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Abstract

Ecologists are concerned with the relationships between species composition and envi-
ronmental factors, and with spatial structure within those relationships. A dissimilarity-
based framework incorporating space explicitly is an extremely flexible tool for answering
these questions. The R package ecodist brings together methods for working with dissimi-
larities, including some not available in other R packages. We present some of the features
of ecodist, particularly simple and partial Mantel tests, and make recommendations for
their effective use. Although the partial Mantel test is often used to account for the effects
of space, the assumption of linearity greatly reduces its effectiveness for complex spatial
patterns. We introduce a modification of the Mantel correlogram designed to overcome
this restriction and allow consideration of complex nonlinear structures. This extension
of the method allows the use of partial multivariate correlograms and tests of relationship
between variables at different spatial scales. Some of the possibilities are demonstrated
using both artificial data and data from an ongoing study of plant community composition
in grazinglands of the northeastern United States.
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1. Introduction

Ecologists frequently collect data on species composition and environmental variables at a
number of sites, and also record the location of each sample. Increasing awareness of the eco-
logical importance of spatial structure within a community or landscape, and of the statistical
problems caused by autocorrelated data, has led to interest in spatially-related questions: Is
there an underlying spatial structure in the data? If the species composition data are spatially
structured, does that structure correspond to spatial structure in the environmental data, or
are there spatial factors or processes that have not been measured? In an ecological context,
distance apart may be more useful than geographic location. Vegetation composition and
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environmental variables can also be expressed in the form of dissimilarity matrices (“distance
apart” for sample composition), leading to a consistent analytic framework that will allow us
to answer these questions without requiring the data to conform to particular distributions
or assumptions.

Urban, Goslee, Pierce, and Lookingbill (2002) described a series of dissimilarity-based anal-
yses intended to address these questions in a organized way. The core methods covered in
that paper, including nonmetric multidimensional scaling, hierarchical clustering, and Mantel
tests, have been implemented for R (R Development Core Team 2007) in the ecodist package
so that ecologists have convenient access. We expect that community and landscape ecolo-
gists will find these statistical techniques useful, as will any researcher dealing with complex
multidimensional or spatially-structured data. Our objectives are to review these analyses
of nonlinear and multivariate spatial structure and make recommendations for their effective
use, and to present a novel extension to the Mantel correlogram. Specifically, we consider
(1) simple Mantel tests, especially tests of significance; (2) variations on partial Mantel tests;
and (3) spatial structure in ecological data as revealed in ordinary and partial Mantel correl-
ograms. The methods contained in ecodist are illustrated using both artificial data and data
from grazinglands of the northeastern United States.

The ecodist package for R started as a collection of Mantel test methods, including both
simple and partial Mantel tests. To the best of our knowledge, partial Mantel tests with
multiple partials are not otherwise available in R. Over the past ten years, it has grown to
include additional functions for dissimilarity-based methods. Some of these methods, such
as metric and nonmetric multidimensional scaling ordination, are available in base packages
or in additional packages such as vegan (Oksanen, Kindt, Legendre, and O’Hara 2006) and
ade4 (Chessel, Dufour, and Thioulouse 2004) and have only been included within ecodist for
convenience, but many of the functions in ecodist are not otherwise available in R, or are only
available elsewhere in a simpler form.

Dissimilarity-based methods in the form of ordination and cluster analysis have a long tradi-
tion in ecology. Most multivariate methods implicitly require a particular dissimilarity metric
and make assumptions about the underlying distributions. As a simple example, principal
components analysis uses Euclidean distances, and assumes a linear relationship between the
data and the underlying gradient. These innate requirements are often not clearly under-
stood. The group of methods derived from the Mantel test allow explict choice of appropriate
dissimilarity metrics, and can be used with both quantitative and categorical data (Legendre
and Fortin 1989; Smouse and Long 1992; Fortin and Gurevitch 1993; Diniz-Filho and Bini
1996; Luo and Fox 1996; Rossi 1996; Legendre and Legendre 1998; Koenig 1999; Urban et al.
2002). These dissimilarity-based methods can be applied to any number of species, from
one to a community to an entire landscape, and can incorporate any assortment of ancillary
variables.

