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Abstract

The tolerance package for R provides a set of functions for estimating and plotting
tolerance limits. This package provides a wide-range of functions for estimating discrete
and continuous tolerance intervals as well as for estimating regression tolerance intervals.
An additional tool of the tolerance package is the plotting capability for the univariate and
regression settings as well as for the multivariate normal setting. The tolerance package’s
capabilities are illustrated using simulated data sets. Formulas used for the estimation
procedures are also presented.
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1. Introduction

Tolerance intervals (also referred to as statistical design limits) provide limits where at least
a certain proportion of the population (P ) falls for a given confidence level (1 − α). They
are an important tool often utilized in areas such as engineering, manufacturing, and quality
control. Some applications of tolerance intervals include:

� Controlling the manufacturing process and prediction of parameter variation of circuit
boards for new computers.

� Establishing (design) limits of fuel per inch of plate surface in a reactor core with respect
to the nominal level (see Burrows 1963).

� Establishing an upper limit on the number of items allowed to be missing when con-
structing an audit sampling plan.

The first two applications are examples of two-sided limits, where it is necessary to establish
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a lower and upper limit for the tolerance interval. The last application is an example where
only an upper limit is necessary for the sampling plan since you can have no fewer than 0
missing items.

Tolerance intervals have been developed extensively in the literature for many distributions
and settings. Burrows (1963) provides a general introduction to tolerance intervals and serves
as a good starting point to understand the utility of tolerance intervals. Patel (1986) provides
a review (which was fairly comprehensive at the time of publication) of tolerance intervals
for many distributions as well as a discussion of their relation with confidence intervals for
percentiles and prediction intervals. One caveat with Patel (1986) is that there are some
inconsistencies with the notation used, so it is best to refer back to the primary sources
when studying the formulas. Many of the references cited within Patel (1986) were used
in the development of the tolerance intervals discussed here. Finally, Krishnamoorthy and
Mathew (2009) provide one of the more detailed texts concerning the theory and application
of statistical tolerance regions.

The structure of the data and the assumptions made affect the calculations of the desired
tolerance intervals. For example:

� The structure of the data may be univariate or multivariate.

� The data may be assumed to follow a certain distribution or no distribution may be
assumed at all.

� The data may consist of a response variable (dependent variable) which is assumed to
be modeled as a function of one or more predictor variables (independent variables),
thus requiring a regression model.

In this paper, we discuss a variety of tolerance intervals for such settings. We also present the
tolerance package (Young 2010) within the R statistical environment (R Development Core
Team 2010), which provides estimation and plotting capabilities of the tolerance intervals
discussed. The newest released version of tolerance (version 0.2.2, as of this writing) is avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
tolerance. Help with installing R packages can be found by typing

R> help("install.packages")

Upon successfully downloading the tolerance package, it can then be loaded by typing

R> library("tolerance")

The user may then type help(package = "tolerance") to see a list of available functions.

2. Technical details

Suppose a continuous random variable X has probability density function fX(·;θ) with cu-
mulative distribution function FX(·;θ), where θ is a vector of parameters characterizing the
assumed distribution. Then

CX(L,U ;θ) = FX(U ;θ)− FX(L;θ)

http://CRAN.R-project.org/package=tolerance
http://CRAN.R-project.org/package=tolerance
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is the coverage of the two-sided interval [L,U ], where L and U are statistics calculated from
the data such that L < U .

Like other statistical intervals, one-sided and two-sided tolerance intervals can be constructed.
For the following definitions, Pr[·] denotes the probability set function.

� A [100 × (1 − α)%]/[100 × P%] lower tolerance interval [L,+∞) requires finding the
lower tolerance limit L such that

Pr[1− FX(L;θ) ≥ P ] ≥ 1− α. (1)

If an upper bound on the data is specified, then +∞ is replaced with the known value
and the right-hand side of the interval is closed with a brace.

� A [100 × (1 − α)%]/[100 × P%] upper tolerance interval (−∞, U ] requires finding the
upper tolerance limit U such that

Pr[FX(U ;θ) ≥ P ] ≥ 1− α. (2)

If a lower bound on the data is specified, then −∞ is replaced with the known value
and the left-hand side of the interval is closed with a brace.

� A [100× (1−α)%]/[100×P%] two-sided tolerance interval [L,U ] requires finding L and
U such that

Pr[CX(L,U ;θ) ≥ P ] ≥ 1− α. (3)

Tolerance intervals can also be constructed when X is a discrete random variable, where
fX(·;θ) is now a probability mass function with corresponding cumulative distribution func-
tion FX(·;θ). The coverage of the two-sided interval [L,U ] for discrete X is given by

CX(L,U ;m,θL,θU ) = FX(U ;m,θU )− FX(L− 1;m,θL),

where θL and θU are 100× (1−α)% lower and upper confidence bounds, respectively, for the
parameter θ. Note that the coverage also depends on m, which denotes some future quantity
of interest (e.g., future sample size or future period of time). The formulas of tolerance limits
for discrete distributions also reflect these differences.

