaluating the Normal Distribution

The ratio R(x) = cPhi(x)/¢(x),z > 0 is a well
behaved, convex function. The terms in its Tay-

lor series may be easily developed by a 2-lag :
recursion. Furthermore, its odd derivatives all

have the same sign, as do its even. It starts at

R(0) = /7/2 then drops steadily toward zero.

The graph of y = R(z) looks much like that of

y = 2/(x++/2? + 8/7), so much so that they are
difficult to separate in a plot of this size, where

both are plotted for 0 < z < 15:

0

Figure 1: R(z) and 2/(z + /22 4+ 8/)

To get the Taylor expansion of R, differentiate R(z)¢(x) = [° ¢(t) dt on both sides to get
R/ (z)¢(x) — zR(z)p(x) = —p(x), that is, R’ = zR — 1.

Then
R// — le + R; R/// — xRH + QRI; R//// _ .’BR/// + 3R//;

and in general, if R!* means the k’th derivative of R, then for k& > 1: RIFH = gRIF 4 pRIF1.

Because R(x) has an easily-developed Taylor expansion, one can use a few exact values, say
at 0,2,4,8,10,12,14,16, then use the Taylor expansion to get R at intermediate points. >From
R(z) one easily obtains cPhi(x) by multiplication: cPhi(z) = R(z)¢(x). This leads to an easy
way to evaluate R(z + h), given the exact value a = R(z), by summing the series two terms
at a time until the new increment makes no change in the sum s. Using C expressions:

t=a; b=z*a-1; pwr=1; s=ath*b;
for(i=2;s!=t;i+=2)
{a=(a+z*b)/i; b=(b+z*a)/(i+1); pwr=pwr*hxh; s=(t=s)+pwr*(ath*b);}

With merely the values of R(z) for z = 0,2,4,6,8,10,12,14,16, we can use the Taylor series
to evaluate R(z + h), with |h| < 1. This provides the basis for the C function cPhi(x) above.

It turns out that even the Taylor expansion for R(z + h) about z = 0 provides a simple and
accurate way to evaluate cPhi(x) = 1 — ®(x) with absolute error < 1071, for -7 < z < 7,
a range likely to cover most x’s encountered in probability and statistics. I pointed this out
in response to a newsgroup query seeking methods for evaluating the normal distribution,
displaying a table much like the one above for ®(.1), ®(1.2), ®(2.3),...,9(6.7), P(7.8), (see
Newsgroup postings 2002, 2004). Several suggestions led to simplifications, particularly by
Bill Daly, who pointed out that the Taylor series about zero provides even-order terms whose
sum is 1/¢(0), and odd-order terms with a simple recursion.

Rather than use simplifications of the Taylor expansion about zero for R(z), we might start
with a different function, say B(z) = [5 ¢(t) dt/¢(x), so that B(z)d(x) = [¢(t)dt. As with
R(x) above, the recursion BF+1(z) = 2B (z) + kBlF—1(z) readily follows, and in particular

Journal of Statistical Software 5

for the Taylor series about zero:
B(z)=x+2%/3+2%/(3-5)+27/(3-5-7) + --- and thus

1 3 0 x’ z9
d(z) = = il)
(=) 2+¢(x)<x+3+3-5+3-5~7+3.5-7.9+)

It is surprising that summing this series until the new term seems to vanish, as in our little
C function:

double Phi(double x)

{long double s=x,t=0,b=x,q=x*x,1i=1;

while(s!=t) s=(t=s)+(bx=q/(i+=2));

return .5+s*exp(-.5%q-.91893853320467274178L); 1}

provides greatest absolute error of about 8 x 10716, making it a method of choice for many
applications in probability and statistics. The compact form resulted from another suggestion
by Bill Daly in the newsgroups postings .

For this tiny Phi function, Figure 5 shows -log;,(|tru — approx|), the ‘digits of accuracy’ for
absolute error, along with those for two popular but far more elaborate methods for evaluating
the normal probability distribution, (descriptions below).

