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Abstract

Quasi-least squares (QLS) is an alternative computational approach for estimation of
the correlation parameter in the framework of generalized estimating equations (GEE).
QLS overcomes some limitations of GEE that were discussed in Crowder (1995). In
addition, it allows for easier implementation of some correlation structures that are not
available for GEE. We describe a user written SAS macro called %QLS, and demonstrate
application of our macro using a clinical trial example for the comparison of two treatments
for a common toenail infection. %QLS also computes the lower and upper boundaries of
the correlation parameter for analysis of longitudinal binary data that were described by
Prentice (1988). Furthermore, it displays a warning message if the Prentice constraints
are violated. This warning is not provided in existing GEE software packages and other
packages that were recently developed for application of QLS (in Stata, MATLAB, and
R). %QLS allows for analysis of continuous, binary, or count data with one of the following
working correlation structures: the first-order autoregressive, equicorrelated, Markov, or
tri-diagonal structures.
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1. Introduction

Quasi-least squares (QLS, Chaganty 1997; Shults and Chaganty 1998; Chaganty and Shults
1999) is a two-stage approach for fitting longitudinal data that are correlated over time using
an assumed working correlation structure in the framework of generalized estimating equations
(GEE, Liang and Zeger 1986). Both QLS and GEE estimate the regression parameter β via
solution of the same estimating equation which contains an additional unknown correlation
parameter α. These methods alternate between updating the estimate of β, and updating the
estimate of α iteratively, but they differ with respect to estimation of α. GEE uses a moment
estimate of α based on the Pearson residual, while QLS solves estimating equations for α that
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are orthogonal to the GEE estimating equation of β.

There are primarily two important reasons to consider the implementation of QLS over GEE.
Crowder (1995) pointed out that there may be no feasible estimate of α under misspecification
of the working correlation structure, which could result in a failure to converge for the itera-
tive GEE estimation procedure. On the other hand, the QLS estimates of α are guaranteed
to be feasible for several structures, including the first-order autoregressive (AR(1)), equicor-
related, Markov, and tri-diagonal structures. The other main advantage of the application of
QLS is that it allows for relatively straightforward implementation of more complex and/or
biologically plausible correlation structures than are currently available in GEE. For example,
Shults and Chaganty (1998) and Chaganty and Shults (1999) described estimating equations
for α for the Markov correlation structure that is a generalization of the AR(1) structure
for measurements that are unequally spaced in time. Furthermore, QLS has been success-
fully implemented in multi-outcome longitudinal studies which contain multiple sources of
correlations, e.g., correlations between multiple outcomes as well as within subject for each
outcome over time, using Kronecker product-based correlation structures (Shults and Morrow
2002; Chaganty and Naik 2002; Shults et al. 2004; Shults and Ratcliffe 2009). In addition,
Shults et al. (2006) implemented a banded Toeplitz structure that had previously not been
implemented for GEE.

There has been a considerable effort to disseminate and promote the use of QLS via the devel-
opment of user written QLS programs in some of the major statistical software packages. For
example, Shults et al. (2007) developed xtqls using Stata’s proprietary higher programming
language (StataCorp. 2003). Xie and Shults (2009) provide a user written QLS program called
qlspack using R. These programs estimate the regression parameter β by calling existing GEE
procedures, e.g., xtgee in Stata and the user written package geepack (Halekoh et al. 2006) in
R, and then solving the stage one and two estimating equations for α iteratively. Lastly, Rat-
cliffe and Shults (2008) developed GEEQBOX software in MATLAB for the implementation of
both GEE and QLS. Prior to introduction of GEEQBOX, there was no software available for
the implementation of GEE in MATLAB. All these QLS programs can be downloaded from
http://www.cceb.upenn.edu/~sratclif/QLSproject.html, while GEEQBOX is also avail-
able for download on the website of the Journal of Statistical Software provided in Ratcliffe
and Shults (2008).

This manuscript reflects our ongoing effort to develop QLS software in SAS (SAS Institute
Inc. 2003) which is one of the most widely used software packages, due to its versatility
including varied and powerful procedures for data management and statistical analysis. In
this manuscript, we present our user written SAS macro called %QLS for the implementation
of QLS developed under SAS version 9.1 using SAS/IML, an interactive matrix language in
SAS. We demonstrate %QLS using a randomized clinical trial reported by Backer et al. (1996)
for the comparison of two treatments for a common toenail infection. (See Section 4 for more
description of the study). %QLS can be used for analysis of continuous, binary, or count data,
with an AR(1), equicorrelated, Markov, or tri-diagonal correlation structure to describe the
pattern of association among the repeated measurements on each subject, or cluster.

A unique feature of %QLS, which is not available in current GEE packages and other user-
written QLS software, is that it computes the so called ‘Prentice boundary’ (Prentice 1988)
of the estimate of α for analysis of binary data (see Section 2.5 for more details).