� A [100 × (1 − α)%]/[100 × P%] lower tolerance interval [L,+∞) for a future quantity
m, requires finding the largest integer L such that

Pr[1− FX(L− 1;m,θL) ≥ P ] ≥ 1− α. (4)

� A [100× (1− α)%]/[100× P%] upper tolerance interval (−∞, U ] for a future quantity
m, requires finding the smallest integer U such that

Pr[FX(U ;m,θU ) ≥ P ] ≥ 1− α. (5)

� A [100× (1− α)%]/[100× P%] two-sided tolerance interval [L,U ] for a future quantity
m, requires finding the appropriate integers L and U such that

Pr[CX(L,U ;m,θL,θU ) ≥ P ] ≥ 1− α. (6)



4 tolerance: An R Package for Estimating Tolerance Intervals

In most practical applications, 1 − α and P are typically chosen from the set of values
{0.90, 0.95, 0.99} (see Krishnamoorthy and Mathew 2009).

The basic form of tolerance intervals is similar to other types of statistical intervals. Let
x1, . . . , xn denote an independent and identically distributed sample from some distribution.
Suppose that the mean µ and the standard deviation σ of the population are unknown (which
is often the case). Tolerance intervals are usually computed using sample estimates of the
mean and standard deviation (x̄ and s, respectively) and have the form

x̄± ks,

where the factor k accounts for sampling errors in x̄ and s, the confidence level 1−α, and the
population proportion of interest P . However, exact k factors are often not available (with
the one-sided normal setting being one exception). Thus, most of the intervals discussed in
this paper are considered “approximate” [100× (1−α)%]/[100×P%] tolerance intervals. For
the majority of these approximations, it can only be stated that with at least 100× (1−α)%
confidence that at least 100×P% of the population falls within the tolerance limits calculated.

As noted in Guenther (1972) and Hahn and Meeker (1991), one-sided tolerance limits can be
used to obtain “approximate” two-sided tolerance intervals by applying Bonferroni’s inequal-
ity. The Bonferroni approximation will be applied to control the central 100 × P% of the
sampled population while controlling both tails to achieve at least 100× (1−α)% confidence.
Thus, [100×(1−α/2)%]/[100×(P+1)/2%] one-sided lower and upper tolerance limits will be
calculated and used to approximate a [100× (1−α)%]/[100×P%] two-sided tolerance inter-
val. The interval is conservative and will only be applied where two-sided tolerance interval
procedures are currently unavailable in the literature.

The following three sections are devoted to tolerance intervals for discrete distributions, con-
tinuous distributions, and regression settings. Each section consists of subsections devoted to
a particular tolerance interval. Furthermore, each subsection will briefly describe the form of
the tolerance interval, outline the arguments of the corresponding function in the tolerance
package, and provide analysis of a simulated data set.

3. Tolerance intervals for discrete distributions

While the tolerance package consists mainly of tolerance interval functions for continuous
distributions, there are a few discrete distributions that the package handles. There are
tolerance interval functions for the binomial and Poisson distributions as well as a function
for calculating acceptance limits in sampling plans, which is based on the hypergeometric
distribution.

3.1. Binomial tolerance intervals

A company which manufactures light bulbs selects a random sample for inspection and the
number of defective light bulbs is counted. Suppose the company ships a certain number of
units in a package and they wish to claim with confidence level (1− α), that a proportion P
of such packages contain no more than a calculated quantity of defective units. A one-sided
upper binomial tolerance interval can be used to provide such an answer for the company.
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A random variable X is binomially distributed if it has cumulative distribution function

FX(x;n, p) =

x∑
i=0

(
n

i

)
pi(1− p)n−i,

for x = 0, . . . , n and 0 ≤ p ≤ 1. In the framework of binomial tolerance intervals, X is
considered the number of defective (or acceptable) units in a random sample of size n with
proportion p of such units in the population. The tolerance limits are calculated using confi-
dence bounds for p. However, interval estimation for a binomial proportion is actually very
complex and there are numerous methods that can be employed. Brown, Cai, and Das-
Gupta (2001) discuss various estimation methods, some of which are provided as options in
bintol.int, the function for calculating binomial tolerance intervals. Further details on the
following discussion can be found in Hahn and Chandra (1981).

The proportion of defective items p is estimated using x/n. Let 100×(1−α)% lower and upper
confidence bounds for p (pL and pU , respectively) be found by using one of the methods in
Brown et al. (2001). Suppose that tolerance limits on the number of defective units in future
groups of size m is of interest. Then [100× (1− α)%]/[100× P%] lower and upper binomial
tolerance limits and a [100× (1− α)%]/[100× P%] two-sided binomial tolerance interval are
found according to equations (4), (5), and (6), respectively, such that θL = pL and θU = pU .

Returning to the example, a random sample of n = 1000 light bulbs were selected for inspec-
tion, of which x = 10 of them failed (so an estimate of p would be given by p̂ = 10/1000 =
0.01). Suppose they ship packages of m = 50 units and the manufacturer wishes to claim, with
95% confidence, that 95% of such packages contain U or fewer defective units. Evaluation of
a 95%/95% upper binomial tolerance limit is found by applying the bintol.int function:

R> bintol.int(x = 10, n = 1000, m = 50, alpha = 0.05, P = 0.95, side = 1,

+ method = "LS")

alpha P p.hat 1-sided.lower 1-sided.upper

1 0.05 0.95 0.01 0 2

The output for this example gives α, P , p̂, and both one-sided tolerance limits (even though
in this example only the upper limit is requested). So with 95% confidence, 95% of the future
packages of size 50 will contain no more than 2 defective light bulbs.