For applications requiring relative accuracy to the limit available in double precision, cPhi(x)
above may be used. For either requirement: absolute- or relative-accuracy, Phi or cPhi provide
values for the normal distribution function by simple and easily understood methods, avoiding
the need for special function libraries with ponderous listings for erf or erfc, and the necessary
argument change from x to x/sqrt(2).

The cPhi function expects, and returns, an ordinary double, but internal calculations may
be made more accurate by use of C’s long double, which for many implementations invokes
an 80-bit floating point processor. One rarely needs values of the normal CDF ®(x) or its
complement cPhi(z) accurate to as many as 15 digits, or for values x beyond 6 or so, but
an easily implemented Taylor series for R(z) = cPhi(z)/¢(x) makes such accuracy available
with only a few stored values of R(x) and few lines of code.

Since cPhi(x) comes from the product of R(z) and the normal density ¢(x), one would expect
that the error could be no better for cPhi(z) than for ¢(z). As Figure 2 shows, the above C
code evaluates R(z) more accurately than it can evaluate exp(-.5*x*x-.91893853320467274178L)
(the constant is £ In(27)), and thus the digits-of-accuracy measure for the product R(z)¢(z)
is pretty much that of the exp() part. Occasionally, there is constructive cancellation and the
accuracy of cPhi(x) is better than that for evaluating the normal density. There, ‘digits of
accuracy’ means — log;q(|tru — approx|/tru). Both cPhi(z) and ¢(x) average 14.7 digits of
accuracy; both lose around two digits of accuracy as x increases from 0 to 16. Sometimes cPhi
is a little better, sometimes not. Since cPhi(x) comes from R(z + h) with z = 0,2,4,....16,
we can expect greater errors near 1,3,5,...15, when h is near 1. This only shows up near
9,11,13 and 15 in Figure 2; otherwise, errors in exp() seem to dominate.

6 Evaluating the Normal Distribution

3. The error function erf

In 1871, J.W. Glaisher published an article on definite integrals in which he comments that
while there is scarcely a function that cannot be put in the form of a definite integral, for
the evaluation of those that cannot be put in the form of a tolerable series we are limited to
combinations of algebraic, circular, logarithmic and exponential—the elementary or primary
functions. See Glaisher (1871). He writes:

“The chief point of importance, therefore, is the choice of the elementary
functions; and this is a work of some difficulty. One function however, viz.
the integral [>° e’ dx, well known for its use in physics, is so obviously
suitable for the purpose, that, with the exception of receiving a name and a
fixed notation, it may almost be said to have already become primary. ...
As it is necessary that the function should have a name, and as I do not
know that any has been suggested, I propose to call it the Error-function,
on account of its earliest and still most important use being in connexion
with the theory of Probability, and notably with the theory of Errors, and
to write

o0 2
/ e ¥ dx=Frfxz.”
x

Glaisher goes on to demonstrate use of Erfin the evaluation of a variety of definite integrals.

We still use ‘error function’ and Erf, but Erf has become erf, with a change of limits

and a normalizing factor: erf(z) = % o e~ dt, while Glaisher’s original Erf has become

erfe(x) =1 —erf(z) = % [e~ dt. The normalizing factor % that makes erfc(0) = 1 was
not used in early editions of the famous “A Course in Modern Analysis” by Whittaker and
Watson. Both were students and later colleagues of Glaisher, as were other eminences from
Cambridge mathematics/physics: Maxwell, Thomson (Lord Kelvin), Rayleigh, Littlewood,
Jeans, Whitehead and Russell. Glaisher had a long and distinguished career at Cambridge
and was editor of The Quarterly Journal of Mathematics for fifty years, from 1878 until his
death in 1928.

It is unfortunate that changes from Glaisher’s original Erf: the switch of limits, names and the
standardizing factor, did not apply to what Glaisher acknowledged was its most important
application: the normal distribution function, and thus \/% Ik e=3%* dt did not become the
basic integral form. So those of us interested in its most important application are stuck with
conversions:

®(z) = Phi(z) = \/12? / ; e it = L4 arf(@/VY), 1-B(r) = cPhi(r) = Jerfe(x/V3).