Our outline for this manuscript is as follows: Section 2 describes each working correlation
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structure implemented in %QLS. Then it briefly describes QLS and the Prentice constraints
for α. Section 3 describes a complete list of the parameters in %QLS. Finally, Section 4
demonstrates %QLS using the clinical trial data (toenail data) for testing the time-averaged
difference between the two treatment groups. This includes a demonstration of an analysis
that results in a violation of the Prentice constraints, in addition to an application of the
Markov structure that currently is unavailable for GEE.

2. Description of quasi-least squares

In this section, we provide a brief description of QLS similar to that provided in Shults
et al. (2007); Ratcliffe and Shults (2008) and Xie and Shults (2009). For a more through
treatment of the development of QLS and its related asymptotic distributional properties, see
Chaganty (1997) for a description of stage one of QLS for balanced and equally spaced data,
Shults and Chaganty (1998) for stage one of QLS for unbalanced and unequally spaced data,
and Chaganty and Shults (1999) for the second stage of QLS. Prior to Chaganty and Shults
(1999), the QLS estimate of α was in general not consistent, even if the correlation structure
was correctly specified. As noted earlier, QLS is a method in the framework of GEE. For an
excellent text on GEE, see Hardin and Hilbe (2002).

We consider outcome measurements yi = (yi1, . . . , yini)
> with associated covariates xij =

(xij1, . . . , xijk)
> collected at measurement occasions j = 1, . . . , ni, for each subject i =

1, . . . ,m. For the model specification, we assume that the mean and variance of the out-
come variable satisfy E(yij) = g−1(x>ijβ) = µij and Var(yij) = φh(µij), respectively, where
φ is known as the dispersion parameter. Unlike the generalized linear model (GLM), both

GEE and QLS assume that the covariance matrix Cov(yi) = φA
1/2
i Ri(α)A

1/2
i where Ai =

diag(h(µi1), . . . , h(µini)), and Ri(α) is known as the working correlation matrix that describes
the pattern of association among the repeated measurements on each subject.

2.1. Working correlation structures implemented in %QLS

%QLS currently allows for application of the AR(1), equicorrelated, Markov, and tri-diagonal
structures that are described as follows:

1. The first-order autoregressive (AR(1)) structure: This structure assumes that
Corr(yij , yik) = α|j−k|, with feasible region (−1, 1). The feasible region for α is defined
as the interval on which α yields a positive definite correlation matrix.

2. The equicorrelated structure: This structure assumes that Corr(yij , yik) = α. The
feasible region for this structure is (−1/(nm−1), 1), where nm is the maximum value of
ni over i = 1, 2, . . . ,m. Note that for large nm, this structure may be unrealistic unless
all pairwise correlations are roughly identical across all time points.

3. The Markov correlation structure: This structure assumes that Corr(yij , yik) =
α|tij−tik|, with feasible region (−1, 1). This structure is a generalization of the AR(1)
structure and useful in modeling data that are unequally spaced in time. In addition,
this structure has not been implemented in any of the currently available packages that
implement GEE.
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4. The tri-diagonal correlation structure: This structure assumes that Corr(yij , yik) =
α for |j − k| = 1 and is zero otherwise. The feasible region for this structure is
(−1/cm, 1/cm), where

cm = 2 sin

(
π[nm − 1]

2[nm + 1]

)
and nm is the maximum value of ni over i = 1, 2, . . . ,m. This interval is approximately
(−1/2, 1/2) for large n and contains (−1/2, 1/2) for all n.

%QLS does not allow for application of the independent structure (identity matrix) because
QLS is identical to GEE for this structure. In addition, application of the unstructured
matrix is complex for QLS. In SAS, we therefore suggest application of PROC GENMOD with the
repeated statement and the option corr=ind for application of the independent correlation
structure, or corr=un for application of the unstructured correlation matrix for GEE.

2.2. Estimating equations and the algorithm for quasi-least squares

QLS is a two-stage procedure for estimation of the regression parameter β and the correlation
parameter α. In stage one it alternates between updating the GEE estimating equation for
β and the estimating equation for α. After convergence in stage one, an updated estimate
of α is obtained by solving the stage two estimating equation for α. A final estimate of β is
then obtained by solving the GEE estimating equation for β. The estimating equations are
as follows:

� The GEE estimating equation for β:

n∑
i=1

(
∂µi
∂β

)>
A
−1/2
i R−1i (α)A

−1/2
i [yi − µi (β)] = 0 (1)

� The stage one estimating equation for α:

∂

∂α

{
n∑
i=1

Z>i (β)R−1i (α)Z>i (β)

}
= 0, (2)

where Zi(β) = (zi1, . . . , zini)
> and zij = (yij − µij)/h(µij).

� The stage two estimating equation for α (evaluated at the stage one estimate
α̂):

n∑
i=1

trace

{
∂R−1i (δ)

∂δ
Ri (α)

}∣∣∣∣∣
δ=α̂

= 0. (3)

Note that the stage one and two estimating equations (2) and (3) involve the first derivative
of the inverse of Ri(α), which may not be easily obtained for some correlation structures, e.g.,
the tri-diagonal structure. However, it can be easily shown that

∂R−1i (α)

∂α
= −R−1i (α)

∂Ri(α)

∂α
R−1i (α) (4)
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where ∂Ri(δ)
∂δ is computed by taking the derivative of each element in Ri(α). For example, for

the tri-diagonal structure, ∂Ri(δ)
∂δ is an ni × ni matrix with ones on the off-diagonal and zeros

elsewhere, i.e., the (j, k)th element of ∂Ri(α)
∂α is 1 if |j − k| = 1 and is 0 otherwise.