As in many of the functions we discuss, bintol.int has the argument side, which can be
set to 1 or 2 for calculating one-sided or two-sided tolerance limits, respectively. bintol.int
also includes the argument method, which specifies the method to use for calculating the
confidence bounds pL and pU . The available methods are

� "LS": The large-sample method (the default method), which is appropriate when the
sample size is large (e.g., n ≥ 50) and np̂ and n(1 − p̂) are both ≥ 10. Otherwise, the
coverage may not achieve the nominal level.

� "WS": Wilson’s method, which is appropriate even when the sample size is small (e.g.,
n ≤ 40). The coverage probability fluctuates acceptably near the nominal level provided
p does not approach 0 or 1.
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� "AC": The Agresti-Coull method, which is appropriate when the sample size is large
(e.g., n ≥ 40). This method is comparable to Wilson’s method for large n.

� "JF": Jeffreys’ method, which is a Bayesian approach to the estimation. For this
method, the prior distribution for p is assumed to be a beta distribution with parameters
a1 and a2, both of which must be specified by the user.

� "CP": The Clopper-Pearson method (sometimes referred to as an “exact” procedure due
to its derivation from the binomial distribution), which provides a more conservative
interval and can be much larger than the nominal level as n→∞.

� "AS": The arcsine method, which is appropriate when p is not too close to 0 or 1.
Otherwise, the coverage approaches 0.

� "LO": The logit method, which is appropriate when p is not too close to 0 or 1, but
yields a more conservative interval.

Further details on these methods regarding interval estimation for a binomial proportion,
including motivation and context, are described in Brown et al. (2001).

3.2. Poisson tolerance intervals

Suppose a company wishes to state with confidence level (1 − α), the maximum number of
unscheduled shutdowns that can be expected to occur in a proportion P of their systems
over a period of time. Historical data over the past few months is available to determine the
recent rate of unscheduled shutdowns for their systems. This historical data can be used to
calculate a one-sided upper Poisson tolerance interval, which can provide such an answer for
the company.

A random variable X is Poisson distributed if it has cumulative distribution function

FX(x;n, λ) =

x∑
i=0

e−λλi

i!

for x = 0, 1, . . . and where λ ≥ 0 is a mean (or rate) parameter. In the framework of Poisson
tolerance intervals, X is considered the number of randomly occurring events in n units of
time with a mean occurrence of λ. The Poisson tolerance intervals provide bounds for the
distribution of the number of occurrences in a specified future time period of length m. These
are calculated using confidence bounds for λ, similar to the binomial setting.

The mean occurrence of events λ is estimated using x/n. Let λL and λU be 100× (1− α)%
lower and upper confidence bounds for λ, respectively. Suppose the number of events that
occur in a future time period of length m is of interest. Then [100 × (1 − α)%]/[100 × P%]
lower and upper Poisson tolerance limits and a [100× (1−α)%]/[100×P%] two-sided Poisson
tolerance interval are found according to equations (4), (5), and (6), respectively, such that
θL = λL and θU = λU .

We present two methods for finding λL and λU as discussed in Hahn and Meeker (1991). The
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first method is the tabular method, which for one-sided limits has the form

λL =
χ2

2x;α

2n

λU =
χ2

2x+2;1−α
2n

,

where n is the sample size and χ2
d;1−α is the (1 − α)-th quantile of a χ2 distribution with

d degrees of freedom. The second method is based on large sample theory and has the form

λL = λ̂− z1−α

√
λ̂

n

λU = λ̂+ z1−α

√
λ̂

n
,

which is quite good and usually preferred for x > 20 (see Hahn and Meeker 1991). For
both methods in the two-sided setting, simply replace α by α/2 and P by (P + 1)/2 in the
procedure outlined above. Further details on Poisson tolerance intervals can be found in Hahn
and Chandra (1981).

Returning to the example, suppose the company needs to be 95% confident on the maximum
number of unscheduled shutdowns that can be expected to occur in 90% of their systems
over a period of m = 3 months. In the past n = 9 months, there were a total of x = 45
shutdowns. Evaluation of a 95%/90% upper Poisson tolerance limit is found by applying the
poistol.int function:

R> poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90, side = 1,

+ method = "LS")

alpha P lambda.hat 1-sided.lower 1-sided.upper

1 0.05 0.9 5 7 24

Notice that the poistol.int function also includes the argument method, which determines
how to calculate the confidence bounds λL and λU . The user can specify either "TAB" for the
tabular method or "LS" for the large-sample method.

The output for this example yields α, P , λ̂, and both one-sided tolerance limits (even though
in this example we are only interested in the upper limit). So, the company can state with
95% confidence that approximately 24 shutdowns will occur in 90% of their systems within
the next 3 months.

