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Abstract

The Rasch family of models considered in this paper includes models for polytomous
items and multiple correlated latent traits, as well as for dichotomous items and a sin-
gle latent variable. An R package is described that computes estimates of parameters
and robust standard errors of a class of log-linear-by-linear association (LLLA) models,
which are derived from a Rasch family of models. The LLLA models are special cases of
log-linear models with bivariate interactions. Maximum likelihood estimation of LLLA
models in this form is limited to relatively small problems; however, pseudo-likelihood es-
timation overcomes this limitation. Maximizing the pseudo-likelihood function is achieved
by maximizing the likelihood of a single conditional multinomial logistic regression model.
The parameter estimates are asymptotically normal and consistent. Based on our simula-
tion studies, the pseudo-likelihood and maximum likelihood estimates of the parameters
of LLLA models are nearly identical and the loss of efficiency is negligible. Recovery of
parameters of Rasch models fit to simulated data is excellent.

Keywords: pseudo-likelihood estimation, log-linear-by-linear association models, logistic re-
gression, multinomial logistic regression, conditionally specified models, R.

1. Introduction

Multiple choice items on tests, questionnaires and surveys often have more than two response
options (e.g., “strongly agree,” “agree,” “disagree,” “strongly disagree”). Responses to items
may reflect one or more underlying or unobserved trait, ability, or attitude. The goal in
modeling responses to items may be to study the items for use on future measurement in-
struments, measure individuals’ values on latent trait(s), or study the relationship between
latent variables. Although our emphasis is on estimation of parameters, all three goals can
be achieved for a Rasch family of models using the package that we present in this paper for
the R programing environment (R Development Core Team 2007) .

http://www.jstatsoft.org/
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The application of multidimensional item response theory models has been hindered by esti-
mation difficulties. Marginal maximum likelihood estimation of a model involves numerically
integrating the latent variable out of the model. This method becomes problematic for mul-
tiple latent variables, because it requires multiple numerical integration. For example, item
response theory models can be estimated using nonlinear mixed models software, which is ad-
vantageous because of the flexibility to fit a variety of models (Rijmen, Tuerlinckx, de Boeck,
and Kuppens 2003; de Boeck and Wilson 2004; Shieu, Chen, Su, and Wang 2005). Unfor-
tunately fitting IRT models as non-linear mixed models using marginal maximum likelihood
may become problematic because computation time increases exponentially with the num-
ber of dimensions (Wang, Chen, and Cheng 2004; Glas 2005). Markov chain Monte Carlo
(MCMC) is another method that has been used to obtain estimates of parameters of multi-
dimensional item response theory models, but this method is difficult to adjust to different
models and specific problems. The computations in MCMC can be extremely time consuming
and require relatively sophisticated programing skills. In this paper, we propose estimating
multidimensional (or unidimensional) Rasch models for polytomous (or binary) items using
a model for observed responses derived by conditionally specifying the response models using
rest-scores (i.e., test total minus one item). A limitation of this approach is that current
maximum likelihood estimation algorithms are limited to small numbers of items because the
problem size increases exponentially with the number of items; however, this is a problem
with an easily implemented solution that is theoretically sound, numerically well behaved,
computationally fast and very flexible.

The package that we present for the R programing environment (R Development Core Team
2007) fits Rasch models to data as log-linear-by-linear association (LLLA) models, which are
models for observed response patterns. The LLLA models that we derive from a Rasch family
of models are extensions of log-linear models with bi-variate interactions. The interaction
terms in log-linear models are replaced by products of category scores (e.g., integers) and a
parameter that represents the strength of the relationship between the items. The cases of
LLLA models we use are special cases and extensions of the uniform association model for
ordinal data (Goodman 1985; Agresti 2002).

Log-linear-by-linear association and closely related models have been derived from Rasch
models in at least four different ways (Anderson and Yu 2007). In the mid-1960’s, Rasch
proposed a latent structure model for polytomous items that was equivalent to Goodman’s
(Goodman 1979, 1985) row-column (RC) association model, a model related to LLLA models
(Andersen 1995). A second way uses the fact that models in the Rasch family are equivalent
to quasi-symmetric models (Tjur 1982; Agresti 2002). Log-linear-by-linear association models
are limited information quasi-symmetric models (limited in the sense that only 2-way associa-
tions are modeled). The third derivation, which is based on item response theory, was made by
Holland (1990) using the Dutch Identity and two critical assumptions. The assumptions made
by Holland are equivalent to those made by Anderson and Vermunt (2000) (Anderson and
Böckenholt 2000; Anderson 2002) who started with statistical graphical models for discrete
and continuous data (Anderson and Yu 2007). The fourth derivation of LLLA models uses
the fact that LLLA models are uniquely implied by conditionally specifying models for each
item conditioning on rest-scores, which are test totals less the score for an item (Anderson and
Yu 2007). In this paper, we generalized the conditional specification method presented in An-
derson and Yu (2007) who only derived models for binary items and uni-dimensional models.
Generalizing the conditional specification approach is advantageous because fewer distribu-
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tional assumptions are required, justification exists for using rest-scores, and the conditional
models themselves are used in the solution to an estimation problem for LLLA models.

Maximum likelihood estimation (MLE) of LLLA models for small problems is straightforward
and can be done using standard software for Poisson (log-linear) regression models. For
estimation algorithms such as Newton-Raphson, the MLE of LLLA models requires iteratively
computing probabilities for all possible response patterns. The number of possible response
patterns increases exponentially with the addition of items and response options per item,
which makes MLE prohibitive for moderate to large numbers of items. For large problems,
we propose using pseudo-likelihood estimation.

Pseudo-likelihood estimation (PLE) was first proposed by Besag (1974) to solve the problem
of fitting spatial interaction models, which have complex normalization constants. Pseudo-
likelihood estimation has solved estimation problems in a number of settings including mod-
els for social networks (Strauss and Ikeda 1990; Wasserman and Pattison 1990), multivariate
clustered data (Geys, Molenberghs, and Ryan 1999; Molenberghs and Verbeke 2005), com-
puter network tomography (Liang and Yu 2003), learning language comprehension (Johnson
and Riezler 2002), and nonlinear measurement error models (Huwang and Huwang 2002).
Pseudo-likelihood estimation has even been used to estimate parameters of Rasch models;
however, its use has been limited to unidimensional models for pairs of binary items (Arnold
and Strauss 1991; Zwinderman 1995) and more recently for a set of dichotomous items (Smit
and Kelderman 2000). Our approach goes beyond these applications of PLE because we can
accommodate models for multiple latent variables and polytomous items. The expanded use
of PLE for estimation of a general class of Rasch models is possible because of the derivation
of these models as specific LLLA models for observed responses. Furthermore, we use results
from Geys (Geys 1999; Geys et al. 1999; Aerts, Geys, Molenberghs, and Ryan 2002) to show
that the resulting parameter estimates are asymptotically normal and consistent, provide
robust standard errors, and permit statistical tests for the model parameters.

Although the underlying PLE theory is complex, its concrete implementation is rather simple:
it involves fitting a single conditional logistic regression model to an appropriately formatted
data set. The method can be implemented in any statistical program that fits Poisson (log-
linear) models; however, we present an easy to use R package, plRasch, that sets up the data,
estimates the parameters, and computes the covariance matrix and standard errors for the
estimated parameters. The user can choose between MLE (for small problems) and PLE
(for small or large problems). In the case of PLE, robust standard errors are computed for
the model parameters. The input consists of three matrices: a standard individual-by-item
data matrix, a matrix indicating which items load on which latent variable(s), and a matrix
indicating which latent variables are correlated. The R code and examples are available at
http://www.ed.uiuc.edu/faculty/cja/plRasch/1 and in the near future at the R project
Web site at http://www.R-project.org/.

The remainder of the paper is structured as follows. In Section 2.2, we start with a review
of the family of Rasch models for multicategory responses and multiple latent variables and
subsequently show the connection between Rasch and LLLA models. In Section 3, we dis-
cuss pseudo-likelihood estimation and how it applies to the estimation of LLLA models. In
Section 4, we describe the plRasch package and illustrate how to fit models for both MLE
and PLE of LLLA (Rasch) models. In Section 5, results from our simulation study are re-

1Examples using SAS are also available from this Web site.

http://www.ed.uiuc.edu/faculty/cja/plRasch/
http://www.R-project.org/
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ported. In Section 6, we conclude with a discussion of possible modifications for fitting more
restrictive and more general models, including those with covariates.

2. Rasch models as log-linear-by-linear models

In Section 2.1, we introduce a Rasch family of models for a single latent trait and subsequently
show their extension to the multidimensional case. In Section 2.2, we derive the corresponding
log-linear-by-linear association models; that is, models for observed response patterns.