%QLS involves application of the following algorithm to obtain the estimates of β and α:

1. Fit a generalized linear model with an appropriate link and variance function using PROC

GENMOD in SAS to obtain an initial estimate for β.

2. In stage one of QLS, repeat the following steps until a pre-specified convergence criterion
is met for estimating β and α.

(i) Compute the Pearson residuals at the current estimate of β, where the jth Pearson
residual on subject i is given by zij = (yij − ûij)/h(ûij).

(ii) Compute the estimate of α by solving the QLS stage one estimating equation (2)
for α using a pre-specified working correlation structure.

(iii) Update the estimate of β by solving the GEE estimating equation (1) for β at the
current estimate of α.

3. After convergence in the estimates of β and α in stage one, obtain an updated estimate
of α by solving the stage two estimating equation (3) for α. Then obtain a final estimate
of β by solving the GEE estimating for β that is evaluated at the stage two estimate of
α.

2.3. Algebraic expressions of the estimating equations for β and α

At each iteration, %QLS uses the Gauss-Newton method to compute the current estimate β∗

using the previous estimates β and α as follows:

β∗ = β +

{
n∑
i=1

(
∂µi
∂β

)>
A
−1/2
i R−1i (α)A

−1/2
i

(
∂µi
∂β

)>}−1

×

{
n∑
i=1

(
∂µi
∂β

)>
A
−1/2
i R−1i (α)A

−1/2
i [yi − µi(β)]

}

Although (4) can be used to obtain solutions to the stage one and two estimating equations
(2) and (3), explicit expressions for α are preferred since their application is computationally
more efficient. Except for the tri-diagonal structure, %QLS implements explicit expressions for
α that were obtained by solving the stage one and two estimating equations (2) and (3) for
α, for particular working structures.

For the AR(1) structure with unbalanced data, Shults and Chaganty (1998) proved that the
feasible stage one estimate α̂A-ONE can be expressed as:

α̂A-ONE =

m∑
i=1

ni∑
j=2

(zij + zij−1)
2 −

√
m∑
i=1

ni∑
j=2

(zij + zij−1)2
m∑
i=1

ni∑
j=2

(zij − zij−1)2

2
m∑
i=1

ni∑
j=2

zijzij−1

,
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while Chaganty and Shults (1999) showed that the stage two estimate α̂A-TWO is given by

α̂A-TWO =
2α̂A-ONE

1 + α̂2
A-ONE

.

For the equicorrelated structure with unbalanced data, Shults (1996) showed that the stage
one estimating equation of α has a unique feasible solution α̂A-ONE given by∑

i:ni>1

Z>i Zi −
∑
i:ni>1

1 + α2(ni − 1)

(1 + α(ni − 1))2
(Z>i (β) ei)

2 = 0

where Ini is the identity matrix and ei is a ni × 1 column vector of ones. Shults and Morrow
(2002) obtained the stage two estimate α̂E-TWO given by

∑
i:ni>1

ni (ni − 1) α̂E-ONE (α̂E-ONE (ni − 2) + 2)

(1 + α̂(ni − 1))2
/
∑
i:ni>1

ni (ni − 1)
(
1 + α̂2

E-ONE(ni − 1)
)

(1 + α̂E-ONE(ni − 1))2
.

For the Markov structure with unbalanced data, Shults (1996) obtained the QLS stage one
estimating equation for α as follows:

m∑
i=1

ni∑
j=2

eijα
eij
[
α2eijzijzi,j−1 − αeij

(
z2ij + z2i,j−1

)
+ zijzi,j−1

]
(1− α2eij )2

= 0

where eij = |tij−ti,j−1|. The stage two estimating equation of the Markov structure (Chaganty
and Shults 1999) is then given by

m∑
i=1

ni∑
j=2

2eijδ
2eij−1 − αeijeij

[
δeij−1 + δ3eij−1

]
(1− δ2eij )2

∣∣∣∣∣∣
δ=α̂M-ONE

= 0.

2.4. Estimates of the covariance matrix

%QLS provides two types of estimated covariance matrices of the estimated regression pa-
rameter, the model-based and robust sandwich-based estimates. The robust sandwich-based
estimate of the covariance matrix is the default matrix. It is often preferred when there is
any uncertainty in the choice of working correlation structure. However, the standard errors
are not necessarily smaller for the sandwich covariance matrix. Therefore, application of both
the model based and sandwich based covariance matrices might be considered in an analysis.