3.3. Acceptance limits for sampling plans

Suppose an inventory checklist states that a factory should have a certain number of plastic
shipping containers in their possession. An auditor can afford to sample only a select number
of the containers in the warehouse. The auditor’s guidelines state that an acceptance limit
must be established so that with confidence level (1 − α), a proportion P of the containers
must be accounted for or else a census will be performed.
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Once the acceptance limit is determined, then the auditor must also establish the producer’s
risk and the consumer’s risk. The producer’s risk is the probability of rejecting an audit of a
good inventory (i.e., a type I error). The calculation of this probability depends on a specified
acceptable quality level (AQL). If the sampling plan were to be repeated numerous times as
a process, then the AQL is the proportion of missing items considered acceptable from the
process on a whole. The consumer’s risk is the probability of accepting an audit of a bad
inventory (i.e., a type II error). The calculation of this probability depends on a specified
rejectable quality level (RQL), which is the proportion of missing items in a sample the auditor
is willing to tolerate. Note that 0 < AQL < RQL < 1. Further details on acceptance sampling
can be found in Montgomery (2005).

Acceptance limits for sampling plans can roughly be viewed as upper hypergeometric tolerance
limits. Sampling plans are often used for performing inventories at a warehouse or facility,
since it is often not desirable (or even feasible) to do a census on an entire inventory. A
[100 × (1 − α)%]/[100 × P%] acceptance limit specifies with 100 × (1 − α)% confidence that
at least 100 × P% of the entire inventory population can be located. This upper limit is
determined when given a sample size n which needs to be drawn for inventory from a specified
inventory of size N , where N is considered a known population quantity. This limit is found
using the hypergeometric distribution.

A random variable X is hypergeometrically distributed if it has cumulative distribution func-
tion

FX(x;n,D,N) =
x∑
i=0

(
D
i

)(
N−D
n−i

)(
N
n

) .

A [100× (1− α)%]/[100× P%] acceptance limit is given by

FX(x;n,D,N) ≤ α.

The following quantities are used in the above formulas:

� FX(x;n,D,N) = the probability of accepting the inventory;

� D = the number of missing items in the inventory (D = bN ×100(1−P )/P c) such that
bxc is the next lowest integer value;

� P = the proportion of items in the inventory which are accountable;

� x = the upper acceptance limit;

� i = the number of unaccountable items in the sample;

� 1− α = the confidence level used when bounding FX(x;n,D,N).

Returning to the example, suppose an inventory checklist says that a factory should have
N = 960 plastic shipping containers in their possession. An auditor can afford to sample
n = 450 of the containers in the warehouse. The auditor’s guidelines state that with 90%
confidence that 90% of the containers must be accounted for. The guidelines also stipulate
that an AQL of 0.07 and an RQL of 0.10 must be used. The acceptance limit for this situation
is found by implementing the acc.samp function:

R> acc.samp(n = 450, N = 960, alpha = 0.10, P = 0.90, AQL = 0.07, RQL = 0.10)
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acceptance.limit 38.0000

lot.size 960.0000

confidence 0.9000

P 0.9000

AQL 0.0700

RQL 0.1000

sample.size 450.0000

prod.risk 0.0359

cons.risk 0.0802

The interpretation of the output for this example is that the auditor can be 90% confident
that at least 90% of the containers are still accountable if no more than 38 containers from the
sample are actually missing. In fact, the consumer’s risk (which gives the actual confidence
level of this sampling plan) shows that the auditor’s confidence level is 100× (1− 0.0802)% =
91.98%. Further details on the quantities reported in the output can be found by typing
help("acc.samp").

4. Tolerance intervals for continuous distributions

Tolerance intervals for continuous data can be displayed using a control chart, histogram, or
both, while tolerance regions for the multivariate normal setting can be overlayed on a scat-
terplot of the sample data. Plots for such settings can be constructed using the function called
plottol. Details on the various plotting options can be obtained by typing help("plottol").
In the examples that follow, we highlight some of the arguments available with this function.

4.1. Cauchy tolerance intervals

Consider a physical situation involving resonant systems. A resonator (such as a pipe organ,
laser rod, or quartz crystal) is a function of the measure of the linewidth of the resonance
frequency and the driving force for the intensity of the oscillations. The resonance frequencies
of the oscillator of the system can be adequately modeled using a Cauchy distribution. Sup-
pose a physicist takes resonance frequency measurements on the system and wishes to claim
with confidence level (1 − α), that a proportion P of the resonance frequencies are between
two hertz values. Calculation of a two-sided Cauchy tolerance interval can provide such an
answer for the physicist.

A random variable X is Cauchy distributed (also called the Lorentz distribution) if it has
cumulative distribution function

FX(x; θ, σ) =
1

2
+

1

π
arctan

(
x− θ
σ

)
,

where −∞ < x < +∞, −∞ < θ < +∞ is a location parameter (not the mean of the
distribution since the mean of a Cauchy distribution does not exist), and σ > 0 is a scale
parameter. Cauchy tolerance intervals require estimates of both parameters (call them θ̂ and
σ̂, respectively) which will be estimated using the sample data in the code below. Patel (1986)
and Bain and Engelhardt (1991) both discuss Cauchy tolerance intervals and the estimation
procedure in greater detail.
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[100 × (1 − α)%]/[100 × P%] lower and upper Cauchy tolerance limits and a [100 × (1 −
α)%]/[100 × P%] two-sided Cauchy tolerance interval are found according to equations (1),
(2), and (3), respectively, such that θ = (θ̂, σ̂)>. The formulas given in Patel (1986) for
estimating L and U in the one-sided setting are:

L = θ̂ − kα,P σ̂
U = θ̂ + kα,P σ̂,

where

kα,P =
z1−α√
n

√
2 + 2[F−1

X (1− P ; θ = 0, σ = 1)]2 − F−1
X (1− P ; θ = 0, σ = 1),

n is the sample size, and z1−α is the (1 − α)-th quantile of a standard normal distribution.
Approximate tolerance limits for the two-sided setting are found by replacing α by α/2 and
P by (P + 1)/2 in the above formulas.