2.1. Rasch family of models

Our main reference to the Rasch family of models for polytomous items is Andersen (1995).
Out of simplicity but not necessity, we assume for now that all items have the same number of
categories2. Let Xvi represent the response of individual v on item i where response options
are represented by h = 0, 1, . . . ,m. Deviating slightly from the notation used by Andersen
(1995), we let P (Xvi = h|θv) equal the probability that individual v selects response option
h on item i given θv where θv equals individual v’s value on latent trait Θ. The general
uni-dimensional Rasch model specified for P (Xvi = h|θv) is a multinomial logistic regression
where the predictor variable is unobserved. The unidimensional Rasch model for a polytomous
item is

P (Xvi = h|θv) =
exp[whθv + βih]∑m
l=0 exp[wlθv + βil]

, (1)

where wh is a known or assumed category weight or “score”3 for response h, and βih is a
marginal or “location” effect parameter for response h on item i. The sum in the denominator
ensures that for individual v the sum of probabilities P (Xvi = h|θv) over all response options
to item i equals 1. A property common to all Rasch models is that the slope or discrimination
parameters (i.e., wh’s) are the same over all items. The marginal effect parameters βih depend
on both the response option and the particular item.

For dichotomous items, the category weights or scores are usually set to w0 = 0 and w1 = 1,
and for identification, βi0 = 0. Using these values yields the standard Rasch or one parameter
logistic model for binary data,

P (Xvi = 1|θv) =
exp[θv + βi1]

1 + exp[θv + βi1]
, (2)

where βi1 is an “easiness” parameter. As values of θv increase, the probability of selecting
response option 1 monotonically increases. For a more complete description of this model see
Fischer and Molenaar (1995) or Embretson and Reise (2000).

For unidimensional models, the R package presented in this paper estimates the parameters
of equation (1); however, users can modify the R function that sets up the design matrix
to fit restricted or extended variants of (1). For example, Master’s partial credit model is a
simple reparameterization of (1) where βih =

∑h
l=0 αil (Andersen 1995). Models for the βih’s

can be specified, which lead to more restrictive models, such as Andrich’s rating scale model

2Later in the paper, we discuss how items can be dealt with that have different numbers of response options.
3In the literature on log-linear-by-linear association models, which is used later in this paper, the w’s are

referred to as category scores.
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(Andersen 1995). Mair and Hatzinger (2007) in this issue discuss a number of restricted and
extended forms of uni-dimensional Rasch models, including those that incorporate covariates.

Responses to items on a test may depend on multiple latent variables; therefore, we extend
model (1) to the multidimensional case. Let θvp represent the value on latent variable p for
individual v, and r equal the number of latent variables. To represent the multidimensional
model, subscripts for items and latent variables are added to the category scores such that
wihp is the known or assumed weight for response option h to item i on latent trait p. If item
i is not directly related to latent variable p, then wihp = 0 for all h. If item i is directly related
to latent variable p, then wihp 6= 0. The multidimensional model is

P (Xvi = h|θv1, . . . , θvr) =
exp

[∑r
p=1wihpθvp + βih

]
∑m

l=0 exp
[∑r

p=1wilpθvp + βil

] . (3)

Two graphs of possible structures for two latent variables and four items are given in Figure 1.
The squares represent the items and the circles represent the latent traits. The absence of a
line between two variables indicates that the variables are independent given other variables in
the graph, and the presence of a line indicates that two variables may be dependent given other
variables in the graph. The structure represented by graph (a) is often referred to as “simple
structure” (i.e., each item is an indicator of only one latent variable). The items X1 and X2

are directly related to latent variable Θ1, the items X3 and X4 are directly related to Θ2,
all of the items are independent given the two latent variables, and the two latent variables
are dependent4. Since there is no line connecting X1 or X2 to Θ2, the category weights
w1h2 = w2h2 = 0, and since there is no line connecting X3 or X4 to Θ1, w3h1 = w4h1 = 0.
Given the assumed weights wihp’s, the parameter φ12 reflects the strength of the relationship
between the two latent variables, and the parameters φ11 and φ22 are related to the scale of
Θ1 and Θ2, respectively. Graph (b) in Figure 1 represents a structure that is slightly more
complex where item X3 is directly related to both Θ1 and Θ2. Both types of multidimensional
structures can be fit using the R function described in this paper.

From the graph in Figure 1 (a), we expect the (observed) response to items X1 and X2

to be associated because they are both directly related to Θ1, and X3 and X4 should be
associated because they are both directly related to Θ2. If Θ1 and Θ2 are dependent, then
the responses to X1 and X2 should also be associated with the responses to X3 and X4.
A similar pattern of associations is found for graph Figure 1 (b). The expected pattern of
observed associations indicates that models for the distribution of response patterns should
include terms that represent not only the relationship between items that are indicators of the
latent trait to which they are directly associated but also terms that represent associations due
to the relationship between latent traits. The corresponding model for the observed response
patterns is the subject of the next section.

2.2. Rasch models as LLLA models

Our goal here is to derive a model for the probability of manifest response patterns on the
I items assuming an underlying Rasch model; that is, we want a model for P (x) where x

4Strictly speaking, the presence of a line indicates that the variables may be dependent given all other
variables in the graph. Whether a dependency exists between two variables depends on the value of the
parameter relating the two variables.



6 Multidimensional Rasch Models for Polytomous Items

(a)

X1

X2

X3

X4

��
��
Θ1

��
��
Θ2

Y

�

Y

�

w1h1

w2h1

w3h2

w4h2

φ22

φ11

φ12

(b)

X1

X2

X3

X4

��
��
Θ1

��
��
Θ2

Y

�

Y

�

=

w1h1

w2h1

w3h2

w4h2

w3h1

φ22

φ11

φ12

Figure 1: Graphs that represent two general types of multidimensional structures for four
items and two correlated latent traits.

represents a response pattern. Our approach to this problem is to specify a model for each
item conditional on the remaining ones (i.e., P (Xvi = h|xvk, k 6= i)) that is implied by an
underlying Rasch model. The joint distribution that is compatible or consistent with such a
set of conditionally specified models gives us the model for P (x). We introduce this method
using the model represented by the graph in Figure 1 (b) and then generalize it to any number
of items, latent variables and latent variable structures.

Consider item X1 in Figure 1 (b). We use the fact that the sum of the category weights
wihp over items on latent trait p is sufficient for θp (Andersen 1995; Heinen 1993, 1996;
Bartholomew and Knott 1999). When specifying a model for a response function such as
P (Xv1 = h|xv2, xv3, xv4), we are conditioning on data rather than the latent variables as in
equation (3). As an estimate for θvp, we will use the sum of the wihp’s excluding the item
for which the model is specified. These sums are rest-scores and equal the sum over all items
except one.

Justification and precedence for using rest-scores when modeling response functions for items
come from the literature on both classical test theory and item response theory. With respect
to classical test theory, the correlation between the item and the test total is artificially inflated
when the item is included in the test total (particularly for short tests); therefore, some have
argued that correlations in an item analysis should be computed between an item and the
rest-score. In the item response literature, justification for the use of rest-scores for binary
items comes from nonparametric uni-dimensional monotone item response theory (Junker
1993; Junker and Sijtsma 2000). Junker (1993) showed that item response functions will be
monotone when rest-scores are used; however, item response functions can be artificially non-
monotonic when test totals are used. Further precedence in item response theory for using
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rest-scores comes from studies on the shape of item response functions, model fit, differential
item functioning, and identification of incorrectly coded responses (Junker and Sijtsma 2000).

In the case of correlated latent variables, our estimates of the latent variables can be improved
by using rest-scores and test totals from items that measure the correlated latent variables.
Using collateral information from items that are indicators of other latent variables can lead
to an increase in efficiency when estimating θvp (Wang et al. 2004; de la Torre and Patz
2005). For example, when specifying a model for X1 represented by the graph in Figure 1
(b), a rest-score for θv1 would use only the responses to X2 and X3; however, the responses to
the items X3 and X4 provide information about θ2, which is correlated to θ1. When modeling
the responses to item X1, we take as our estimate of θ1 for individual v

θ̃v1,−1 = φ11(w2jv1 + w3jv1) + φ12(w3jv2 + w4jv2), (4)

where θ̃v1,−1 is the estimate of θ1 for individual v that excludes item X1, (w2jv1 + w3jv1) is
the rest-score for individual v of the items that are direct indicators of θ1, (w3jv2 + w4jv2)
is individual v’s test-total of the items that are direct indicators of θ2, and φ11 and φ12 are
weights for the relative contributions of the rest-score and test-total toward the estimate of
θ1. Note that we have put the sub-script v on the j’s to indicate that individual v selected
response option j.