The methods available in ecodist require the user to select a dissimilarity metric. Euclidean
distances are generally used for environmental data and spatial coordinates, cases where this
direct line representation is appropriate. For vegetation abundance data, where presences are
meaningful but absences may not be, a dissimilarity measure such as Bray-Curtis is usually
preferred. The similar Jaccard metric is used with presence data. The choice of dissimilarity
metric is considered in more detail in Legendre and Legendre (1998). The ecodist function
distance() currently includes five indices: Euclidean, Bray-Curtis, Manhattan, Mahalanobis,
and Jaccard (Legendre and Legendre 1998). While this duplicates some of the functionality
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of dist() in base R, distance() was written so as to be easily extensible, with functions
implemented in C that perform the basic calculations needed for the majority of dissimilarity
metrics: paired difference, paired sum, joint presence and absence, and to count the number
of times that an item appears in only the first or only the second sample. These functions
can be combined as needed to easily calculate the final metric. A simplified version showing
only the Bray-Curtis dissimilarity metric illustrates the approach used

distance <- function (x, method = "bray-curtis")
{

A <- paireddiff(x)
A <- apply(A, 1:2, function(x) sum(abs(x)))
B <- pairedsum(x)
B <- apply(B, 1:2, sum)
D <- A/B
D

}

A second function, bcdist() duplicates the "bray-curtis" option of distance(), but re-
mains in the package to support legacy code developed by our research group.

2. Simple Mantel test

The simple Mantel statistic is effectively the correlation between two dissimilarity matrices.
This is a normalized version of the original Mantel statistic (Mantel 1967). The hypothesis
of a Mantel test is that the degree of dissimilarity in one dataset corresponds to the degree
of dissimilarity in another independently-derived dataset. For vegetation and environmental
data, a simple Mantel test determines whether environmentally similar sites also have similar
species compositions, and different sites have dissimilar species compositions.

The simple test is implemented using formula syntax in the mantel() function. An example
with artificial data will illustrate the general approach. Twenthy samples were located at
uniform distances along a transect, and abundances for five species were drawn from a normal
distribution. Euclidean distances are used to represent space, and Bray-Curtis dissimilarities
are used for the normally-distributed species data. A simple Mantel test examines whether
closer-together samples (smaller distance between sample locations) are more similar than
farther-apart samples.

R> library("ecodist")

R> set.seed(9876)

R> sampleloc <- 1:20

R> species <- matrix(rnorm(100), nrow = 20, ncol = 5)

R> sampleloc.edist <- distance(sampleloc, "euclidean")

R> species.bcdist <- distance(species, "bray-curtis")

R> mantel(species.bcdist ~ sampleloc.edist)

mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
0.01770804 0.45900000 0.54200000 0.84100000 -0.08224247 0.03649103
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The mantel() function returns the Mantel r statistic, and three p values from a randomization
procedure described below. For most circumstances, pval1, assessing the significance of the
null hypothesis that r <= 0, is the appropriate choice. For this artificial example, pval1 pro-
vides the desired hypothesis test.The test results are non-significant, leading to the conclusion
that closer samples are not more similar. The null hypotheses for the other two tests, that
r >= 0 (pval2) and that r = 0 (pval3) are only relevant in special cases, most commonly
when model matrices or transformations of the dissimilarities are used. The confidence limits
around Mantel r will be discussed later. In the special case where the dissimilarity matrix
is actual distance between samples, the simple Mantel test assesses linear spatial structure
in species composition or environmental variability. The standard Mantel test only indicates
that a linear relationship exists, not the direction of the relationship, which might be indicated
by a positive or negative correlation in the original data. A signed Mantel test may provide
this additional information when needed (Oberrath and Bohning-Gaese 2001). Signed tests
are not currently implemented in ecodist, but are under development.

In cases where the distributions of dissimilarity matrices are skewed, ranking the data prior to
the Mantel test may help to compensate (Faust and Romney 1985). Simulation studies have
shown that the ranked test provides similar or higher power than the unranked Mantel test,
although this has not been proven analytically (Dietz 1983). This test is equivalent to the
Spearman correlation coefficient. The simple Mantel test is based on a linear model; ranking
the data may linearize otherwise nonlinear relationships between dissimilarity matrices (Leg-
endre and Legendre 1998). Monotonicity (correlation of ranks) is a looser requirement than
linearity. The ranked version of the previous test returns a slightly higher Mantel r, but is
still not significant (as expected for randomly-generated data).