Returning to the example, suppose the physicist wishes to claim, with 95% confidence, that
90% of the resonance frequencies are between L and U Hz. The data were simulated using a
Cauchy distribution with θ = 1× 105 (i.e., 100 MHz) and σ = 10. Estimation of a 95%/90%
two-sided Cauchy tolerance interval is found by implementing the cautol.int function:

R> set.seed(100)

R> x <- rcauchy(1e3, 1e5, 10)

R> out <- cautol.int(x = x, alpha = 0.05, P = 0.90, side = 2)

R> out

alpha P 2-sided.lower 2-sided.upper

1 0.05 0.9 99929.52 100069.4

The output for this example yields α, P , and the two-sided tolerance limits. So, the physicist
can be 95% confident that at least 90% of the resonance frequencies will be between 99.930
MHz and 100.069 MHz. Figure 1 gives a control chart and histogram of this data with the
tolerance limits shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "two",

+ x.lab = "Cauchy Data", lty = 0)

Notice how the tolerance limits appear to be narrow due to the high probability of getting
extreme observations in either tail when data is Cauchy distributed.

4.2. Exponential tolerance intervals

Consider the lifetime of small electric motors. Suppose these motors can be adequately
modeled according to an exponential distribution. Suppose further that the manufacturer
of the motors wishes to claim with confidence level (1 − α), that a proportion P of the
motors have a service life below a certain number of hours. Calculation of a one-sided upper
exponential tolerance interval can provide such an answer for the manufacturer.
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Figure 1: (a) Control chart and (b) histogram of the n = 1000 Cauchy distributed values. In
both plots, the dashed red lines give the two-sided tolerance limits.

A random variable X is exponentially distributed if it has cumulative distribution function

FX(x;λ) = 1− e−λx,

where x > 0 and λ > 0 is a scale parameter (sometimes called the rate). Exponential tolerance
intervals require an estimate of this parameter (λ̂) which can be obtained using maximum
likelihood estimation. Blischke and Murthy (2000) discusses exponential tolerance intervals
and the following estimation procedure in greater detail.

[100× (1− α)%]/[100× P%] lower and upper exponential tolerance limits and a [100× (1−
α)%]/[100 × P%] two-sided exponential tolerance interval are found according to equations
(1), (2), and (3), respectively, such that θ = λ̂. The formulas for estimating L and U in the
one-sided setting are:

L =
2nλ̂ ln(1− P )

χ2
2n;1−α

U =
2nλ̂ ln(P )

χ2
2n;1−α

,

such that n is the sample size and χ2
d;1−α is the (1− α)-th quantile of a χ2 distribution with

d degrees of freedom. Approximate tolerance limits for the two-sided setting are found by
replacing α by α/2 and P by (P + 1)/2 in the above formulas.

Returning to the example, suppose the manufacturer wishes to claim, with 95% confidence,
that 90% of the motors have a service life below U hours. The data were simulated using an
exponential distribution with λ = 4×10−3 (i.e., they have an average service life of 250 hours).
Evaluation of a 95%/90% upper exponential tolerance interval is found by implementing the
exptol.int function:
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Figure 2: (a) Control chart and (b) histogram of the n = 100 exponentially distributed values.
In each plot, the dashed red line gives the one-sided upper tolerance limit.

R> set.seed(100)

R> x <- rexp(100, 0.004)

R> out <- exptol.int(x = x, alpha = 0.05, P = 0.90, side = 1, type.2 = FALSE)

R> out

alpha P lambda.hat 1-sided.lower 1-sided.upper

1 0.05 0.9 246.869 22.23152 675.5904

Notice that the exptol.int function also includes the argument type.2. This logical argu-
ment is used to indicate whether or not the data has type II censoring, which occurs when
a measurement is taken on an object still in operation (or surviving) past the conclusion of
the study. The tolerance interval formulas change slightly to accommodate type II censored
data, in which case the user would specify type.2 = TRUE. See Patel (1986) for details.

The output for this example yields α, P , λ̂, and both one-sided tolerance limits. So, the
manufacturer can be 95% confident that at least 90% of the electric motors have a lifetime
less than 675.6 hours. Figure 2 gives a control chart and histogram of this data with the
upper tolerance limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "upper",

+ x.lab = "Exponential Data", lty = "dashed")

4.3. (2-Parameter) exponential tolerance intervals

Consider a situation involving the age of individuals who retire from a company. Suppose
the retirees have an average retirement age past a certain threshold, which is the youngest
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age of a retiree assuming that the company does not have a required minimum age for when
an individual may retire. The ages can be adequately modeled according to a 2-parameter
exponential distribution. Suppose further that the company’s human resources department
wishes to state with confidence level (1−α), that a proportion P of the retirees will be below
a certain age. Calculation of a one-sided upper 2-parameter exponential tolerance interval
can provide such an answer for the human resources department.