%QLS computes the model-based covariance matrix as follows:

ĈovM(β̂) = φ̂

n∑
i=1

X>i A
1/2
i R−1i (α̂)A

1/2
i Xi.

where φ̂ is the estimate of the dispersion parameter with or without the bias correction given
by

φ̂BC =
1

N − p

n∑
i=1

Zi(β̂)>Zi(β̂), or φ̂B =
1

N

n∑
i=1

Zi(β̂)>Zi(β̂)
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respectively, where p is the dimension of the regression parameter β and N =
∑m

i=1 ni. By

default, %QLS provides the bias corrected estimate of the dispersion parameter φ̂BC. For the
robust sandwich-based estimate of the covariance matrix, %QLS computes

ĈovR(β̂) = W−1n

{
n∑
i=1

X>i A
1/2
i R−1i (α̂)Zi(β̂)Z>i (β̂)R−1i (α̂)A

1/2
i Xi

}
W−1n .

where

Wn =
n∑
i=1

X>i A
1/2
i R−1i (α̂)A

1/2
i Xi.

%QLS also computes the (1− α)100% confidence interval, and a p value for testing each indi-
vidual regression parameter βj = 0, based on either the model-based or the robust sandwich-

based estimate of the covariance matrix of β̂.

2.5. Prentice boundary of the estimate of α for analyzing binary data

Consider longitudinal binary measurements yi1, . . . , yini with expected values E(yij) =
Pr(yij = 1) = pij , with qij = Pr(yij = 0) = 1 − pij , and the correlation between mea-
surements yij and yik denoted by Corr(yij , yik). An important feature of correlated binary
data is that the pij , qij and Corr(yij , yik) completely determine the bivariate distribution of
yij and yik because the pair-wise probabilities pr(yij , yik) can be expressed as

Pr(yij , yik) = p
yij
ij q

1−yij
ij pyikik q

1−yik
ik

{
1 + Corr(yij , yik)

(yij − pij)(yik − pik)
(pij pik qij qik)1/2

}
. (5)

Prentice (1988) pointed out that the probabilities in (5) will be non-negative, i.e., Pr(yij , yik) ≥
0, only if the correlations satisfy the following constraints that depend on the marginal means:

−max
j 6=k

{√
pijpik
qijqik

,

√
qijqik
pijpik

}
≤ Corr(yij , yik) ≤ min

j 6=k

{√
pijqik
qijpik

,

√
qijpik
pijqik

}
(6)

for all i = 1, . . . , n.

A main problem with violation of the Prentice constraints is that this leads to a lack of
theoretical justification for the existence of a valid joint probability mass function, given
the estimated parameter values of β and α. However, as Molenberghs and Verbeke (2005)
pointed out, the estimate of the working correlation is “merely a device to provide consistent
and asymptotically normal point estimates for the marginal regression parameters which
should not the made a part of formal inference.” Rochon (1998) also noted that violation of
the Prentice constraints appears to cause no difficulty in practice, although the potential for
violation should be taken into account in the design phase of a study. For example, when
conducting sample size calculations, values of α that satisfy the Prentice constraints should
be considered. Shults et al. (2009) also suggest that a severe violation of bounds might be
used to remove a particular working structure from a list of candidate working structures.

As noted in Section 1, the existing GEE and user-written QLS software (in Stata, MATLAB,
and R) do not provide the estimated Prentice constraints (6) for analysis of binary data. %QLS,
on the other hand, computes the estimated Prentice constraints for each correlation structure,
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and alerts users to a potential problem by providing a warning message if the estimate of α
does not fall within the interval.

3. List of parameters in the macro

A complete list of the parameters in %QLS is as follows:

%QLS(data, y, x, id, time, link, corr, robust, dispersion, alpha,

initialout, stage1out, stage2out, cmatrix, reference, converge, maxiter)

where

� data is the name of the data set in the usual longitudinal data format to be read in
PROC GENMOD. The data set must not contain any missing values.

� y is the outcome variable.

� x are the predictors (covariates) in the regression model.

� id is the ID variable.

� time is the time variable.

� link equals 1 for the identity link, 2 for the logit link, and 3 for the log link (default
is 1).

� corr equals 1 for the AR(1), 2 for the equicorrelated, 3 for the Markov, 4 for the
tri-diagonal (default is 1).

� robust equals 1 for robust sandwich-based standard errors, 2 for model-based standard
errors (default is 1).

� dispersion equals 1 for bias not corrected, 0 for bias-corrected (default is 1).

� alpha is the significance level to be used in testing each regression coefficient (default
is 0.05).

� initialout equals 1 creates a SAS permanent data set in the current work space for
the initial output, 0 otherwise (default is 0).

� stage1out equals 1 creates a SAS permanent data set in the current work space for the
stage 1 output, 0 otherwise (default is 0).

� stage2out equals 1 creates a SAS permanent data set in the current work space for the
stage 2 output, 0 otherwise (default is 0).

� cmatrix equals 1 creates a SAS permanent data set in the current work space for the
stage 2 correlation matrix, 0 otherwise (default is 0).

� reference equals 1 prints out the reference information, 0 otherwise (default is 0).