R> mantel(species.bcdist ~ sampleloc.edist, mrank = TRUE)

mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
0.03808221 0.33300000 0.66800000 0.64300000 -0.01192652 0.08266478

Care must be taken when interpreting Mantel results, since a relationship between dissimilar-
ities does not necessarily correspond to a similar relationship in the original data (Dutilleul,
Stockwell, Frigon, and Legendre 2000). For a given sample size, a significant Mantel statistic
is much lower than would be expected from familiarity with correlation analysis (Legendre
2000; Urban et al. 2002). Despite this, the test on dissimilarity matrices has higher statistical
power than the equivalent ANOVA (Somerfield, Clarke, and Olsgard 2002).

Although Mantel (1967) proposed a normal approximation for assessing the significance of
the Mantel test, this method is rarely appropriate for ecological data. Instead, permutation
testing should be used. Permutation tests are distribution free, but are only effective if the
various dissimilarity matrices are independent (Legendre and Legendre 1998; Manly 1997).
The permutation test for a simple Mantel test is straightforward: the rows and columns of one
matrix are jointly randomized. This simple restricted randomization procedure that preserves
the structure among pairs of sampling locations (Fortin and Payette 2002).

The appropriate number of permutations to use for testing significance has been debated in
the literature. Jackson and Somers (1989) believe that at least 10,000 permutations should be
used, while other researchers feel that 1,000 permutations is sufficient (Manly 1986; Luo and
Fox 1996). To evaluate these conflicting claims, we generated pairs of dissimilarity matrices
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from data with sample sizes of 10, 25, 50 and 100, and Mantel r statistics of 0.01, 0.05, 0.10,
0.25 and 0.50, using the corgen function from ecodist with the epsilon = 0.0001 option
to produce data with a specified correlation. The corgen function will generate data such
that the differences between the desired and actual correlation is no greater than epsilon.
Smaller values of epsilon produce more accurate results, but it can take longer to gener-
ate the data. For larger sample sizes, the variance at the higher Mantel r levels was very
small, so we omitted these tests, instead adding r = 0.025 for n = 100. For each pair of
matrices we calculated p using a range of permutation numbers (500; 1,000; 10,000; 100,000;
1,000,000), and repeated the test of significance 1,000 times to provide an estimate of distribu-
tion. Because the calculations are extremely time-consuming, especially for higher-numbers
of permutations, the results have been included in the ecodist package. All the combinations
described above are included in the data, but for the sake of brevity only the n = 50 results
are included here (Figure 1), but simulation results for all sample sizes can be examined in the
included permresults data. Set up a simulation example for sample size 10 and correlation
of 0.01:

R> permresults <- data.frame(matrix(0, nrow = 1000, ncol = 17))

R> colnames(permresults) <- c("n", "r", "p500", "l100", "u100", "p1000",

+ "l500", "u500", "p10000", "l1000", "u1000", "p100000", "l10000",

+ "u10000", "p1000000", "l100000", "u100000")

Generate correlated data:

R> corxy.len010.r010 <- corgen(len = 10, r = 0.01, epsilon = 0.0001)

Then record p value, lower and upper confidence limits:

R> all.nperm <- c(500, 1000, 10000, 100000, 1000000)

R> all.nboot <- c(100, 500, 1000, 10000, 100000)

R> for(i in 1:1000) {

+ permresults[i, 1] <- 10

+ permresults[i, 2] <- 0.01

+ for(j in 1:5) {

+ thismantel <- mantel(corxy.len010.r010$y ~ corxy.len010.r010$x,

+ nperm = all.nperm[j], nboot = all.nboot[j])

+ permresults[i, (3*j):(3*j + 2)] <- c(thismantel[c(2,5,6)])

+ }

+ }

With a sample size of 50 (1,225 dissimilarities), the 0.05 correlation is on the edge of signifi-
cance at the 95% level. With 500 permutations, the p value from the same pair of dissimilarity
matrices ranged from 0.010 to 0.074, and 21% of the tests had a p greater than 0.05. With
10,000 permutations, the range was reduced to 0.035-0.046, and with 1,000,000 permutations
the range in p was 0.040-0.041. The tests using a higher Mantel statistic (r = 0.10) showed
little variation in p with number of permutations. The tests of a weak relationship (r = 0.01)
showed a wide variation, but always below the usual 0.05 threshold. The tendency is toward
less variability at higher sample sizes. A survey of ecological studies using the Mantel test
found that most authors either used 1,000 permutations or did not state how many were used.
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Figure 1: The distribution of p values resulting from repeated permutation testing of data
with specified correlation coefficients. Sample size was 50 (1,225 pairs of dissimilarities), and
each test of significance was repeated 1,000 times. The horizontal line marks the conventional
0.05 level of significance.