A random variable X is distributed according to the 2-parameter exponential distribution if
it has cumulative distribution function

FX(x;λ, µ) = 1− e−λ(x−µ),

where x > µ such that µ is a location parameter and λ > 0 is a scale parameter (or rate).
2-parameter exponential tolerance intervals require estimates of both of these parameters (µ̂
and λ̂, respectively) which can be obtained using maximum likelihood estimation. Notice that
this is just a shifted version of the exponential distribution. Dunsmore (1978) and Guenther,
Patil, and Uppuluri (1976) both discuss 2-parameter exponential tolerance intervals and the
estimation procedure in greater detail. Engelhardt and Bain (1978) discusses how to modify
the formulas when dealing with type II censored data.

[100× (1−α)%]/[100×P%] lower and upper 2-parameter exponential tolerance limits and a
[100× (1− α)%]/[100× P%] two-sided 2-parameter exponential tolerance interval are found
according to equations (1), (2), and (3), respectively, such that θ = (λ̂, µ̂)>. The formulas for
estimating L and U in the one-sided setting (see Guenther et al. 1976) are:

L = µ̂+
k1

λ̂

U = µ̂+
k2

λ̂
,

where

k1 ≈ 1−
(
Pn

α

)1/(n−1)

,

k2 ≈ n
(

χ2
2;P

χ2
2n−2;P

)
,

n is the sample size, and χ2
d;1−α is the (1− α)-th quantile of a χ2 distribution with d degrees

of freedom. However, Dunsmore (1978) suggests that an improvement can be made on the
upper bound by penalizing k2 such that

k∗2 ≈ k2 − n(γ/n)1.63+0.39γ ,

where
γ ≈ 1.71 + 1.57 ln(ln(α−1))

Approximate tolerance limits for the two-sided setting are found by replacing α by α/2 and
P by (P + 1)/2 in the above formulas.

Returning to the example, suppose the human resources department wishes to state with 95%
confidence that 90% of the retirees will be below a certain age. Data were simulated using
a 2-parameter exponential distribution with λ = 6 and µ = 55. Evaluation of a 95%/90%
upper 2-parameter exponential tolerance interval is found by implementing the exp2tol.int

function:
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Figure 3: (a) Control chart and (b) histogram of the n = 50 2-parameter exponentially
distributed values. In each plot, the dashed red line gives the one-sided upper tolerance limit.

R> set.seed(100)

R> x <- r2exp(50, rate = 6, shift = 55)

R> out <- exp2tol.int(x = x, alpha = 0.05, P = 0.90, side = 1,

+ method = "DUN", type.2 = FALSE)

R> out

alpha P 1-sided.lower 1-sided.upper

1 0.05 0.9 55.61514 73.05272

Note that the exp2tol.int function contains the argument method, which allows the user
to specify which way to estimate k2. The two options are "GPU" (see Guenther et al. 1976)
and "DUN" (see Dunsmore 1978), where the latter has been shown to yield slightly improved
estimates for n ≥ 8. Also note in the code above that the data was simulated using the function
r2exp, which performs random generation from the 2-parameter exponential distribution.
Other functions are available in the tolerance package for the density, distribution function,
and quantile function (type help("TwoParExponential") for more information).

The output for this example yields α, P , and both one-sided tolerance limits. So, the human
resources department can be 95% confident that at least 90% of the retirees will be below the
age of 73.1 years. Figure 3 gives a control chart and histogram of this data with the upper
tolerance limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "upper",

+ x.lab = "2-Parameter Exponential Data", lty = 0)



Journal of Statistical Software 15

4.4. Gamma tolerance intervals

An environmental engineer measures air quality using an index which considers various mea-
surements from air monitoring data. Anything above an established value on this fictional
scale indicates poor air quality. The daily measurements can be modeled appropriately with
a gamma distribution. The engineer wishes to state with confidence level (1 − α), that a
certain proportion P of the days will be below a particular index measurement. Calculation
of a one-sided upper gamma tolerance interval can provide such an answer for the engineer.

A random variable X is gamma distributed if it has cumulative distribution function

FX(x; θ, β) =

∫ x

t=0

tθ−1e−t/β

βθΓ(θ)
dt,

where x > 0, θ > 0 is a shape parameter, β > 0 is a scale parameter, and Γ(·) is the gamma
function. Gamma tolerance intervals require estimates of both parameters (θ̂ and β̂) which can
be obtained using a nonlinear optimization routine to find the maximum likelihood estimates.
Krishnamoorthy, Mathew, and Mukherjee (2008) estimate gamma tolerance intervals using
a normal approximation, which is the method adopted here. Their simulation results show
that this approximate procedure is very simple and provides accurate estimates.