� converge is the convergence criterion for estimation of β and of α (default is 0.0001).
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� maxiter is the maximum number of allowable iterations for estimation of β and α
(default is 100).

Note that many of the parameters have default values, so that they do not have to be specified.
%QLS assumes the usual longitudinal data format to be read in PROC GENMOD without any
missing observation contained in the data. If there are missing observations in the data
that are coded as missing, these must be deleted prior to implementation of %QLS. This is
equivalent to assuming that the observations are ‘missing completely at random’ (MCAR),
as in the usual GEE analysis implemented by PROC GENMOD with the repeated statement.

4. Clinical trial example

Backer et al. (1996) reported a 12-week, randomized, double-blind, multi-center trial for the
comparison between the standard oral drug (terbinafine 250mg daily) and the experimental
oral drug (theritraconazole 200mg daily) in the treatment of a common toenail infection called
dermatophyte toe onychomycosis (DTO) which affects more than 2% of the British population
(Roberts 1992). The data was also described in Molenberghs and Verbeke (2005), is available
along with this manuscript, and can also be downloaded from http://www.cceb.upenn.edu/

~sratclif/QLSproject.html.

A total of 189 patients were randomized to each treatment group and followed over 12 weeks,
with measurements taken at baseline, and at months 1, 2, 3, 6, 9, and 12. The primary
outcome measure was the severity of the toe nail infection, that was defined as 1 if the
infection was severe, and 0 otherwise. For the purpose of demonstration, we first consider
a simple logistic regression model for comparison of the time-averaged treatment difference
between the standard treatment group and the experimental treatment group.

The toenail data, toenail.txt, contains 4 variables: time, treatment, y, and id, where
time is the time variable, treatment is the treatment indicator (1 for the standard arm, and
0 otherwise), y is the outcome variable (1 if the infection is severe, and 0 otherwise), and
id is the ID number assigned to each patient. Let yij follow the Bernoulli distribution with
pr(yij = 1) = pij such that

log

(
pij

1− pij

)
= β0 + β1treatmenti (7)

where treatmenti is the treatment indicator that equals 1 if the ith subject is assigned to the
standard drug and 0 otherwise. One advantage of implementing the model in (7) is that the
upper limit of the Prentice constraint for α is always equal to 1. In general, any model that
involves covariates that do not vary within clusters will have an upper Prentice boundary
(for α) of 1, due the fact that the estimated probabilities pij will not vary within subjects
(clusters) when only cluster level covariates are considered in the model.

Before we demonstrate %QLS to fit the model (7), first we assume that the data, toenail.txt,
is read into the current SAS workspace, e.g.,

data toenail;

infile "D:\toenail.txt";

input time treatment y id;

run;

http://www.cceb.upenn.edu/~sratclif/QLSproject.html
http://www.cceb.upenn.edu/~sratclif/QLSproject.html
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where we assume that the toenail.txt is stored in the D:\ directory.

4.1. Application of the AR(1) correlation structure

The following codes can be used to analyze the toenail data using the QLS regression model
(7) with the AR1 structure:

%QLS(data = toenail, y = y, x = treatment, id = id, time = time, link = 2,

corr = 1);

The estimated standard errors are the robust sandwich-based estimates that are set by default.
The outputs from the code are as follows:

Quasi-Least Squares SAS Macro Version 1.0

Regression Analysis using Quasi-Least Squares (QLS)

QLS Model Information

Variance Function : Binomial

Link Function : Logit

Dependent Variable : Y

Correlation Structure : AR(1)

Number of Observation Read : 1907

Number of Clusters : 294

Maximum Cluster Size : 7

Minimum Cluster Size : 1

Correlation Matrix Dimension : 7

Number of Distinct Time Points : 7

TIME 0 1 2 3 6 9 12

Number of Events : 408

Number of Trials : 1907

Analysis of Initial Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.217433 0.0778205 15.64 0.0000 -1.369958 -1.064908

TREATMENT -0.168861 0.1118004 1.51 0.1309 -0.387985 0.050264

%QLS is modeling the probability that Y=1

--------------------------------page 1/3--------------------------------
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Correlation converged after 1 iterations ( tolerance = 0 )

Reg. coeffi. converged after 2 iterations ( tolerance = 0.0000605 )

Analysis of Stage 1 QLS Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.200902 0.1409324 -8.52 0.0000 -1.477125 -0.92468

TREATMENT -0.169826 0.1971473 -0.86 0.3890 -0.556228 0.2165757

Stage 1 Correlation Parameter Estimate

0.4423849

Dispersion Parameter Estimate at Stage 1

1

Stage 1 Working Correlation Matrix

1.0000 0.4424 0.1957 0.0866 0.0383 0.0169 0.0075

0.4424 1.0000 0.4424 0.1957 0.0866 0.0383 0.0169

0.1957 0.4424 1.0000 0.4424 0.1957 0.0866 0.0383

0.0866 0.1957 0.4424 1.0000 0.4424 0.1957 0.0866

0.0383 0.0866 0.1957 0.4424 1.0000 0.4424 0.1957

0.0169 0.0383 0.0866 0.1957 0.4424 1.0000 0.4424

0.0075 0.0169 0.0383 0.0866 0.1957 0.4424 1.0000

--------------------------------page 2/3--------------------------------

Correlation converged after 1 iterations ( tolerance = 0 )