Although we will not make any explicit assumptions regarding the distribution of the latent
variables, implicitly we assume that their distribution is such that there are only two-way
interactions between items. For at least two reasonable distributions, the φpq’s are symmetric.
For example, in the graphical latent variable model (Anderson and Vermunt 2000; Anderson
and Böckenholt 2000; Anderson 2002) and in Holland’s use of the Dutch Identity (Holland
1990), the distribution of the latent variables is assumed to be posterior multivariate normal
(i.e., within a response pattern, the latent variables are multivariate normal), which implies
that the φpq parameters are variances and covariances of the latent variables. Alternatively,
if the underlying distribution of the responses is multivariate normal, then the φpq’s are
proportional to the off diagonal elements of the inverse of the correlation matrix (Goodman
1981; Becker 1989), and hence symmetric. In the remainder of this paper, we assume that
φpq = φqp, a symmetric measure of association.

Returning to our example, using the estimator θ̃v1,−1 in equation (4), the conditionally spec-
ified response function for X1 is

P (Xv1 = h|xv2, xv3, xv4) = κv1 exp[w1h1(φ11(w2jv1 +w3jv1) +φ12(w3jv2 +w4jv2)) + β1h], (5)

where

κv1 =

(
m∑

l=0

exp[w1l1(φ11(w2jv1 + w3jv1) + φ12(w3jv2 + w4jv2)) + β1l]

)−1

. (6)

Model (5) can be viewed as a multinomial logistic regression model (i.e., a proportional
odds model) with restrictions on the regression coefficients. The coefficient for the rest-score
(w2jv1 +w3jv1) is φ11w1h1 and that for the test total (w3jv2 +w4jv2) is φ12w1h1. Alternatively,
since the w1h1’s are known (or assumed), the model above can also be viewed as a conditional
multinomial logistic regression model with regression coefficients φ11 for the weighted rest-
score w1h1(w2jv1 + w3jv1) and φ12 for the weighted test total w1h1(w3jv2 + w4jv2).
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Specifying models such as that in (5) for each of the items in the Rasch model represented by
the graph in Figure 1 (b) gives us a set of conditional models, specifically, equation (5) and

P (Xv2 = h|xv1, xv3, xv4) = κv2 exp[w2h1(φ11(w1jv1 + w3jv1) + φ12(w3jv2 + w4jv2)) + β2h]
(7)

P (Xv3 = h|xv1, xv2, xv4) = κv3 exp[w3h1(φ11(w1jv1 + w2jv1) + φ12(w4jv2))
+w3h2(φ22(w4jv2) + φ12(w1jv1 + w2jv1)) + β3h] (8)

P (Xv4 = h|xv1, xv2, xv3) = κv4 exp[w4h2(φ22(w3jv2) + φ12(w1jv12 + w2jv1 + w3jv1)) + β4h],
(9)

where the κvi’s are defined analogous to equation (6), which ensure that the sums of proba-
bilities over the response options of an item equal one.

The model for P (Xv3 = h|xv1, xv2, xv4) in equation (8) is more complex than the others
because X3 is directly related to both Θ1 and Θ2. In this case, the estimates of individual v’s
values on the latent variables are

θ̃v1,−3 = φ11(w1jv1 + w2jv1) + φ12(w4jv2)
θ̃v2,−3 = φ22(w4jv2) + φ12(w1jv1 + w2jv1).

For any number of items, latent variables or latent variable structures, our estimate of indi-
vidual v’s value on latent variable p in the model for P (Xvi = h|xkh, k 6= i) is

θ̃vp,−i = φpp

∑
k 6=i

wkjvp +
∑
q 6=p

φpq

∑
k 6=i

wkjvq

=
∑
q

φpq

∑
k 6=i

wkjvp, (10)

where the “−i” subscript indicates that item i has not been included in the estimate of θvp.
For i = 1, . . . , I, the set of conditionally specified response functions is defined as

P (Xvi = h|xvk, k 6= i) = κvi exp

[∑
p

wihpθ̃vp,−i + βih

]

= κvi exp

∑
p

wihp

∑
q

φpq

∑
k 6=i

wkjvq

+ βih

 , (11)

where κvi = (
∑

l exp[
∑

pwilpθ̃vp,−i + βil])−1. Such a set of conditional multinomial logistic
regression models is fully conditionally specified (Gelman and Speed 1993); that is, each item
is modeled conditional on all of the others.

A set of fully conditionally specified models over-determines the joint distribution of all of
the items (i.e., the probabilities of response patterns); therefore, restrictions on parameters in
(11) must exist if the set of conditional models are consistent or compatible with a joint
distribution. For the set of models given by (11), the compatibility conditions are that
φpq = φqp for all p and q. Since for reasonable distributions of the latent variables φpq = φqp,
the compatibility conditions are met. In Appendix A, we generalize Joe and Liu’s (1996)
proof on the necessary and sufficient conditions for a set of binary logistic regression models
to be consistent with some joint distribution to our case of a set of conditional multinomial
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logistic regression models. In Appendix A, we also derive the model for the joint distribution
that is compatible for the set of models defined by (11).

The joint distribution that is compatible with (11) is the log-linear-by-linear association model

log(P (xv)) = β0 +
∑

i

βihv +
∑

i

∑
k>i

∑
p

∑
q≥p

φpqwihvpwkhvq, (12)

where xv is individual v’s response pattern on the I items, and β0 ensures that the sum over
all possible response patterns equals one. The parameter β0 does not depend on individual v’s
response pattern; it depends on the total sample size and the value of the other parameters.
Not only is (12) the implied model for the joint distribution, but the set of conditionals
uniquely implies (12) so long as all the conditional probabilities are greater than zero (Gelman
and Speed 1993; Arnold, Castillo, and Sarabia 1999).

Consider the cross-classification of responses to the I items. Model (12) is a Poisson (log-
linear) regression model with only bivariate interactions. Since the products of the known
category scores wihvpwkhvq appear in the bivariate terms, the model is referred to as a linear-
by-linear association model (Agresti 2002).

Returning to our example illustrated in Figure 1 (b), the LLLA model corresponding to the
set of conditionally specified models in (5), (7), (8) and (9) is

P (xv1h, xv2h, xv3h, xv4h) = exp [β0 + β1hv + β2hv + β3hv + β4hv

+φ11(w1hv1w2hv1 + w1hv1w3hv1 + w2hv1w3hv1)
+φ22(w3hv2w4hv2) + φ12(w1hv1w3hv2 + w1hv1w4hv2

+w2hv1w3hv2 + w2hv1w4hv2 + w3hv1w4hv2)] (13)

Model (12) includes interactions between items loading on the same latent variable (i.e.,
φppwihvpwkhvp) and between items loading on different but correlated latent variables (i.e.,
φpqwihvpwkhvq). In this Poisson regression model, the values of the explanatory variables are
dummy or effect codes for the βihv ’s and the sums of products of the wihvp’s.

The LLLA model in (12) and (13) can be fit to data by maximum likelihood estimation using
the Newton-Raphson algorithm. This is can be done using the existing glm function in R or
the llla function in the plRasch package presented in Section 4, which calls the glm function
for MLE. When fitting (12) to data using Newton-Raphson, the probabilities of all possible
response patterns must be iteratively computed. For small numbers of items, the number
of possible response patterns is reasonable; however, as the number of items increases, the
number of possible response patterns increases exponentially to a point that computational
demands are prohibitive. For example, the number of possible response patterns for 20 di-
chotomous items equals 1, 048, 576, for 50 dichotomous items approximately 1.13E15, and
for 100 dichotomous items approximately 1.27E30. For many situations in education and
psychology, estimating models in the Rasch family as an LLLA model requires an alternative
estimation method. Our proposed solution to this problem is to use pseudo-likelihood esti-
mation, which for our problem can be done using standard statistical software with no special
programing.
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3. Pseudo-likelihood estimation

The general idea of pseudo-likelihood estimation (PLE) is to take a complex problem and
break it down into simpler ones and ignore the dependency between the simpler problems.
Our complex problem is estimating the LLLA model for large numbers of items and the
simpler problems turn out to be the conditional multinomial logistic regressions defined in
(11). Rather than maximizing the likelihood of (12), in PLE the product of the likelihoods of
the conditional multinomial regressions defined by (11) is maximized. The pseduo-likelihood
function is the product of the likelihoods of the conditional multinomial logistic regressions,
which can be maximized by maximizing the likelihood of a single “stacked”conditional logistic
regression.

In Section 3.1, we show how the regression models defined by (11) are stacked and the whole
set of conditional models is fit as one large conditional multinomial logistic regression model.
The maximum of the pseudo-likelihood function equals the maximum of the likelihood of this
single regression model. In Section 3.2, we discuss the statistical properties of the pseudo-
likelihood estimates.