[100 × (1 − α)%]/[100 × P%] lower and upper gamma tolerance limits and a [100 × (1 −
α)%]/[100 × P%] two-sided gamma tolerance interval are found according to equations (1),
(2), and (3), respectively, such that θ = (θ̂, β̂)>. Gamma tolerance intervals can be estimated
using a normal approximation to the gamma distribution. As discussed in Krishnamoorthy
et al. (2008), if X is a gamma random variable with shape parameter θ and scale parameter
β, then X1/3 is (approximately) a normal random variable with mean µ and variance σ2 such
that

µ =
β1/3Γ(θ + 1/3)

Γ(θ)

σ2 =
β2/3Γ(θ + 2/3)

Γ(θ)
− µ2.

Estimates of the above parameters (µ̂ and σ̂2), are found by plugging in the estimates θ̂ and
β̂. The formulas for estimating L and U in the setting for normally distributed data are:

LN = µ̂− kσ̂
UN = µ̂+ kσ̂,

where the functional form of k, for both the one-sided and two-sided settings, is discussed later
in the normal tolerance intervals section. Once the above are calculated, it is then necessary
to transform back to obtain the estimates of L and U for gamma tolerance intervals:

L = L3
N

U = U3
N .

If X∗ is a log-gamma distributed random variable, then ln(X∗) = X is a gamma distributed
random variable. Thus, tolerance intervals can also be found for log-gamma data. This is
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Figure 4: (a) Control chart and (b) histogram of the n = 50 gamma distributed values. In
each plot, the dashed red line gives the one-sided upper tolerance limit.

accomplished by the procedure outlined above, with the additional step of transforming back
to the log-gamma scale by taking eL and eU for the lower and upper limits, respectively.

Returning to the example, suppose the engineer wishes to state with 99% confidence that 99%
of the days will be below a certain index measurement. Data were simulated using a gamma
distribution with θ = 0.30 and β = 2. Evaluation of a 99%/99% upper gamma tolerance
interval is found by implementing the gamtol.int function:

R> set.seed(100)

R> x <- rgamma(50, shape = 0.30, scale = 2)

R> out <- gamtol.int(x = x, alpha = 0.01, P = 0.99, side = 1,

+ method = "HE", log.gamma = FALSE)

R> out

alpha P 1-sided.lower 1-sided.upper

1 0.01 0.99 0 6.769559

Note that the gamtol.int function has the argument method, which allows the user to specify
which way to estimate k. The two options are "HE" (see Howe 1969) and "WBE" (see Weissberg
and Beatty 1969), both of which are discussed in greater detail in the section on normal
tolerance intervals.

The output for this example yields α, P , and both one-sided tolerance limits. So, the engineer
can be 99% confident that at least 99% of the days will have an air quality index measure
below 6.8. Figure 4 gives a control chart and histogram of this data with the upper tolerance
limit shown. These plots are obtained by typing
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R> plottol(out, x = x, plot.type = "both", side = "upper",

+ x.lab = "Gamma Data")

4.5. Laplace tolerance intervals

Suppose the performance of an assembly line worker can be measured on a (continuous) scale
from 0 to 100, where any performance score above 60 is considered acceptable by the com-
pany’s standards. The performance scores of the workers are adequately modeled by a Laplace
distribution. The quality engineer performing the study wishes to state with confidence level
(1 − α), that a proportion P of the workers will be above a certain score. Calculation of a
one-sided lower Laplace tolerance interval can provide such an answer for the engineer.

A random variable X is Laplacian distributed if it has cumulative distribution function

FX(x; θ, σ) =

∫ x

t=−∞

1

2σ
e−
|t−θ|
σ dt,

where−∞ < x < +∞, −∞ < θ < +∞ is a location parameter, and σ > 0 is a scale parameter.
Laplace tolerance intervals require estimates of both parameters (θ̂ and σ̂) which can be
obtained using maximum likelihood estimation. The Laplace distribution is also referred
to as the double exponential distribution. Bain and Engelhardt (1973) discusses Laplace
tolerance intervals and the following estimation procedure in greater detail.

[100 × (1 − α)%]/[100 × P%] lower and upper Laplace tolerance limits and a [100 × (1 −
α)%]/[100× P%] two-sided tolerance interval are found according to equations (1), (2), and
(3), respectively, such that θ = (θ̂, σ̂)>. The formulas for estimating L and U for Laplacian
distributed data in the one-sided setting are:

L = θ̂ − kσ̂
U = θ̂ + kσ̂,

where

k ≈ −nkP +
z1−α

n− z2
1−α

√
n(1 + k2

P )− z2
1−α,

such that n is the sample size, z1−α is the (1−α)-th quantile of a standard normal distribution,
and kP = ln[2(1 − P )]. Approximate tolerance limits for the two-sided setting are found by
replacing α by α/2 and P by (P + 1)/2 in the above formulas.