Permutation tests do take a long time with large datasets, so for preliminary analyses, 1,000
permutations is probably adequate. With the speed of computers now available, there is no
reason that 10,000 or more permutations cannot routinely be used in analyses intended for
publication. The number of permutations used should always be specified in publications. If
not explicitly stated, the examples in this paper used 1,000 permutations to reduce the time
needed.

We have added a simple modified bootstrapped confidence interval to the Mantel statistic
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using the method described by (Manly 1997). Bootstrapped confidence intervals provide a
means to compare Mantel correlations computed for different study areas, or for the same
study area sampled at different times. The user can specify the number of subsamples, the
level of resampling, and the size of the desired confidence interval. Subsamples are taken from
the elements of the original dissimilarity matrix, and used to calculate the Mantel statistic.
Bootstrapping with replacement is not effective with dissimilarities, since the dissimilarity
between a sample and its replicate is by definition zero, so sampling without replacement is
used. The process is repeated for the desired number of times, and used to calculate the upper
and lower bounds of the confidence interval. Stable confidence limits are provided by using
at least 1,000 permutations. Note that the confidence limits give an estimate of population-
level variation, while the significance test compares the r value from the given data to that
obtained from other orderings of the complete set of samples, so they do not always agree.

3. Partial Mantel test

The simple Mantel test only allows the use of two dissimilarity matrices. Many methods have
been proposed for the inclusion of additional matrices. The most commonly used is the partial
correlation approach, so that the Mantel statistic is the partial correlation of A and B given all
other explanatory variables. The partial Mantel test has frequently been used to examine the
relationship between vegetation composition and environmental similarity once geographic
distance is taken into account. The desired partials are specified using formula notation.
Additional partials can be included by adding additional terms to the formula. Returning
to the artificial data generated above, assume that a third variable, perhaps soil type, may
also be contributing to patterns in species composition. An ecologist might be interested in
the relationship between species composition and sample location once the effects of soil have
been removed. In the mantel() function, one or more partial variables can be added to the
formula separated by + symbols. In the first example below, the test is on species vs. location,
given the effects of soil, while the second test is on species vs. soil, given the effects of space.

R> soil <- runif(20)

R> soil.edist <- distance(soil, "euclidean")

R> mantel(species.bcdist ~ sampleloc.edist + soil.edist)

mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
0.01836871 0.46800000 0.53300000 0.84600000 -0.07480468 0.03826385

R> mantel(species.bcdist ~ soil.edist + sampleloc.edist)

mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
-0.08875399 0.86400000 0.13700000 0.23000000 -0.12215541 -0.04361347

The appropriate permutation for a partial Mantel test has been the subject of much discussion
(Manly 1986; Smouse, Long, and Sokal 1986; Anderson and Legendre 1999; Legendre 2000).
It is important to be aware that all of these methods produce the same value for the Mantel
coefficient r, but can affect the corresponding p and the underlying assumptions about data
structure. For the partial Mantel test between A and B given C, it is very common to take the
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residuals of A on C and of B on C and use these residuals in what becomes effectively a simple
Mantel test. The correlation between residuals is equivalent to a partial correlation coefficient,
and the permutation test randomizes row and column order within the residuals. Detailed
analysis of this residual permutation method has demonstrated that it leads to inflated Type
I error, and should never be used (Legendre 2000).

While other statistically correct methods have been proposed, we prefer to randomize the rows
and columns of one of the original dissimilarity matrices, while leaving the others unpermuted.
This is the same permutation described in the earlier section on simple Mantel tests. For
both simple and partial tests, the permutation is applied only to one dissimilarity matrix.
For the example above, A would be permuted, and B and C left alone, and the test statistic
recalculated. We consider this to be the most conceptually straightforward of the potential
methods. Structural relationships between B and C are preserved, and permutation of the
original data makes it possible to design tests for very complex structures. This permutation
test is statistically acceptable unless extreme outliers are present (Anderson and Legendre
1999; Legendre 2000). Whichever method is chosen, it is important to describe the method
used in publications so that others can evaluate the results properly.