3.1. Stacking

In the set of logistic regressions defined by (11), the φpq’s are the same over the item-specific
sub-models; however, there is a separate βih’s for each item. To illustrate how to set up the
design matrix for the stacked regression, consider the simple case where there is one latent
variable and I items, each with (m+1) response options. In this case, the conditional models
defined by in (11) reduce to

P (Xv1 = h|xvk, k 6= 1) =
exp

[
φ11(w1h1

∑
k 6=1wkhv1) + β1h

]
∑m

l=0 exp
[
φ11(w1l1

∑
k 6=1wkhv1) + β1l

] (14)

P (Xv2 = h|xvk, k 6= 2) =
exp

[
φ11(w2h1

∑
k 6=2wkhv1) + β2h

]
∑m

l=0 exp
[
φ11(w2hl1

∑
k 6=2wkhv1) + β2l

] (15)

... =
...

P (XvI = h|xvk, k 6= I) =
exp

[
φ11(wIh1

∑
k 6=I wkhv1) + βIh

]
∑m

l=0 exp
[
φ11(wIl1

∑
k 6=I wkhv1) + βIl

] (16)

To fit the set of models in (14) – (16), there will be I × (m+ 1) lines in the design matrix for
each individual. In Table 1, we illustrate what the design matrix would look like for individual
v where we use dummy codes for the βih’s and set βih = 0 for identification. In a column for
a βih, only one entry equals 1 and all other entries in the column equal 0. The rest-scores
are weighted by the wih1 for the corresponding item and response option. The 0 entries
in the first line for each conditional model results from the fact that wi01 = 0 and βi0 = 0.
Although not present in Table 1, a data file would also include a 0/1 variable indicating which
response option was actually selected by individual v for each item. This variable would be
the “response” variable in the conditional logistic regression. In the simple case of one latent
variable, the model only has Im + 1 parameters, which for realistic values of I and m does
not pose an estimation problem.
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For our second example, consider the case of two correlated latent variables represented by
graphs such as those in Figure 1. The values for the βih’s are the same as those in Table 1. A
two correlated latent variable model has only two more parameters φ22 and φ12 relative to the
unidimensional model. The values in the design matrix for φ22 and φ12 equal wih2

∑
k 6=iwkhv2

and wih1
∑

k 6=iwkhv2 + wih2
∑

k 6=iwkhv1, respectively.
Although the design matrix can become rather long (i.e., for n individuals, the data file
would have nI(m+1) lines), increasing the number of latent dimensions does not dramatically
increase the number of parameters of the corresponding multinomial logistic regression model.
Adding an item will increase the number of parameters by m. The conditional multinomial
logit models will have at most Im+ r(r − 1)/2 + r parameters.
Each response option must be selected at least once to obtain an estimate of βih; however, for
accurate and precise parameter estimates, more than once is preferable. This has practical
implications, especially for multicategory items. If a response option was never selected, this
problem can be dealt with by removing from the design matrix the column corresponding to
the response option never selected. This strategy can also be used to deal with the situation
where items have different numbers of response options. In our example, if item i only had
two response options, there would only be a single column in the design matrix, βi1 in Table 1
instead of m columns.

3.2. Statistical properties of parameter estimates and inference

Arnold and Strauss (1991) presented a theorem for a single parameter model that states that
the pseudo-likelihood estimator of the model parameter will be asymptotically normally and
consistent. Geys et al. (1999) generalized Arnold and Strauss (1991)’s theorem to models
for multiple binary variables. In Appendix B, we show that our problem fits into the exact
same form used in the proof of Geys (1999) and Geys et al. (1999), which implies that in our
multivariate polytomous case, the pseudo-likelihood estimates of parameters of LLLA models
are asymptotically multivariate normal and consistent.
The standard errors provided by MLE of the stacked conditional multinomial logistic regres-
sion model will be too small because the dependency created by including data from a single
examinee I times has been ignored. Three possible methods to obtain correct estimates of
standard errors exist: jackknife, bootstrap, and robust (“sandwich”). The jackknife estima-
tor is obtained by removing the data for one individual from the data and re-estimating the
model. This is done n times, once for each individual. The bootstrap method consists of
taking samples of size n from the data with replacement and fitting the model to resampled
data sets. This process is repeated a large number of times (e.g., 1, 000). With both methods,
the standard errors of the multiply estimated parameters are computed to yield the jack-
knife and bootstrap estimates. For our problem, these methods perform well but can become
computationally time consuming. The alternative is to compute robust standard errors.
Let S equal the model based estimate of the covariance matrix of the parameters from the
MLE of the “stacked” regression. Geys (1999), Geys et al. (1999) and Aerts et al. (2002)
provide a formula in the context of PLE for an empirically corrected or robust estimator,
which equals

Σ̃ = S

(∑
v

∆v∆′
v

)
S,

where ∆v is the score vector (i.e., vector of first partial derivatives of the pseudo-likelihood



Journal of Statistical Software 13

function) using individual v’s data.

Given an estimated covariance matrix for the parameters, if one wants to linearly reparametrize
the model (e.g., Master’s partial credit model), standard errors can be computed for the trans-
formed parameters. Alternatively, given the estimated (robust) standard errors and the fact
that parameters estimates are asymptotically multivariate normal, pseudo-Wald tests can be
performed. The null hypothesis Lγ = 0, where γ is a vector of parameters and L is a matrix
whose rows define linear combinations of the parameters, can be tested using the pseudo-Wald
statistic

W ∗ = Lγ̃(LΣ̃L′)−1γ̃ ′L′. (17)

The statistic W ∗ has an asymptotic chi-square distribution with degrees of freedom equal to
the number of rows in L.

Pseudo-likelihood and adjusted pseudo-likelihood ratio tests have also been proposed (Geys
1999; Geys et al. 1999; Aerts et al. 2002). These test statistics require the maximum of the
pseudo-likelihood function and S. The performance of these tests, as well as the pseudo-Wald
statistics is an area that warrants further investigation in the context of LLLA and Rasch
models. An additional area that also warrants further investigation is the applicability and
development of modifications of tests of Rasch model assumptions under MLE (Glas and
Verhelst 1995; Verhelst and Glas 1995; Glas 2007) to the case of PLE.

4. The plRasch package for R

To fit Rasch models as LLLA models to data using either MLE or PLE in the R programing
environment (R Development Core Team 2007), the plRasch package needs to be loaded which
requires the package survival (Therneau and Grambsch 2000).

In the plRasch package, the category weights or scale values are set to w0 = 0, w1 = 1,
. . . , wm = m for all items, which is common in Rasch modeling; however, other choices are
possible. To change the scale values, a user would need to modify the function that sets up the
design matrix. In the current implementation, the number of response options are assumed
to be equal.

4.1. Short overview of the plRasch package

The plRasch package consists of five functions and a number of example sessions. The fol-
lowing are currently available for use in R:

mlData is the function that sets up the data for MLE.

vcov.sandwich.glm is the function that computes robust covariance matrix for the PLE
parameter values for dichotomous items.

llla is the main function that calls various functions that fit LLLA models to data.

RaschPLE is a function that calls llla but reparameterizes the parameter estimates so that
they correspond to a parametrization similar to that given by other computer programs
that estimate parameters of Rasch models.

plStackData is the function that stacks the regressions and sets up the data for PLE.
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For illustration, a number of example scripts are available that illustrate the use of llla and
RaschPLE for uni-dimensional and multi-dimensional models for dichotomous and polytomous
items.

4.2. The llla function

The llla function is called using the following syntax

llla(data, item.mtx, trait.mtx, useMLE = FALSE, uncorrected = FALSE)

where the arguments are

data is an individual-by-item data frame or matrix. The elements of the matrix indicate the
response option chosen for each item for each individual. The entries of data should be
0, 1,. . . , m.

item.mtx is an item-by-latent trait adjacency matrix where an element equals 1 if the item
is a direct indicator of a latent trait and 0 otherwise.

trait.mtx is a latent trait-by-latent trait adjacency matrix where an element equals 1 if two
latent traits are related and 0 otherwise. The diagonal elements should always equal 1.

useMLE is an optional argument that specifies whether MLE (TRUE) should be used rather
than the default PLE (FALSE).

uncorrected is an optional argument that requests the uncorrected standard errors and
covariance matrix to be output when PLE is used. The default is FALSE.

When useMLE = TRUE, MLE is used to obtain parameter estimates for an LLLA model.
The llla function calls the function mlData, which sets up the data for Poisson regression
corresponding to the Rasch model specified by the item.mtx and trait.mtx. The function
glm is called by llla to estimate the model.