A search of the internet will show many applications of what we now call erf or erfc to
problems of the type that seemed of more interest to Glaisher and his famous colleagues:
integral solutions of differential equations. These include the telegrapher’s equation, studied
by Lord Kelvin in connection with the Atlantic cable, and Kelvin’s estimate of the age of the
earth (25 million years), based on the solution of a heat equation for a molten sphere (it was
far off because of then unknown contributions from radioactive decay). More recent internet
mentions of the use of erf or erfc for solving differential equations include short-circuit power
dissipation in electrical engineering, current as a function of time in a switching diode, thermal

Journal of Statistical Software 7

spreading of impedance in electrical components, diffusion of a unidirectional magnetic field,
recovery times of junction diodes and the Mars Orbiter Laser Altimeter.

4. Implementations and variations of erf and erfc

Although Glaisher advocated erf as a means to represent integrals that could not be put in
the form of a tolerable series or combinations of algebraic, circular, logarithmic or exponential
functions, Section 2 shows that [¢(t)dt, [° ¢(t)dt and hence erf, can be represented by
means of a quite tolerable Taylor series—times an exponential function. This invites compar-
ison with—and possibly replacement for—some of the many available erf implementations, or
variations of them tailored for evaluating the normal CDF ®.

Some of Newsgroup postings (2002) or Newsgroup postings (2004) point to Fortran or C
versions of erf based on numerical approximations from Cody (1993), Hart et al. (1968) and
Hill (1973). They are labelled ‘Cody’, ‘Hart’ and ‘AS66’ below. An erfc developed at Sun
Microsystems (1993) (‘Sun’ in figures below) was also cited. The Sun erfc is available under
GNU on linux systems. All of these are rather elaborate programs, often handling the range
in several pieces.

The best C version of erfc that I have found is derfc.c by Ooura (1998). It uses a rational
function times e*"cz, with explicit coefficients (no tables) for the ratio of polynomials of degree
12 and 13. It too provides 14-16 digit accuracy; a plot of its ‘digits of accuracy’ vs. x in
0 < < 16 looks very much like that for cPhi(x) and for the Sun erfc, (Figure 3).

A listing at http://tigger.smu.edu.sg/software/mnp-stuff/stat.ubc.ca/pnorms2.c pro-
vides a C function called pnorm(x) based on Algorithm 715 of Cody (1993). That pnorm()
provides absolute accuracy comparable to that of the little Phi(x) function above, but one
encounters difficulty in using pnorm(z) for large x. If used directly, = values beyond 8.2
return zero, so it is not suitable for providing the complementary normal integral by means
of 1-pnorm(z). However, pnorm(—z) works well. For example, the true value of cPhi(10) is
7.61985302416052606597334325145¢e-24. Invoking the above pnorm version of Cody’s rational
approximation,

1-pnorm(10.)=0.0000000000000000e+00, pnorm(-10)=7.6198530241605269¢-24.

Several implementations seem to be based on the polynomial approximations Hart et al.
(1968). Compiled and printed results show that, like the pnorm function based on Cody,
relative accuracy is a nice 12-15 digits for early positive x, but trail off to 1 or so around x=8,
(Figure 4), for values derived as 1 — ®(z) rather than ®(—x)

Some of the most widely used methods for erf or erfc are based on Algorithm AS66 by Hill
(1973). A plot of the relative error for a double precision C version shows digits of accuracy
around 11 at x=0, dropping to 8 at x=12.

Figure 3 shows relative errors for cPhi, derfc and AS66. That last one pales in comparison.
If interpreted as ®(—x), the Cody version has that same limiting relative accuracy exhibited
by cPhi, derfc and Sun.