Mantel tests are rarely performed in isolation. Instead, many tests are performed using the
same data to investigate sets of hypotheses. Multiple comparison procedures are needed to
correct the critical p value at which to accept the null hypothesis (Legendre and Legendre
1998). The Bonferroni correction is conservative, but simple to calculate. For a set of n tests,
the modified critical p value to reject the null hypothesis is α

n for each test. With a large
number of tests, as is usual for Mantel analysis, the critical p quickly becomes impractically
small. At minimum, a global test of significance should be used for each set of tests. The
Bonferroni test of global significance requires that for n tests, at least one p is less than α

n .
If this criterion is not met, the entire set of null hypotheses cannot be rejected (Legendre
and Legendre 1998). If the criterion is met, then the individual tests within the table can be
evaluated.

The response of partial Mantel tests to spatial autocorrelation is a concern (Oden and Sokal
1992; Raufaste and Rousset 2001; Castellano and Balletto 2002). The partial Mantel test is
fairly robust to autocorrelation, but the permutation test will fail in extreme examples because
not all orderings of the data are equally likely (Oden and Sokal 1992). One simple solution is
to choose a conservative critical p value for assessing significance (Oden and Sokal 1992). A
more sophisticated answer is to use restricted randomizations, so that all randomizations are
not equally likely (Fortin and Payette 2002). The third approach, and the one we advocate,
is to identify and remove spatial structure from the data as part of the analysis through the
use of partial Mantel tests or non-linear spatial detrending (see below).

The dissimilarity matrix used need not come from data; instead it can be be generated from
a research hypothesis. A common use is to test group membership; the model matrix would
have 0 dissimilarity for pairs in the same group and 1 for those in a different group (Legendre
and Fortin 1989). The Mantel framework provides additional flexibility, since other variables,
including space, can be incorporated into the test of group membership. Very complex models
can be tested using sophisticated model matrices (Sokal, Oden, Walker, and Waddle 1997).
Caution should be used when interpreting results, as differences in group size within a model
matrix can bias the results (Luo and Fox 1996). A larger sample will have less variance in
the permutation results, all else being equal.



Journal of Statistical Software 9

4. Spatial structure

The ability to incorporate geographic distance directly into the analysis is a useful feature
of dissimilarity-based analysis. Note that this inferential framework incorporates space as
“distance apart” rather than location, which are two very different concepts (Urban et al.
2002). From an ecological perspective, relative location - how samples are arranged in space
with respect to each other - may well be more meaningful than the absolute geographic
location.

Ecologists often use the presence of a significant correlation between compositional or envi-
ronmental dissimilarity and geographic distance (“space”) as an indication of the presence of
spatial autocorrelation. Geographic distance is incorporated into partial Mantel tests, where
the partial correlation of compositional and environmental dissimilarity given geographic dis-
tance is assumed to correct for any spatial autocorrelation present. The assumption of lin-
earity implicit in the Mantel test invalidates this approach for all but the simplest spatial
structures. The linear assumption can sometimes be satisfied by using a ranked test, or by
transforming the geographic distances (Legendre and Fortin 1989; Legendre and Trousselier
1998). The general hypothesis of the Mantel test, that close samples are similar and far ones
different, may not be appropriate for examining spatial structures either; often close samples
are similar, and far ones are unrelated (Lefkovitch 1984). Leduc, Drapeau, Bergeron, and
Legendre (1992) dealt with this by truncating the geographic distance matrix, and discarding
all the far-apart pairs. A more flexible test would eliminate the linearity assumption and
make these work-arounds unnecessary.

As an example, we will use a simulated landscape with nine equally-spaced peaks arrayed in a
square, and sampled on a 25 x 25 grid as seen in Figure 2. To the eye, there is a definite spatial
pattern, perhaps corresponding to a series of mountain peaks, yet the Mantel r = −0.002 with
p = 0.576. The simulated landscape is contained in the bump dataset in ecodist. A partial
Mantel test on space would only remove this nonexistent linear component of the relationship.
Mantel analysis incorporating geographic distance would satisfy the researcher that spatial
autocorrelation is properly taken care of, when in fact it is being completely neglected because
the relationships are strongly nonlinear.