When useMLE = FALSE, which is the default, PLE is used to obtain parameter estimates.
The llla function calls stackdata to set up the design matrix corresponding to the Rasch
model indicated by the adjacency matrices item.mtx and trait.mtx. For dichotomous items,
llla calls the glm function and fits a binary logistic regression model. The robust covariance
matrix and standard errors of the parameters are computed using sandwich. For polytomous
items, the conditional multinomial models are fit as discrete time proportional hazard models
where time is dummy coded. The llla function calls the coxph function in the survival
package to fit the conditional multinomial logistic regression model as a proportional hazard
model. The robust standard errors and covariance matrix for the parameters are obtained
from coxph.

The output from the llla function includes

coefficients: The parameter estimates of the LLLA model.

se: The model based standard errors obtained from MLE of a Poisson regression when
useMLE = TRUE or the robust standard errors from the stacked logistic regression when
useMLE = FALSE.
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covb: The model based covariance matrix from the MLE of a Poisson regression model when
useMLE = TRUE, and the robust covariance matrix from the stacked logistic regression
when useMLE = FALSE..

se.uncorrected: The estimated standard errors from the MLE of the stacked regression
(i.e., the dependency has been ignored), which are the uncorrected standard errors from
PLE.

covb.uncorrected: The estimated covariance matrix for parameter estimates from the MLE
of the stacked regression (i.e., the dependency has been ignored), which is the uncor-
rected covariance matrix from PLE.

4.3. The RaschPLE function

Estimating Rasch models as LLLA models will recover the item parameters up to an additive
constant. The parameter estimates from llla will differ from those estimated by standard
IRT software (e.g., BILOG, see ?) by an additive constant. With the Rasch model, both the
location (mean) of item parameters and the mean on latent trait levels are unknown. In this
respect, the model is unidentifiable. In practice, the parameter estimates are anchored after
the estimation. Either the solution is anchored to latent trait levels by setting the mean latent
trait levels to 0 or to item parameters by setting the mean item parameter estimates equal
to 0 (Embretson and Reise 2000). In the plRasch package, the wrapper function RaschPLE
fits the Rasch model by calling llla and then anchors the item parameter estimates to the
latent trait.

The syntax is similar to that for llla; that is,

RaschPLE(data, item.mtx, trait.mtx)

The parameter estimates of the β’s obtained from RaschPLE will differ from the parameter
estimates obtained by llla by an additive constant. Since a constant is added to the β’s, the
standard errors are unchanged.

4.4. Illustration of pseudo-likelihood estimation

The plRasch package can deal with large numbers of items; however, to illustrate how to use
the llla function, we simulated responses to 4 dichotomous items for 1, 000 examinees from
the two dimensional Rasch model represented by the graph in Figure 1 (a). The choices are
represented in the data matrix as 0 or 1. The data set looks like

R> head(sim.data)
[,1] [,2] [,3] [,4]

[1,] 0 0 1 0
[2,] 0 0 0 0
[3,] 1 1 0 1
[4,] 1 1 1 1
[5,] 0 1 1 0
[6,] 0 1 1 0
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R> tail(sim.data)
[,1] [,2] [,3] [,4]

[995,] 0 1 0 0
[996,] 0 0 1 1
[997,] 0 1 0 0
[998,] 0 0 1 0
[999,] 0 0 1 0
[1000,] 0 1 1 0

To describe the structure of the Rasch model, two adjacency matrices item.mtx and trait.mtx
are used. Matrix trait.mtx is a square symmetric matrix with the number of rows equal to
the number of latent traits. The diagonal entries of the matrix are always 1. An off-diagonal
entry equals 1 if the corresponding two latent nodes are connected. In our example repre-
sented by the graph in Figure 1 (a), items 1 and 2 are connected to latent trait Θ1, items
3 and 4 are connected to latent trait Θ2, and the two latent traits are correlated. In R (R
Development Core Team 2007), we can construct the two adjacency matrices as follows:

R> item.mtx <- cbind(c(1,1,0,0), c(0,0,1,1))
R> item.mtx

[,1] [,2]
[1,] 1 0
[2,] 1 0
[3,] 0 1
[4,] 0 1

R> trait.mtx <- cbind(c(1,1), c(1,1))
R> trait.mtx

[,1] [,2]
[1,] 1 1
[2,] 1 1

Using the defaults (i.e., PLE and robust estimates of the parameter covariance matrix and
standard errors), the llla function is called as follows:

R> lllafit <- llla(sim.data, item.mtx, trait.mtx)

The output obtained from this call of llla is

R> lllafit
Log linear by linear Model Method: Pseudo-likelihood Method

Call: llla(sim.data, item.mtx = item.mtx, trait.mtx = trait.mtx)

Coefficients:
Estimate Std.Error

item1 -1.7119 0.1457
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item2 -0.0368 0.1006
item3 0.5596 0.0993
item4 -1.0525 0.1404
phi11 0.8042 0.1558
phi21 0.2083 0.0634
phi22 0.6142 0.1525

R> lllafit$covb
item1 item2 item3 item4 phi11

item1 0.021216216 0.0076258178 0.0027995708 0.0027611175 -0.0156506810
item2 0.007625818 0.0101236224 0.0030251402 0.0036994717 -0.0046373620
item3 0.002799571 0.0030251402 0.0098514081 0.0073604088 0.0008531406
item4 0.002761117 0.0036994717 0.0073604088 0.0197059169 0.0005250326
phi11 -0.015650681 -0.0046373620 0.0008531406 0.0005250326 0.0242582541
phi21 -0.004302559 -0.0042649332 -0.0030143146 -0.0030226132 -0.0008862557
phi22 0.001624722 0.0003066558 -0.0069323520 -0.0168262797 -0.0003647315

phi21 phi22
item1 -0.0043025594 0.0016247215
item2 -0.0042649332 0.0003066558
item3 -0.0030143146 -0.0069323520
item4 -0.0030226132 -0.0168262797
phi11 -0.0008862557 -0.0003647315
phi21 0.0040221621 -0.0008128305
phi22 -0.0008128305 0.0232571453

The above parameter estimates are for LLLA models; however, when one wants the parameters
estimates scaled such that the item parameters are anchored to the latent trait, the RaschPLE
function should be used. Continuing our example,

R> wrapped <- RaschPLE(sim.data, item.mtx, trait.mtx)

This produces the output

R> wrapped
$coefficients

item1 item2 item3 item4
-0.9472009 0.7279415 1.3242807 -0.2878061

$se
item1 item2 item3 item4

0.14565787 0.10061621 0.09925426 0.14037777

$covb
item1 item2 item3 item4

item1 0.021216216 0.007625818 0.002799571 0.002761117
item2 0.007625818 0.010123622 0.003025140 0.003699472
item3 0.002799571 0.003025140 0.009851408 0.007360409
item4 0.002761117 0.003699472 0.007360409 0.019705917
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Notice that the estimated parameter estimates obtained from llla and RaschPLE differ only
by a constant and the RaschPLE output does not include the φ parameter; however, the
standard errors and covariance matrix for the βi1’s are the same.

4.5. Illustration of maximum likelihood estimation

The function llla can also fit LLLA models by MLE for small data sets. The llla function
sets up the data matrix for a Poisson regression model corresponding to the Rasch model
indicated by trait.mtx and item.mtx.

Continuing our example, the LLLA model is fit to the data by MLE by entering

R> mlefit <- llla(sim.data, item.mtx, trait.mtx, useMLE = TRUE)

The output is

R> mlefit
Log linear by linear Model
Method: Maximum Likelihood Method

Call: llla(data = sim.data, item.mtx = item.mtx, trait.mtx=trait.mtx,
useMLE = TRUE)

Coefficients:
Estimate Std.Error

(Intercept) 4.3481 0.0975
item1 -1.7110 0.1448
item2 -0.0362 0.1000
item3 0.5596 0.0991
item4 -1.0523 0.1404
phi11 0.8038 0.1555
phi21 0.2079 0.0633
phi22 0.6141 0.1525

R> mlefit$covb
(Intercept) item1 item2 item3

(Intercept) 0.009512918 -0.0062874003 -0.0062874003 -0.0074024742
item1 -0.006287400 0.0209742056 0.0074606937 0.0028969171
item2 -0.006287400 0.0074606937 0.0099923392 0.0028969171
item3 -0.007402474 0.0028969171 0.0028969171 0.0098158658
item4 -0.007402474 0.0028969171 0.0028969171 0.0073528116
phi11 0.002353834 -0.0157206020 -0.0047387355 0.0006609701
phi21 0.003306652 -0.0041913813 -0.0041913813 -0.0029899827
phi22 0.004395684 0.0009130767 0.0009130767 -0.0069357347

item4 phi11 phi21 phi22
(Intercept) -0.0074024742 2.353834e-03 0.0033066521 4.395684e-03
item1 0.0028969171 -1.572060e-02 -0.0041913813 9.130767e-04
item2 0.0028969171 -4.738736e-03 -0.0041913813 9.130767e-04



Journal of Statistical Software 19

item3 0.0073528116 6.609701e-04 -0.0029899827 -6.935735e-03
item4 0.0196984861 6.609701e-04 -0.0029899827 -1.681836e-02
phi11 0.0006609701 2.417130e-02 -0.0008149761 8.649576e-05
phi21 -0.0029899827 -8.149761e-04 0.0040102666 -8.436000e-04
phi22 -0.0168183550 8.649576e-05 -0.0008436000 2.324326e-02

Recall that MLE is not feasible for a test with large number of items. For example, if we try
to fit responses to 100 dichotomous items using MLE, the procedure will fail because there is
not enough memory to hold 2100 possible response patterns. If the problem is too large, the
following error message is issued

Error in 0:(ncat^nitem - 1) : result would be too long a vector

In our example with two correlated latent variables, four dichotomous items and 1, 000 exami-
nees, the parameter estimates obtained from PLE and MLE are nearly equivalent. The largest
difference between parameter estimates equals 0.0009. Also note that the relative efficiencies
range between .9935 to .9998. A number of different cases are studied in the simulations
presented in the next section.