Relative errors using 1 — ®(z) are shown in Figure 4, for versions based on Hart, Cody and
a Fortran version of AS66, which returns zero for & > 12.6. Note that the legend there uses
cHart and cCody to indicate that 1-Hart and 1-Cody were used. They have the property
ascribed above: ®(—zx) yields better relative accuracy than 1 — ®(x), where the particular
function used to evaluate ® is based on Hart or Cody. Using Hart(—z) would not show the

8 Evaluating the Normal Distribution

rapid decline to zero beyond = = 5, but would taper off to about 9 digits at x = 12. Similarly,
if the Cody implementation is used to get ®(—xz), rather than 1 — ®(z) as shown, the relative
error plot compares favorably with the excellent results for cPhi and derfc in Figure 3, or
the above table for cPhi, Sun and Ooura’s derfc. There was no difference between 1 — ®(z)
and ®(—x) for the AS66 implementation of the normal distribution function. Both are poor.

Plots comparing absolute and relative errors for Phi, cPhi and other sources:

B Soosga s "o, PR .
OO B oL e B s 0,04
B A T)

14

12

10

P
& o8,
8 O 0 0 5,
6
4
cPhi, derfc, as66,
ol 2
R(X) phi(x) cPhi(x)
R A ST YLYVETS ST T T T [3 0 15
2. Relative error, R(z), ¢(x) and R(z)¢(x) 3. Relative error, cPhi(x), derfc(x) and AS66(x).
- 18
15
17
s T R
g0 °
‘o 16
e i
%"u“ 15
Hart -
5 Cody @ §
ASEE: o o bem “ P
o Cody:
Ho N 000
. 13 0, o Hart:
I R o
0 2 4 6 8 10 12 o 1 2 3 4 5 6 7
4. Relative error, cHart, cCody and AS66. 5. Absolute error, Phi(x), Hart and Cody.

Figures 2,3,4,5 showing errors for Phi, cPhi and various implementations of erf and erfc.

The plots in Figures 2,3,4,5 were patched from .ps versions of earlier, no longer available
sources. Details of the plots as they appear here may be easily magnified by most pdf viewers,
such as GSview or Adobe reader. (In GSview, just right-click the mouse.)

Some tentative conclusions can be drawn from the above discussion and plots:

For applications in probability and statistics, where absolute accuracy may be more important,
for example when determining that ®(5.3) is .999999989282410 compared to the true value
of .999999989282409741..., the absolute accuracy provided by the tiny Phi(x) provides an
attractive alternative to sources based on erf, comparable or better than all but Cody, which
averages about 1/3 more digit of absolute accuracy but requires an elaborate, mysterious
program to squeeze out that extra 1/3 of a digit.

For applications requiring relative accuracy, as in the extreme tails, there seems no better
method than the short cPhi function listed above. It is better than many, and provides the
limiting accuracy of the some of the best: Ooura, Sun or (properly applied), Cody. All of
these rely on a multiple of exp(—cz?) and suffer from the same limit on accuracy as cPhi:
evaluation of exp(-t) for large t.

Journal of Statistical Software 9

And of course they require that irritating transformation .5%erfc(x/sqrt(2.)).

5. Summary

If you want values ®(x) of the standard normal distribution for use in probability and statis-
tics, you are likely to find no better method than this little C function:

double Phi(double x)

{long double s=x,t=0,b=x,q=x*x,i=1;

while(s!=t) s=(t=s)+(bx=q/(i+=2));

return .5+s*exp(-.5%q-.91893853320467274178L) ;}

which will provide probabilities with an absolute error less than 8 x 10716, (You may want
to add a line that will return 0 for < —8 or 1 for z > 8, since an error of 10716 can make a
true result near 0 negative, or near 1, exceed 1.)

