Current Volume | Browse | Search | RSSHome | Instructions for Authors | JSS Style Guide | Editorial Board

Authors: David Ardia, Lennart F. Hoogerheide, Herman K. van Dijk
Title: [download]
(3859)
Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit
Reference: Vol. 29, Issue 3, Jan 2009
Submitted 2008-06-30, Accepted 2008-12-01
Type: Article
Abstract:

This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.

Paper: [download]
(3859)
Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit
(application/pdf, 1.5 MB)
Supplements: [download]
(1147)
AdMit_1-01.01.tar.gz: R source package
(application/x-gzip, 1.3 MB)
[download]
(1053)
v29i03.R: R example code from the paper
(application/zip, 5 KB)
Resources: BibTeX | OAI
Creative Commons License
This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3)
Current Volume | Browse | Search | RSSHome | Instructions for Authors | JSS Style Guide | Editorial Board