5. Simulation studies

Simulation studies are reported here to demonstrate the performance of the estimation method
implemented in plRasch and the ability of plRasch to estimate parameters in a Rasch family of
models. Unless otherwise noted, in all of the studies reported here, the data were simulated
according to the Rasch model in equation (3). For uni-dimensional models, θ ∼ N (0, 1)
and for multidimensional models θ is drawn from a multivariate normal distribution. The
simulations in Section 5.1, which model small numbers of items, are designed to demonstrate
that parameters of the LLLA model estimated by MLE and PLE are nearly identical. The
simulations in Section 5.2, which model large numbers of items, are designed to illustrate that
PLE works on large data sets, performs as well as standard IRT estimation methods, and to
identify possible limitations of the plRasch package.

5.1. Comparisons with MLE

We simulated responses to 4, 5 and 6 items for 50, 100, 500 and 1000 examinees. Since the
numbers of items in these simulations are small, MLE of the LLLA models is feasible and
permits us to examine the similarity between parameters estimates obtained from MLE and
PLE, as well as examine the robust standard errors obtained from PLE relative to those from
the MLE of a LLLA model.

Unidimensional models for dichotomous items

In our first set of simulations, we simulated responses to dichotomous items where β11 = −1,
β21 = 0, β31 = 0.5, β41 = 1, β51 = −0.5 and β61 = 0.2. The βi0’s were set to zero.

Log-linear-by-linear association models were fit to the data sets by PLE and MLE. The results
for the 4 and 5 items data sets and for different sample sizes are basically the same as those
for 6 items; therefore, we only report the results for the 6 item data sets. The estimated βi1’s
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Figure 2: Pseudo-likelihood estimated parameters β̃i1 of log-linear-by-linear association mod-
els plotted versus maximum likelihood estimates β̂i1 for 6 items and sample sizes of n = 50,
100, 500 and 1, 000. The numbers in the plot are the item numbers and the lines are identity
lines.
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Figure 3: Robust standard errors from PLE se(β̃i1) of log-linear-by-linear-association model
plotted versus MLE standard errors se(β̂i1) for 6 items and sample sizes of n = 50, 100, 500
and 1, 000. The numbers in the plot are the item numbers and the lines are the identity lines.
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obtained from PLE and MLE for different sample sizes are plotted in Figure 2. The numbers
in the plots are the item numbers and the lines are identity lines. All of the points in these
graphs fall on the identity line. The correlations between the β̃i1’s and β̂i1’s for the different
sample sizes are all greater than .9999. The φ parameters for a given sample size are also
extremely close. The absolute values of the differences between the estimates of the φ equal
0.0020, 0.0026, .0005 and .0002 for n = 50, 100, 500 and 1, 000, respectively.

The robust standard errors from PLE are plotted against the MLE standard errors in Figure 3
for the six item data set. The numbers in the plots are the item numbers and the lines are
identity lines. The PLE robust standard errors are very similar to the MLE standard errors.
The results for the 4 and 5 item data sets were very similar to those for 6 items and no
discernable pattern of differences between them were observed. The relative efficiencies over
all parameters, numbers of items and sample sizes (i.e., 72 cases) are all larger than .97 with
the exception of three cases where the relative efficiencies were .94, .94 and .96.

Although not shown here, we computed standard errors using the jackknife and bootstrap
procedures. The robust standard errors are nearly identical to the jackknife, and the bootstrap
standard errors for 1000 samples are similar in size to the robust and jackknife estimates, but
are not as strongly correlated. We also computed parameter estimates and standard errors
using the IRT program BILOG (?), which uses marginal maximum likelihood estimation. The
MLE standard errors from BILOG are slightly smaller than those from llla.

Unidimensional models for polytomous items

In this section, we compare PLE and MLE parameter estimates and standard errors of the
LLLA model and PLE parameter estimates of the Rasch model to parameters used to simulate
the data from a unidimensional Rasch model for multicategory items. Data were simulated
for items with either 3 or 5 response options.

Since the results are similar over different numbers of items, examinees and response options,
we show those for 6 items with 5 response options for 500 examinees. Figure 4 contains plots
of parameter estimates where different symbols (and colors) correspond to different response
categories and the lines are identity lines. To distinguish between the LLLA scaled and Rasch
scaled parameter estimates, we use λih for those of a LLLA model and βih for those of a Rasch
model.

At the top of Figure 4 is a plot of the PLE λ̃ih versus the MLE λ̂ih of a LLLA model. The
PLE estimates are virtually identical to the MLE ones for all conditions. In the middle of
Figure 4 is a plot of β̃ih versus βih used to simulate the data. The PLE estimates are very
similar to those used to simulate the data. As the sample size increases, the PLE estimates
β̃ih get closer to those used to simulate the data. For a given sample size, the PLE estimates
of β̃ih are closer to those used to simulate the data for items with 3 response options than
they are for those with 5 response options.

At the bottom of Figure 4 the robust standard errors are plotted against the MLE standard
errors. The Robust standard errors tend to be slightly larger than those from MLE. For a
given number of items and number of response options, both robust and MLE estimates of
standard errors decrease as sample size increases.
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5.2. Large numbers of items

Since PLE was proposed as a way to overcome the problem of fitting LLLA models to large
cross-classifications of items, in these simulations we show that PLE solves the problem and
recovers parameters of a variety of Rasch models fit to simulated data.

Unidimensional models for dichotomous items

Responses to 20, 50 and 100 dichotomous items were simulated from a unidimensional Rasch
model for 1, 000 examinees where βi1 ∼ N (0, 1). Rasch models were fit to the data using
both plRasch and BILOG (?). The parameters and estimates are plotted in Figure 5. The
correlations between β̃i1 from RaschPLE and β̂i1 from BILOG are all greater than .9999,
regardless of the number of items or sample size. The β̃i1 are also highly correlated with the
βi1’s used to simulate the data (i.e., .9973, .9953, and .9959 for the 20, 50 and 100 item data
sets, respectively).

The robust standard errors obtained from RaschPLE are plotted against those obtained from
BILOG in Figure 6. Surprisingly, the standard errors from RaschPLE are slightly smaller
than those from BILOG; however, the differences tend to be .01 or smaller. We also used
the jackknife and bootstrap procdures to compute standard errors for the pseudo-likelihood
estimates. Those from jackknife are nearly identical to the robust standard errors and those
from bootstrap are very similar in size to the robust and jackknife standard errors.

Unidimensional models for polytomous items

In this section, data were simulated from a unidimensional model for items with five response
options for 20 and 50 item tests for 1, 000 examinees. The β̃ih are plotted against the pa-
rameters used to simulate the data for the 20 item test in Figure 7. There is a very close
correspondence between β̃ih and βih.

For 50 items with 5 categories per item and a sample size of 1, 000, the length of the stacked
data file was 250, 000 lines, which was too large for coxph in R (R Development Core Team
2007) to handle. We were able to fit this model in SAS (SAS Institute Inc. 2003) using the
PROC MDC procedure5; however, problems arose because not all response options were selected
in the simulated data. When encountering such problems, two courses of action are possible:
drop the column of the data file for response options not chosen or increase the sample size.
For our simulation, we increased the sample size to 10, 000, which lead to a data file with
2, 500, 000 lines, but there were still a couple of items with response options not chosen. With
actual data, increasing the sample size may not be possible; however, deleting appropriate
columns of the design matrix works well.