The Mantel correlogram explicitly considers the spatial structure at different scales within
a dissimilarity matrix (Oden and Sokal 1986; Legendre and Fortin 1989). To investigate
the spatial structure within vegetation, compositional dissimilarity is compared to a series of
binary model matrices specifying membership in a particular distance class. Each comparison
is tested by permutation, so a multiple comparison correction is needed before interpreting the
significance within each distance class. The global Bonferroni test discussed above can be used
as a starting point. Legendre and Legendre (1998) also discuss a sequential correction intended
for the ordered tests in a correlogram; this approach essentially biases the interpretation in
terms of “near” distance classes, which are more likely to be of interest ecologically. Because
the permutation test is repeated for each distance class, calculation of the correlogram can
be time-consuming for large datasets and high numbers of permutations.

The hypothesis of a Mantel correlogram is that the mean compositional dissimilarity within
a distance class differs from the mean of all the other distance classes combined (Dutilleul
et al. 2000). This is not a particularly interesting hypothesis; a more satisfying alternative
would be to look at the dissimilarities within a distance class on its own, without specifying its
relationship to other distance classes. If the dissimilarities are first standardized to z-scores,
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Figure 2: A simulated landscape with obvious but nonlinear spatial pattern.

the appropriate statistic is:

r(d) =
−1×

∑n
i=1

∑n
j=1 wij ∗ zij∑n

i=1

∑n
j=1 wij

(1)

where zij is the standardized dissimilarity between each pair i and j from the n samples, and
wij is the weight for that pair (typically 1 if it is within the distance class and 0 if it is not). The
significance of this simple piecewise autocorrelation statistic is tested by repeatedly permuting
the standardized dissimilarity matrix by rows and columns. The piecewise correlogram for the
simulated ”bump” landscape is shown in Figure 3. The correlogram shows definite non-linear
spatial pattern. The value of nearby grid cells are significantly positively related (filled first
circle), while cells at 5 distance units apart are significantly negatively related. This pattern
of alternating more- and less-similar grid cells continues across the entire range of distances.
In practice, the last few distance classes would probably be discarded, since there are few
pairs greater than 20 or 25 units apart on this grid.

R> X <- col(bump)

R> Y <- row(bump)

R> geo.dist <- distance(cbind(as.vector(X), as.vector(Y)), "euclidean")

R> value.dist <- distance(as.vector(bump), "euclidean")

R> bump.pmgram <- pmgram(value.dist, geo.dist)

R> plot(bump.pmgram)

For one variable, using Euclidean distance, this metric converges on the familiar Moran au-
tocorrelation. Like the Moran autocorrelation function, this statistic usually falls between -1
and 1, but is not bounded by those limits. Unlike the Moran function, this correlogram can
be used for multivariate data.
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Figure 3: Multivariate correlogram for the simulated landscape shown in Figure 2.

This autocorrelation function tends to resemble the standard Mantel correlogram for one
variable despite the difference in hypotheses, but it provides some additional features that
the Mantel correlogram does not have. It can be used as the basis for a piecewise removal
of the non-linear component of spatial variation. Instead of removing the linear component
of spatial variation across the entire range of distances, as done in a partial Mantel test on
space, spatial variation is removed separately from each distance class, which approximates
the nonlinear structure within the data. If the structure is linear, this process will give the
same results, since the sequence of segments will reconstruct that line. Selection of number
of classes is the result of a trade-off between resolution and adequate sample size within each
class. Some trial and error may be needed to find a set of classes that partitions the data into
similarly-sized groups.

The pgram() function requires two dissimilarity matrices, one for the data of interest and one
for the spatial location with which to compare it. It is also possible to specify an additional
dissimilarity matrix for a partial correlations (currently only a single such matrix), the number
of classes or step size to use for the lags, whether to return the piecewise residuals, and the
number of permutations to employ. It returns a matrix containing the lag distance, the group
size, the Mantel statistic and the p value.

Urban et al. (2002) discussed the need for a partial Mantel correlogram, which would inves-
tigate the relationship between two variables at different spatial scales while controlling for
the effects of others. This would make it possible to identify the spatial scale of influence of a
particular environmental variable. The multivariate correlogram described here can easily be
extended to partial tests, unlike the standard Mantel correlogram. The relationship between
compositional dissimilarity and environmental dissimilarity is computed for each distance
class. A modified permutation procedure is used, where one dissimilarity matrix is permuted
by row and column as usual, but dissimilarities outside the distance class are ignored when
calculating the test statistic. This procedure retains the internal structure of the dissimilarity
matrices.
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5. Illustration: Plant community composition