Reg. coeffi. converged after 3 iterations ( tolerance = 4.0938E-9 )

Analysis of Stage 2 QLS Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.178475 0.1392601 -8.46 0.0000 -1.451419 -0.90553

TREATMENT -0.170937 0.1938719 -0.88 0.3779 -0.550919 0.2090446

Prentice Boundary

-.259393 1.000000

Stage 2 Correlation Parameter Estimate
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0.7399569

Dispersion Parameter Estimate at Stage 2

1

Stage 2 Working Correlation Matrix

1.0000 0.7400 0.5475 0.4052 0.2998 0.2218 0.1641

0.7400 1.0000 0.7400 0.5475 0.4052 0.2998 0.2218

0.5475 0.7400 1.0000 0.7400 0.5475 0.4052 0.2998

0.4052 0.5475 0.7400 1.0000 0.7400 0.5475 0.4052

0.2998 0.4052 0.5475 0.7400 1.0000 0.7400 0.5475

0.2218 0.2998 0.4052 0.5475 0.7400 1.0000 0.7400

0.1641 0.2218 0.2998 0.4052 0.5475 0.7400 1.0000

--------------------------------page 3/3--------------------------------

The output of %QLS contains the model information followed by the estimates of the stage
one and two estimates of β and of α. As noted earlier, the upper limit of the Prentice interval
is equal to 1 in the above output. From the stage two output, the p value corresponding to
the time-averaged treatment effect is equal to 0.38, which suggests that there is no significant
time-averaged treatment difference between the standard drug versus the experimental drug.

4.2. Application of the Markov correlation structure

Here we demonstrate application of the Markov correlation structure, which is currently
unavailable for GEE. This is important because the toenail data is unequally spaced in time,
e.g., the variable time in this data set indicates the month of measurement (post baseline) and
takes value in {0, 1, 2, 3, 6, 9, 12} for each subject. Therefore, the Markov correlation structure
is preferable for the analysis of this trial. The following code can be used to fit the model (7)
with the Markov correlation structure:

%QLS(data = toenail, y = y, x = treatment, id = id, time = time, link = 2,

corr = 3);

Here we omit the stage one output, and present the initial and stage two outputs.

Quasi-Least Squares SAS Macro Version 1.0

Regression Analysis using Quasi-Least Squares (QLS)

QLS Model Information

Variance Function : Binomial

Link Function : Logit

Dependent Variable : Y
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Correlation Structure : Markov

Number of Observation Read : 1907

Number of Clusters : 294

Maximum Cluster Size : 7

Minimum Cluster Size : 1

Correlation Matrix Dimension : 7

Number of Distinct Time Points : 7

TIME 0 1 2 3 6 9 12

Number of Events : 408

Number of Trials : 1907

Analysis of Initial Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.217433 0.0778205 15.64 0.0000 -1.369958 -1.064908

TREATMENT -0.168861 0.1118004 1.51 0.1309 -0.387985 0.050264

%QLS is modeling the probability that Y=1

--------------------------------page 1/3--------------------------------

Correlation converged after 27 iterations ( tolerance = 0.0000556 )

Reg. coeffi. converged after 3 iterations ( tolerance = 6.8226E-7 )

Analysis of Stage 2 QLS Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.345997 0.141525 -9.51 0.0000 -1.623381 -1.068613

TREATMENT -0.204626 0.1969105 -1.04 0.2987 -0.590564 0.1813111

Prentice Boundary

-.212116 1.000000

Stage 2 Correlation Parameter Estimate

0.7942784

Dispersion Parameter Estimate at Stage 2

1
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Stage 2 Working Correlation Matrix

1.0000 0.7943 0.6309 0.5011 0.2511 0.1258 0.0630

0.7943 1.0000 0.7943 0.6309 0.3161 0.1584 0.0794

0.6309 0.7943 1.0000 0.7943 0.3980 0.1994 0.0999

0.5011 0.6309 0.7943 1.0000 0.5011 0.2511 0.1258

0.2511 0.3161 0.3980 0.5011 1.0000 0.5011 0.2511

0.1258 0.1584 0.1994 0.2511 0.5011 1.0000 0.5011

0.0630 0.0794 0.0999 0.1258 0.2511 0.5011 1.0000

--------------------------------page 3/3--------------------------------

The results are similar to those for the AR(1) structure, with an estimated α in stage two of
α̂ = 0.79 versus α̂ = 0.74 for the AR(1) structure. Further, the p value with respect to the
time-averaged treatment effect is 0.30. Hence, the same conclusion follows as with the AR(1)
structure.