Multidimensional models for dichotomous items

Data from a two dimensional model exhibiting simple structure (i.e., Figure 1 (a)) were
simulated for 20 and 50 dichotomous items and 1000 examinees where half of the items were
direct indicators of one latent variable and the other half of the items were indicators of the
other latent variable. The correlation between the latent variables was .50. In Figure 8, the
PLE parameter estimates for each case are plotted against the βi1’s used to simulate the data.
As with our other simulations, the β̃i1 are very close to the βi1 used to simulate the data.

5Examples using PROC MDC are available from http://faculty.ed.uiuc.edu/cja/plRasch/.

http://faculty.ed.uiuc.edu/cja/plRasch/
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Figure 5: Comparison of β̃i1 obtained from PLE, β̂i1 obtained from BILOG and true βi1

for 1, 000 simulated responses for 20 items (top row), 50 items (middle row), and 100 items
(bottom row) from a unidimensional Rasch model.



26 Multidimensional Rasch Models for Polytomous Items

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0.070 0.075 0.080 0.085 0.090 0.095 0.100

0.
07

5
0.

08
0

0.
08

5
0.

09
0

0.
09

5
0.

10
0

0.
10

5

PL se((ββ~)) vs BILOG  se((ββ̂)) for 20 items

se((ββi
^))

se
((ββ

i~
))

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●● ●●

●

●

●
●

●●

0.07 0.08 0.09 0.10 0.11

0.
07

0.
08

0.
09

0.
10

0.
11

PL se((ββ~)) vs BILOG  se((ββ̂)) for 50 items

se((ββi
^))

se
((ββ

i~
))

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●●

●
●

●
●

●

● ●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

0.07 0.08 0.09 0.10 0.11 0.12

0.
07

0.
08

0.
09

0.
10

0.
11

PL se((ββ~)) vs BILOG  se((ββ̂)) for 100 items

se((ββi
^))

se
((ββ

i~
))

Figure 6: Comparison of standard errors obtained from RaschPLE (vertical axis) and BILOG
(horizontal axis) for 1, 000 simulated responses for 20 items (top row), 50 items (middle row),
and 100 items (bottom row) from a unidimensional Rasch model.
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Figure 7: Comparison of β̃ih obtained from PLE and βih parameters used to simulate responses
of 1, 000 examinees to 20 items each with 5 response options.

6. Discussion

The plRasch package presented here uses pseudo-likelihood estimation of log-linear-by-linear
association models as a way to estimate parameters of a family of multidimensional Rasch
models for polytomous items. With respect to parameter recovery, the performance of PLE
as implemented in the plRasch package is excellent. In the case of dichotomous items and
unidimensional models, the resulting parameter estimates are nearly identical to those ob-
tained by BILOG (?). In all cases examined, the PLE estimates were very highly correlated
with parameters used to simulate the data. Furthermore, when MLE estimates of parameters
were obtained, the PLE estimates were virtually identical to the MLE parameter estimates.

The current implementation of PLE in the plRasch package is limited by the length of the
design matrix in the stacked regression. This is mostly a function of sample size and for
large numbers of items the number of categories per item. Since PLE of Rasch models
requires fitting a single conditional multinomial logistic regression model to data appropriately
formatted, the procedure described here can be implemented in any program that estimates
conditional multinomial logistic regression models. For example, one could write an SPSS
(SPSS Inc. 2006) or SAS (SAS Institute Inc. 2003) macro to prepare the data file, or one
could estimate an adjacent-category ordinal logit model (rather than a conditional logit model)
using LatentGOLD Version 4.0 (Vermunt and Magidson 2005). The latter computes robust,
jackknife and näıve standard errors. We performed some tests using PROC MDS in SAS, which
included multidimensional models for polytomous responses for large sample sizes, and did
not run into any size (memory) or run-time limitations. For example, we fit a 5 dimensional
Rasch model to simulated responses to 100 items with 3 response options per item and a
sample size of 2, 000 examinees and obtained excellent results in terms of parameter recovery.

The PLE estimation method is very flexible. The R functions in the plRasch package can be



28 Multidimensional Rasch Models for Polytomous Items

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PL estimates ββ~ vs True ββ for 20 items

ββi

ββ i~

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PL estimates ββ~ vs True ββ for 50 items

ββi

ββ i~

Figure 8: Comparison of β̃i1 obtained from PLE and βi1 parameters used to simulate responses
of 1, 000 examinees to 20 (left) and 50 (right) dichotomous items from a two dimensional
model.

modified to fit other models in the Rasch family, including the rating scale model. Modifi-
cations are also possible such that covariates can be included in a number of different ways
(Zwinderman 1996). Although we set the category weights wihp to consecutive integers, this
is not the only possibility. The category weights could be set to other values that reflect
specific hypotheses about response options. Such modifications require changes to the func-
tion stackdata that sets up the design matrix. This outlook for further developments and
modifications should not distract from the fact that PLE performs extremely well, provides
numerically stable results, estimates parameters of a rather large family of Rasch models, and
is easy to implement, especially given the plRasch package in R.
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A. Compatibility conditions and the joint distribution

The joint distribution implied by a set of fully conditionally specified multinomial logistic
regressions is shown here, as well as a derivation of the restrictions on the parameters of the
conditional distributions that are both necessary and sufficient to guarantee compatibility of
the conditionals distributions with a joint distribution. We show that the joint distribution
is a LLLA model.
The joint distribution of variables X1, . . . , XI equivalent to equation (12) can be written as

P (x) = exp

β0 +
∑

i

y′
i

βi +
∑
k>i

Ψi|kyk

 , (18)

where x is an (I × 1) vector that is a realization on items X1, . . . , XI , β0 is a normalization
constant, y′

i = (0, . . . , 1, 0, . . .) is an ((m + 1) × 1) vector that indicates a specific category
(response option) of variable Xi selected, β′

i = (βi0, . . . , βi(m)) is a ((m + 1) × 1) vector of
marginal effect terms for variable i, and the ((m + 1) × (m + 1)) matrix Ψi|k = W iΦW ′

k

where W i = (wi1, . . . ,wiq) and W k = (wk1, . . . ,wkq) are ((m + 1) × r) matrices. where
wip = (wi0p, wi1p, . . . , wi(m)p)′ is an ((m+ 1)× 1) vector of category weights. The elements of
the (r× r) matrix Φ equal the φpq’s. Thus, the elements of Ψi|k (i.e., ψih|kh) equal the terms
that relate variable Xk to Xi in the conditional distribution of Xi given the remaining X’s;
that is, ψih|kh =

∑
p

∑
q φpqwihpwkhq.

A.1. Sufficiency

As stated in the text, the compatibility conditions are that all Ψi|k = Ψ′
k|i for all i and k. We

first show that given equation (18) leads to the conditional distributions of on item conditional
the remaining (I − 1) variables defined by equation (11). The conditional distribution of (12)
or equivalently (18) is

P (Xi = h|x−i) =
P (x)∑m

ih=0 P (x)

=
exp

[
β0 +

∑
i∗ 6=i y

′
i∗

(
βi∗ +

∑
k>i∗ Ψi∗|kyk

)]
exp

[
y′

ih

(
βi +

∑
k 6=i Ψi|kyk

)]
exp

[
β0 +

∑
i∗ 6=i y

′
i∗

(
βi∗ +

∑
k>i∗ Ψi∗|kyk

)]∑
ih exp

[
y′

ih

(
βi +

∑
k 6=i Ψi|kyk

)]
= κ−i exp

y′
ih

βi +
∑
k 6=i

Ψi|kyk

 (19)

where x−i is the response for all items except item i, yih is the ((m + 1) × 1) vector with 1
in the (h+ 1)th position and zeros elsewhere, and the normalizing constant equals

κ−i =

 m∑
ih=0

exp

y′
ih

βi +
∑
k 6=i

Ψi|kyk

 .
−1

Equation (19) is a conditional multinomial logistic regression model that is equivalent to
equation (11).
For identification, we set βi0 = 0 for all i, and for mathematical convenience (and consistency
with the text), we set wi0) = 0 for each item. We use these constraints and specifications
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here and throughout Appendix A. Note that when taking the odds of Xih and Xi0 using
conditional model (19), the κ−i’s cancel out; that is,

P (xih|x−i)
P (xi0|x−i)

= exp

y′
ih

βi +
∑
k 6=i

Ψi|kykh

 . (20)

A.2. Joint distribution

We now generalize the proof in Joe and Liu (1996) to multi-category variables and derive the
joint distribution that is compatible with the conditionals.