This example is drawn from a larger study of plant community composition and biodiversity
in grazinglands of the northeastern United States (Tracy and Sanderson 2000). A clustered
sampling design was chosen for this study, with two to five vegetation samples taken on
12 farms located from New York north to Maine. The vegetation data used here are the
mean values of canopy cover estimates from 10 quadrats (1 m2 each) located within a single
pasture. Within these samples, we identified 115 plant species. Dominant species were mostly
common forage species, and 31 species were encountered only once. Location as used here is a
function of latitude and longitude for each farm since the sites roughly fall along a southwest
to northeast line, and is in arbitrary units. The question of interest here is whether there is a
relationship between plant community composition and the percentage forest cover within a
circle of 1 km radius surrounding the farm (USGS National Land Cover Data, 1992). There is
a change in species identity from north to south, so the effects of location must be accounted
for when considering any relationship between community composition and other factors.
Bray-Curtis distance was used for plant cover data, while Euclidean distance was used for
forest cover and for location.

R> data("graze")

R> graze.bcdist <- distance(graze[, 3:ncol(graze)], "bray-curtis")

R> sitelocation.edist <- distance(graze$sitelocation, "euclidean")

R> forestpct.edist <- distance(graze$forestpct, "euclidean")

Data visualization and plots are the best place to start with a novel dataset, although it can
be difficult to visualize a multidimensional dataset. For the purposes of this paper we will
begin by using Mantel tests and piecewise correlograms to explore the structure of the data.
Simple Mantel tests reveal that there is a significant relationship between composition and
forest cover, and between composition and location. There is no relationship between forest
cover and location, as demonstrated by the third test below. Since the question of interest is
whether a relationship exists between community composition and surrounding forest cover
once spatial effects have been accounted for, the usual approach would be to take a partial
Mantel test on composition vs forest cover given the effects of location, the fourth test below,
which gives a significant result.

R> mantel(graze.bcdist ~ forestpct.edist, nperm = 10000)[c("mantelr",

+ "pval1")]

mantelr pval1
0.3873425 0.0001000

R> mantel(graze.bcdist ~ sitelocation.edist, nperm = 10000)[c("mantelr",

+ "pval1")]

mantelr pval1
0.2169834 0.0032000

R> mantel(forestpct.edist ~ sitelocation.edist, nperm = 10000)[c("mantelr",

+ "pval1")]
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mantelr pval1
0.04725453 0.15370000

R> mantel(graze.bcdist ~ forestpct.edist + sitelocation.edist,

+ nperm = 10000)[c("mantelr", "pval1")]

mantelr pval1
0.3867244 0.0001000

But is this sufficient? These Mantel tests show only the linear components of variation,
not more complex spatial patterns. In particular, note that the Mantel r of the vegetation
vs forest test is very close to that from the same test with location “removed”, suggesting
that the inclusion of the partial had no effect. The correlogram used in conjunction with
these tests is considerably more informative. The piecewise correlogram for plant community
composition (Figure 4a) shows a roughly linear relationship at closer distances, with space
unimportant at farther distances (> 4 units). A Mantel test probably gives adequate results
in this case. The correlogram for forest cover, however, shows a clear nonlinear pattern with
a strong “dip” in the middle of the correlogram (Figure 4b). Note that the Mantel test was
nonsignificant because there is little or no linear component to the relationship; using Mantel
tests alone would have given a false impression of the structure of the data.

R> vegetation.pmgram <- pmgram(graze.bcdist, sitelocation.edist,

+ nperm = 10000, nclass = 6)

R> forest.pmgram <- pmgram(forestpct.edist, sitelocation.edist,

+ nperm = 10000, nclass = 6)

R> par(mfrow = c(2, 1))

R> plot(vegetation.pmgram, main = "a. Plant community composition")

R> plot(forest.pmgram, main = "b. Surrounding forest cover")

Frequently, a partial Mantel test on space would be used to remove the effects of spatial
structure. The preferred method of calculating the partials is to use regression residuals.
This cannot account for non-linear structures; a correlogram calculated on the residuals of
forest cover vs location shows the same pattern as in the original data (Figure 5a as compared
to Figure 4b).