4.3. Application of the equicorrelated and tri-diagonal structures

Although the equicorrelated and tri-diagonal structures may not be the best candidate cor-
relation structures for the toenail data, we include the implementation of theses structures
for the purpose of demonstration. Here we only present the codes for fitting the model (7)
with the equicorrelated and tri-diagonal correlation structures, but omit their outputs. For
the equicorrelated correlation structure, we have

%QLS(data = toenail, y = y, x = treatment, id = id, time = time, link = 2,

corr = 2);

For the tri-diagonal correlation structure, we have

%QLS(data = toenail, y = y, x = treatment, id = id, time = time, link = 2,

corr = 4);

4.4. Violation of the Prentice boundary

Here we briefly demonstrate violation of the Prentice constraints using the toenail data.
Consider the following model for testing the treatment effect over time:

log

(
πij

1− πij

)
= β0 + β1(treatmenti) + β2(timeij) + β3(treatmenti × timeij) (8)

where treatmenti is the treatment indicator that equals 1 if the ith subject is assigned to the
standard drug and 0 otherwise, timeij represents the time of the measurement collected on
subject i at the jth measurement occasion, and treatmenti × timeij is the treatment by time
interaction.

To fit the model in (8) using %QLS, a new variable corresponding to the interaction term must
be created first, e.g.,
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data toenail;

infile "D:\toenail.txt";

input time treatment y id;

interaction=treatment*time;

run;

To fit the model (8) with the AR(1) structure, we use

%QLS(data = toenail, y = y, x = treatment time interaction, id = id,

time = time, link = 2, corr = 1);

Here we provide the initial and stage two outputs for the AR(1) structure.

Quasi-Least Squares SAS Macro Version 1.0

Regression Analysis using Quasi-Least Squares (QLS)

QLS Model Information

Variance Function : Binomial

Link Function : Logit

Dependent Variable : Y

Correlation Structure : AR(1)

Number of Observation Read : 1907

Number of Clusters : 294

Maximum Cluster Size : 7

Minimum Cluster Size : 1

Correlation Matrix Dimension : 7

Number of Distinct Time Points : 7

TIME 0 1 2 3 6 9 12

Number of Events : 408

Number of Trials : 1907

Analysis of Initial Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -0.557058 0.1090393 5.11 0.0000 -0.770771 -0.343345

TREATMENT 0.0235766 0.1564805 0.15 0.8802 -0.283119 0.3302727

TIME -0.17693 0.0245578 7.20 0.0000 -0.225062 -0.128797

INTERACTION -0.077976 0.0394371 1.98 0.0480 -0.155271 -0.00068
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%QLS is modeling the probability that Y=1

--------------------------------page 1/3--------------------------------

Correlation converged after 1 iterations ( tolerance = 0 )

Reg. coeffi. converged after 5 iterations ( tolerance = 0.0000709 )

Analysis of Stage 2 QLS Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -0.649358 0.1702276 -3.81 0.0001 -0.982998 -0.315718

TREATMENT 0.1213252 0.2510978 0.48 0.6290 -0.370817 0.6134679

TIME -0.141402 0.0285992 -4.94 0.0000 -0.197455 -0.085348

INTERACTION -0.120551 0.0555837 -2.17 0.0301 -0.229493 -0.011609

Prentice Boundary

-.037683 .3076519

Stage 2 Correlation Parameter Estimate

0.7054869

Dispersion Parameter Estimate at Stage 2

1

Stage 2 Working Correlation Matrix

1.0000 0.7055 0.4977 0.3511 0.2477 0.1748 0.1233

0.7055 1.0000 0.7055 0.4977 0.3511 0.2477 0.1748

0.4977 0.7055 1.0000 0.7055 0.4977 0.3511 0.2477

0.3511 0.4977 0.7055 1.0000 0.7055 0.4977 0.3511

0.2477 0.3511 0.4977 0.7055 1.0000 0.7055 0.4977

0.1748 0.2477 0.3511 0.4977 0.7055 1.0000 0.7055

0.1233 0.1748 0.2477 0.3511 0.4977 0.7055 1.0000

Warning! Correlation parameter estimate is not within the boundary.

The existence of a multivariate binary distribution is questionable.

--------------------------------page 3/3--------------------------------

From the stage two output, the estimated stage two α is 0.71, which exceeds the upper limit
(0.31) of the Prentice constraints. It is also important to note that although the results are
not shown here, application of GEE for the AR(1) structure would also result in a violation
of the Prentice constraints.
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The above results suggest something different than the time-averaged model, which is that
there is a difference in the likelihood of high severity between the two treatment conditions.
However, graphical displays (not shown) suggest that the assumption of linearity in the logit
is not appropriate for these data. For an extensive discussion of approaches for assessment of
the linearity in the logit assumption, see Hilbe (2009).

For demonstration purposes, we now present a model that did not violate the linearity in the
logit assumption, and that also did not result in a violation of the Prentice bounds for α. This
model contains indicator variables for the second (1 month), third (2 month), fifth (6 month),
and seventh (12 month) measurements on each subject, an indicator variable for the standard
treatment, and a visit seven (12 month) by treatment indicator variable. (All other treatment
by visit indicator variables did not differ significantly from zero). The corresponding data set,
toenail2.txt, can be also downloaded from www.cceb.upenn.edu/~sratclif/QLSproject.

html. Here we present the code, and the initial and stage two outputs.