The joint distribution function for I variables is proportional to the ratio of the conditional
distributions; that is,

f(x) = f(x1, x2, . . . , xI)

∝
∏I

i=1 fi|−i(xi|x∗1, . . . , x∗i−1, xi+1, . . . , xI)∏I
i=1 fi|−i(x∗i |x∗1, . . . , x∗i−1, xi+1, . . . , xI)

, (21)

where fi|−i is the conditional mass function for variable xi given X−i, and x∗ = (x∗1, . . . , x
∗
I)

is fixed and arbitrary. Using (20) in (21) with x and fixed and arbitrary x∗ yields

f(x) ∝
∏I

i=1 exp
[
y′

i

(
βi +

∑
k<i Ψi|ky

∗
k +

∑
k>i Ψi|kyk

)]
∏I

i=1 exp
[
y∗′

i

(
βi +

∑
k<i Ψi|ky

∗
k +

∑
k>i Ψi|kyk

)]
∝ exp

∑
i

y′
iβi − y∗′

i βi + y′
i

∑
k<i

Ψi|ky
∗
k

+y′
i

∑
k>i

Ψi|kyk − y∗′
i

∑
k<i

Ψi|ky
∗
k − y∗′

i

∑
k>i

Ψi|kyk

 . (22)

Note that when substituting (20) in (21) we simplified the notation for yih to yi. The yi equals
the ((m+ 1)× 1) vector of all zeros and 1 in the (1 + h)th position where xi = h in response
pattern x. Since (x∗1, . . . , x

∗
I) is fixed and arbitrary, the terms (y∗′

i βi) and (y∗′
i

∑
k<i Ψi|ky

∗
k)

in (22) are constants, so

f(x) ∝ exp

∑
i

y′
iβi + y′

i

∑
k<i

Ψi|ky
∗
k + y′

i

∑
k>i

Ψi|kyk − y∗′
i

∑
k>i

Ψi|kyk

 . (23)

Since x∗ is arbitrary (and fixed), for convenience we will set it to be the response pattern where
x∗1 = 0, . . . , x∗I = 0, which means that Ψi|ky

∗
k = W iΨW ′

ky
∗
k = 0 and y∗

i Ψi|k = y∗
i W iΨW ′

k =
0 (recall that the category weight for the first category equal zero, wi0 = 0), yields

f(x) ∝ exp

∑
i

y′
i

βi +
∑
k>i

Ψi|kyk

 , (24)

which is exactly the form the joint distribution in (18). For the joint distribution, we need
a normalizing constant to ensure that the probabilities sum to 1 over all possible response
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patterns x. The joint distribution is

f(x) = exp

β0 +
∑

i

y′
i

βi +
∑
k>i

Ψi|kyk

 , (25)

with

β0 = − log

∑
x

exp

∑
i

y′
i

βi +
∑
k>i

Ψi|kyk

 , (26)

where the first summation is over all possible response patterns x.

A.3. Necessity

For the compatibility conditions, the ratio of (21) with fixed and arbitrary (x∗1, . . . , x
∗
I) relative

to (21) with fixed and arbitrary (x†1, . . . , x
†
I) must not depend on (x1, . . . , xI). This ratio is

R(x;x∗;x†) =
∏I

i=1 fi|−i(xi|x∗1, . . . , x∗i−1, xi+1, . . . , xI)∏I
i=1 fi|−i(x∗i |x∗1, . . . , x∗i−1, xi+1, . . . , xI)

×
∏I

i=1 fi|−i(x
†
i |x

†
1, . . . , x

†
i−1, xi+1, . . . , xI)∏I

i=1 fi|−i(xi|x†1, . . . , x
†
i−1, xi+1, . . . , xI)

. (27)

Substituting the ride side of (23), which equals the product of the conditionals, in (27) with
fixed and arbitrary (x∗1, . . . , x

∗
I) and (x†1, . . . , x

†
I) yields

R(x;x∗;x†) =
exp

[∑
i

(
y′

i

(∑
k<i Ψi|ky

∗
k

)
− y∗′

i

(∑
k>i Ψi|kyk

))]
exp

[∑
i

(
y′

i

(∑
k<i Ψi|ky

†
k

)
− y†′

i

(∑
k>i Ψi|kyk

))] (28)

=
exp

[∑
i

(∑
k>i y

∗′
i Ψ

′

k|iyk −
∑

k>i y
∗′
i Ψi|kyk

)]
exp

[∑
i

(∑
k>i y

†
i′Ψ

′
k|iyk −

∑
k>i y

†
i′Ψi|kyk

)] (29)

= exp

∑
i

(y∗
i − y†

i )
′∑
k>i

(Ψ′
k|i −Ψi|k)yk

 . (30)

To go from (28) to (29), we switched the order of the summation from k < i to k > i
by switching the labels i and k such that, for example,

∑
k<i y

′
iΨi|ky

∗
k =

∑
k>i y

∗′
i Ψ′

k|iyk.
For any choices of x∗ and x†, (30) does not depend on x (i.e., yk) if Ψi|k = Ψ′

k|i; that
is, the compatibility conditions on the parameters of the conditional distributions are that
W iΦW ′

k = (W kΦW ′
i)
′ for all i and k. In terms of scalars, ψih|kl =

∑
p

∑
q φpqwihpwklq and

ψkl|ih =
∑

p

∑
q φqpwklqwihp. For ψih|kl to equal ψklih requires that φpq = φqp.

B. Pseudo-likelihood function

We show here that our problem can be put into the exact form as used by Geys et al. (1999),
which in turn generalizes their proof regarding the consistency and asymptotic normality of
pseudo-likelihood parameters for multicategory variables.
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The pseudo-likelihood function is the product of a set of conditional likelihood functions or
equivalently sum the log of the conditional likelihood functions, pl, which is easier to work
with,

pl =
n∑

v=1

∑
s∈S

δs ln[fs(y(s)
v |Γv)] (31)

where the terms in (31) are defined below. In pseudo-likelihood estimation, we seek the
parameters that maximize (31). If we can express our problem as in (31), then the theorem
proved by Geys et al. (1999) applies to our problem.

The key to representing our problem in the form that Geys et al. (1999) use is to represent
response patterns x as an indicator vector. We use the indicator vector y for this purpose.
Let yvih = 1 if individual v selected response option h on item i, and 0 otherwise. We can then
represent the value on variable i by the vector of indicators yvi = (yvi0, yvi1, yvi2, . . . , yvim)′,
which will have all 0’s and one 1. For the full set of I items, we concatenate the indicator
vectors yvi to obtain the ((I(m+ 1))× 1) vector

yv =


yv1

yv2
...

yvI

 .

The set of (I(m+ 1)× 1) vectors, S, contains all possible vectors s with elements of 0’s and
1’s but not all elements equal to 0. Note that the set S includes vectors that do not represent
possible response patterns (e.g., vectors whose elements consist of all 0’s except one, or vectors
that consist of all 1’s). Lastly, we define the vector y

(s)
v as a sub-vector of yv corresponding

to a set of component vectors yvi that do not have all elements equal to 0. Since our problem
is fully conditionally specified, the pertinent vectors in S are

{sy0 , sy1 , sy2 , . . . , syI} =





yv1

yv2

yv3

...

yvI


,



0m+1

yv2

yv3

...

yIv


,



yv1

0m+1

yv3

...

yvI


, . . . ,



yv1

yv2

...

yv,I−1

0m+1





,

where 0m+1 is a ((m+ 1)× 1) vector with all elements equal to 0. The sub-scripts on the s’s
indicate the position of the sub-vector 0m+1 (e.g., sy0 has no sub-vector equal to 0m+1, and
sy1 has the sub-vector 0m+1 in position for y1 in yv.

Let δ be the set of real numbers with at least one non-zero component, in particular, δ =
{δs|s ∈ S}. The δ values corresponding to the s vectors given above are

{δs0 , δsy1
, δsy2

, . . . , δsyI
} = {I,−1,−1, . . . ,−1},

and the δ values for the remaining vectors in S equal 0.
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The joint density of y
(s)
v for individual v where Γv is a set of parameters for individual v is

represented as fs(y
(s)
v |Γv). In our problem, Γv = Γ = {β11, . . . , βim, βi1, . . . , φ11, . . . , φpq, . . .}.

Using these definitions, we obtain

pl =
n∑

v=1

∑
s∈S

δs ln[fs(y(s)
v |Γ)] (32)

=
∑
v

{
I log[fsy0

(y(sy0 )
v |Γ)]−

∑
i

log[fsyi
(y

(syi )
v |Γ)]

}

=
∑
v

∑
i

log

(f(sy0 )(y
(sy0 )
v |Γ))

(f(syi )
(y

(syi )
v |Γ))

 ,
=

∑
v

∑
i

log[f(yi|Γ,yk, k 6= i)] (33)

where fsy0
(y

(syi )
v |Γ) is the joint distribution for x, fsyi

(y
(syi )
v |Γ) is the marginal distribution

of x excluding item i, and f(yi|Γ,yk, k 6= i) is the conditional distribution of yi (i.e., xi)
given the remaining items (i.e., xk for k 6= i).
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