R> forest.resids <- residuals(lm(as.vector(forestpct.edist) ~

+ as.vector(sitelocation.edist)))

R> forest.resids.pmgram <- pmgram(forest.resids, sitelocation.edist,

+ nperm = 10000, nclass = 6)

R> par(mfrow = c(2, 1))

R> plot(forest.resids.pmgram, main = "a. Forest cover: Residuals")

R> forest.presids <- residuals(pmgram(forestpct.edist, sitelocation.edist,

+ resids = TRUE, nclass = 6))

R> forest.presids.pmgram <- pmgram(forest.presids, sitelocation.edist,

+ nperm = 10000, nclass = 6)

R> plot(forest.presids.pmgram, main = "b. Forest cover: Piecewise residuals",

+ ylim = range(forest.resids.pmgram$mgram[, "piecer"]))
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Figure 4: Piecewise Mantel correlograms for plant community composition against location
(a) and forest cover in the area surrounding the sample site (b).

Taking the piecewise residuals, however, completely removes the relationship between location
and forest cover (Figure 5b). The piecewise partial correlogram, which uses the piecewise
residuals, shows that there is a linear relationship between composition and forest cover once
the effects of space have been removed, and that the relationship is strongest among sites
with very similar and very different forest covers (Figure 6). The corresponding Mantel tests,
on piecewise residuals for composition vs space, and for forest vs space, are also significant,
as expected since the residual relationship is very nearly linear, but this test does not provide
any information about the pattern of relationship.

R> combined.pmgram <- pmgram(graze.bcdist, sitelocation.edist,

+ partial = forestpct.edist, nperm = 10000)

R> plot(combined.pmgram, main = "a. Composition vs forest given space",

+ xlab = "Difference in Forest Cover")

R> vegetation.presids <- residuals(pmgram(graze.bcdist, sitelocation.edist,

+ resids = TRUE, nclass = 6))

R> mantel(vegetation.presids ~ forest.presids, nperm = 10000,
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Figure 5: Piecewise Mantel correlograms for the linear regression residuals of forest cover
against location (a), as in a partial Mantel test; and for piecewise regression residuals (b).

+ nboot = 0)[c("mantelr", "pval1")]

mantelr pval1
0.2039215 0.0001000

In this case, both methods, the conventional and the piecewise, showed a significant rela-
tionship between forest cover and plant community composition once spatial effects had been
removed, but the magnitude of the relationship was nearly twice as great in the linear analysis
than when using nonlinear detrending. The conventional linear analysis would have overes-
timated the strength of the relationship. The casual assumption of linearity often seen in
published Mantel analyses may give rise to misleading conclusions.

6. Conclusions

The ecodist package makes a set of dissimilarity-based methods for the analysis of complex
ecological data available in R. The package includes standard methods, and also a novel ex-
tension that removes the linearity assumption of the Mantel methods. The use of dissimilarity
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Figure 6: Partial piecewise Mantel correlogram for plant community composition against
forest cover, given space.

methods, which also include standard classification and ordination techniques, allows the ex-
plicit inclusion of geographic distance, while requiring only minimal assumptions about the
nature of the data. The multivariate correlogram we present here reflects a more appropriate
hypothesis than the standard Mantel correlogram. It can be extended to new tests of rela-
tionships between variables at different scales, which eliminates the linearity assumption of
the usual Mantel tests. The flexibility inherent in this analysis framework requires researchers
to consider their choices, including dissimilarity metrics, standardizations and distributional
assumptions, and state them explicitly when presenting results. We continue to add new
methods as we find them useful, and to simplify the usage of existing methods (where this
does not break a decade of accumulated code).

We can now suggest ways to approach the ecological questions presented earlier. First, use
the multivariate correlogram to describe the spatial structure of species composition and en-
vironmental variables. If all relationships are linear or monotonic, standard Mantel tests can
be used. If the relationships are nonlinear, as in the simulated “bump” dataset, piecewise
removal of spatial variation can be used for space-free analysis. While the multivariate cor-
relogram method can be used for data with linear relationships, we recommend using the
simplest appropriate statistical method so as not to sacrifice statistical power. Whichever
method is used, it is necessary to remove the effects of space when examining the strength
of relationships between environment and species composition so that spurious effects caused
by the effects of space on both can be avoided.

If there is reason to expect nonlinear relationships between species and environment, a piece-
wise approach can be used again. Finally, a multivariate partial correlogram of compositional
dissimilarity can be calculated after removing the effects of all environmental variables so
that the spatial scale of unmeasured factors can be identified. This additional information
can help to identify these factors or to guide future research. There are many more possible
applications of this framework; once these methods become readily available each researcher
can apply those most suitable for each system of interest.
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