First, we read in the data:

data toenail2;

infile "D:\toenail2.txt" delimiter="," ;

input y time2 time3 time5 time7 treatment time7_trt id time;

run;

Next, we fit the QLS model.

%QLS(data = toenail2, y = y, x = time2 time3 time5 time7 treatment time7_trt,

id = id, time = time, link = 2, corr = 1);

Quasi-Least Squares SAS Macro Version 1.0

Regression Analysis using Quasi-Least Squares (QLS)

QLS Model Information

Variance Function : Binomial

Link Function : Logit

Dependent Variable : Y

Correlation Structure : AR(1)

Number of Observation Read : 1907

Number of Clusters : 294

Maximum Cluster Size : 7

Minimum Cluster Size : 1

Correlation Matrix Dimension : 7

Number of Distinct Time Points : 7

TIME 0 1 2 3 6 9 12

Number of Events : 408

www.cceb.upenn.edu/~sratclif/QLSproject.html
www.cceb.upenn.edu/~sratclif/QLSproject.html
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Number of Trials : 1907

Analysis of Initial Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.143183 0.1019955 11.21 0.0000 -1.343091 -0.943276

TIME2 0.5386061 0.1502601 3.58 0.0003 0.2441018 0.8331104

TIME3 0.3537537 0.1548007 2.29 0.0223 0.0503499 0.6571575

TIME5 -1.179593 0.2379959 4.96 0.0000 -1.646056 -0.713129

TIME7 -0.996883 0.3003914 3.32 0.0009 -1.585639 -0.408127

TREATMENT -0.144662 0.1182858 1.22 0.2213 -0.376498 0.0871737

TIME7_TRT -0.751825 0.5181603 1.45 0.1468 -1.767401 0.2637501

%QLS is modeling the probability that Y=1

--------------------------------page 1/3--------------------------------

Correlation converged after 1 iterations ( tolerance = 0 )

Reg. coeffi. converged after 8 iterations ( tolerance = 0.0000839 )

Analysis of Stage 2 QLS Parameter Estimates

Parameter Estimate Stand Err Z Pr>|Z| [95% Con. Interval]

INTERCEPT -1.140052 0.1428558 -7.98 0.0000 -1.420044 -0.86006

TIME2 0.1103149 0.0699347 1.58 0.1147 -0.026755 0.2473844

TIME3 0.1702156 0.0794198 2.14 0.0321 0.0145556 0.3258757

TIME5 -0.48106 0.0954562 -5.04 0.0000 -0.66815 -0.293969

TIME7 -0.236975 0.1379387 -1.72 0.0858 -0.50733 0.0333794

TREATMENT -0.093147 0.2003516 -0.46 0.6420 -0.485829 0.2995349

TIME7_TRT -0.318485 0.1752016 -1.82 0.0691 -0.661874 0.0249039

Prentice Boundary

-.173521 .7220668

Stage 2 Correlation Parameter Estimate

0.7161348

Dispersion Parameter Estimate at Stage 2

1
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Stage 2 Working Correlation Matrix

1.0000 0.7161 0.5128 0.3673 0.2630 0.1884 0.1349

0.7161 1.0000 0.7161 0.5128 0.3673 0.2630 0.1884

0.5128 0.7161 1.0000 0.7161 0.5128 0.3673 0.2630

0.3673 0.5128 0.7161 1.0000 0.7161 0.5128 0.3673

0.2630 0.3673 0.5128 0.7161 1.0000 0.7161 0.5128

0.1884 0.2630 0.3673 0.5128 0.7161 1.0000 0.7161

0.1349 0.1884 0.2630 0.3673 0.5128 0.7161 1.0000

--------------------------------page 3/3--------------------------------

For the above model, the Prentice constraints are not violated. In addition, the results seem
more in agreement with the time-averaged model, which also did not identify a significant
difference between the two treatment conditions with respect to severity of toenail infection.

5. Discussion

%QLS can fit a model to longitudinal data using the method of quasi-least squares, and can
consider data which follows the normal, Bernoulli, or Poisson distribution with the AR(1),
Markov, equicorrelated, and tri-diagonal structures. The syntax and the output of %QLS

are similar to the existing GEE procedures in SAS, i.e., PROC GENMOD with the repeated

statement, that would be familiar to SAS users. %QLS assumes that there are no missing ob-
servations in the dataset. Hence, any observations that are coded as missing should be deleted
prior to the implementation of the macro. As noted earlier, this is equivalent to assuming
that the data is missing completely at random (MCAR), which is a typical assumption in a
GEE analysis.

Further updates of %QLS will be made to allow for implementation of other structures that are
not currently available for GEE, including the familial structure, and Kronecker product-based
structures which account for multiple sources of correlation, e.g., multi-outcome longitudinal
data for which the sources of correlations come from within subjects over time, and between
multiple outcomes. It will also be of interest to develop and compare existing methods for
selection of a working correlation structure and for assessment of goodness of fit of QLS (and
GEE) models.
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