If you want relative errors (digits of precision) near the limit available in double precision for
extreme tails of the distribution, such as for solving differential equations, you might evaluate
1—®(x) = cPhi(z) as .5*erfc(x/sqrt(2.)) by invoking the complementary error function
erfc available from some compilers, or try one of many available on the web, with all the
attendant mysteries over content and the nuisance of the two changes of scale. You will find
that most of them have long listings, with constants involved in various polynomial, rational
function or continued fraction approximations and that some fall short of the 14-16 digit
accuracy limit on exp(—t) for large t. Or you might just paste this little, but not quite as
little, cPhi function above your main C program:

double cPhi(double x)
{long double R[9]=
{1.25331413731550025L, .421369229288054473L, .236652382913560671L,
.162377660896867462L, .123131963257932296L,.0990285964717319214L,
.0827662865013691773L, .0710695805388521071L, .0622586659950261958L} ;
int i,j=.5*(fabs(x)+1);
long double pwr=1,a=R[j],z=2%j,b=a*z-1,h=fabs(x)-z,s=ath*b,t=a,q=h*h;
for(i=2;s!=t;i+=2){a=(a+z*b)/i; b=(b+z*a)/(i+1); pwrx=q; s=(t=s)+pwr*(a+h*b);}
s=s*exp (-.b*x*x-.91893853320467274178L) ;
if (x>=0) return (double) s; return (double) (1.-s);}

and have values for the complementary normal distribution
cPhi(z) = / $(t)dt = 1 — D(x)

to the 14-16 digits available from the exp() function, as well as have an understanding of the
mathematics behind the method.

10 Evaluating the Normal Distribution

6. Attachments

The ‘browse files’ section contains source code for the brief Phi and cPhi functions as well
that for the Hart, Cody, AS66, derfc and Sun variations of erf or erfc used for comparison,
particularly in the tables and in Figures 2,3,4,5. Additional sources for erf or normal CDF
functions, Brown et al. (1997) and Kahaner et al. (1989), were suggested by a referee.

References

Brown BW, Lovato J, Russell K (1997). DCDFLIB: Library of Fortran Routines
for Cumulative Distribution Functions, Inverses, and Other Parameters. Department of
Biomathematics, University of Houston.

Cody WJ (1993). “Algorithm 715.” ACM Transactions On Mathematical Software, 19, 22-32.

Glaisher JW (1871). “On a Class of Definite Integrals.” Philosophical Magazine, XXXII,
294-301.

Hart JF, Cheney EW, Lawson CL, Maehly HJ, Mesztenyi CK, Rice JR, Thacher HG, Witzgall
C (1968). Computer Approzimations. Wiley, New York.

Hill ID (1973). “Algorithm AS66.” Applied Statistics, 22(3).

Kahaner D, Moler C, Nash S (1989). Numerical Methods and Software. Prentice Hall, Engle-
wood Cliffs, NJ.

Newsgroup postings (2002). sci.math, Aug 20,2002, thread of 25, Search under
"Integrating a Bell Curve".

Newsgroup postings (2004). comp.lang.c, Feb 16,2004, thread of 29, Search under
"erf function in C".

Ooura T (1998). “C function derfc.” E-mail: ooura@kurims.kyoto-u.ac.jp , URL http:
//momonga.t.u-tokyo.ac.jp/ ooura/gamerf.html.

Sun Microsystems (1993). erfc.c listing at http://www.netlib.org/fdlibm/.

mailto:ooura@kurims.kyoto-u.ac.jp
http://momonga.t.u-tokyo.ac.jp/~ooura/gamerf.html
http://momonga.t.u-tokyo.ac.jp/~ooura/gamerf.html
http://www.netlib.org/fdlibm/

Journal of Statistical Software

Affiliation:

George Marsaglia

Professor Emeritus, Statistics

Florida State University

Home address: 1616 Golf Terrace Drive
Tallahassee FL 32301, United States of America
E-mail: geo@stat.fsu.edu

Journal of Statistical Software
July 2004, Volume 11, Issue 4.
http://www. jstatsoft.org/

Submitted: 2004-06-05
Accepted: 2004-07-18

11

mailto:geo@stat.fsu.edu
http://www.jstatsoft.org/

	Introduction
	Evaluating cPhi
	The error function erf
	Implementations and variations of erf and erfc
	Summary
	Attachments