Returning to the example, suppose the quality engineer performing the study wishes to state
with 95% confidence that 90% of the workers will be above a certain score and utilizes the
worker’s previous year scores to construct a tolerance interval. Data were simulated using
a Laplace distribution with θ = 70 and σ = 3. Evaluation of a 95%/90% lower Laplace
tolerance interval is found by implementing the laptol.int function:

R> set.seed(100)

R> tmp <- runif(40)

R> x <- rep(70, 40) - sign(tmp - 0.5)*rep(3, 40)*

+ log(2*ifelse(tmp < 0.5, tmp, 1 - tmp))

R> out <- laptol.int(x = x, alpha = 0.05, P = 0.90)

R> out
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Figure 5: (a) Control chart and (b) histogram of the n = 40 Laplacian distributed values. In
each plot, the dashed red line gives the one-sided lower tolerance limit.

alpha P 1-sided.lower 1-sided.upper

1 0.05 0.9 65.10457 75.35777

The output for this example yields α, P , and both one-sided tolerance limits. So, the engineer
can be 95% confident that at least 90% of the assembly line workers will have a performance
score above 65.1. Figure 5 gives a control chart and histogram of this data with the lower
tolerance limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "lower",

+ x.lab = "Laplace Data", lty = "dashed", col = "gray")

4.6. Logistic tolerance intervals

Suppose a researcher is studying the effects of a new drug on the sleeping habits of individuals
with insomnia. The number of hours of sleep are adequately modeled by a logistic distribution.
The researcher wishes to claim with confidence level (1−α), that a proportion P of the subjects
get sleep above a certain number of hours. Calculation of a one-sided lower logistic tolerance
interval can provide such an answer for the researcher.

A random variable X follows a logistic distribution if it has cumulative distribution function

FX(x; θ, σ) =

∫ x

t=−∞

[
1 + e

−π(t−θ)√
3σ2

]−1

dt

where−∞ < x < +∞, −∞ < θ < +∞ is a location parameter, and σ > 0 is a scale parameter.
Logistic tolerance intervals require estimates of both parameters (θ̂ and σ̂) which can be
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obtained using a nonlinear optimization routine to find the maximum likelihood estimates.
Hall (1975) discusses one-sided logistic tolerance intervals and their properties in greater
detail.

[100 × (1 − α)%]/[100 × P%] lower and upper logistic tolerance limits and a [100 × (1 −
α)%]/[100× P%] two-sided tolerance interval are found according to equations (1), (2), and
(3), respectively, such that θ = (θ̂, σ̂)>. The formulas for estimating L and U for logistically
distributed data are:

L = θ̂ − k1σ̂

U = θ̂ + k2σ̂,

which are based on a normal approximation method (see Balakrishnan 1991). The estimates
for L and U require additional calculations which require further optimization. In particular,
both estimates rely on the variances of θ̂ and σ̂ (σ̂2

1 and σ̂2
2, respectively) and their covariance

(σ̂1,2). These can be estimated using the Hessian matrix of the optimization algorithm to find

θ̂ and σ̂. The formulas for the estimates of k1 and k2 are

k1 ≈
t1 +

√
t21 − uv
v

k2 ≈
t2 +

√
t22 − uv
v

,

such that

t1 = F−1
X (P ; θ = 0, σ = 1)− σ̂1,2z

2
1−α

t2 = F−1
X (P ; θ = 0, σ = 1) + σ̂1,2z

2
1−α

u = [F−1
X (P ; θ = 0, σ = 1)]2 − σ̂2

1z
2
1−α

v = 1− σ̂2
2z

2
1−α.

Approximate tolerance limits for the two-sided setting are found by replacing α by α/2 and
P by (P + 1)/2 in the above formulas.

It should be noted that Balakrishnan (1991) pointed out that the equation for k2 in Hall
(1975) was reported incorrectly with a positive sign under the radical. Further details on
this method, as well as a discussion on two-sided logistic tolerance intervals not using the
Bonferroni approximation, can be found in Balakrishnan (1991).

If X∗ is a log-logistic random variable, then ln(X∗) = X is a logistic random variable. Thus,
tolerance intervals can also be found for log-logistic data. This is accomplished by the proce-
dure outlined above, with the addition of transforming back to the log-logistic scale by taking
eL and eU for the lower and upper limits, respectively.

Returning to the example, suppose the researcher wishes to claim with 90% confidence that
95% of the subjects get sleep above a certain number of hours. Data were simulated using a
logistic distribution with θ = 5 and σ = 1. Evaluation of a 90%/95% lower logistic tolerance
interval is found by implementing the logistol.int function:

R> set.seed(100)

R> x <- rlogis(20, 5, 1)

R> out <- logistol.int(x = x, alpha = 0.10, P = 0.95, log.log = FALSE)

R> out
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Figure 6: (a) Control chart and (b) histogram of the n = 20 logistically distributed values.
In each plot, the dashed red line gives the one-sided lower tolerance limit.

alpha P 1-sided.lower 1-sided.upper

1 0.1 0.95 2.475273 7.143847

The output for this example yields α, P , and both one-sided tolerance limits. So, the re-
searcher can be 90% confident that at least 95% of the subjects will get at least 4.1 hours
of sleep per night. Figure 6 gives a control chart and histogram of this data with the lower
tolerance limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "lower",

+ x.lab = "Logistic Data", lty = "dashed", col = "gray")

4.7. Nonparametric tolerance intervals

Consider the logistic tolerance interval example from earlier. The researcher still wishes to
claim with confidence level (1 − α), that a proportion P of the subjects get sleep above
a certain number of hours; however, now no distributional assumptions are made about the
data. Calculation of a one-sided lower nonparametric tolerance interval can provide an answer
for the researcher.

Occasionally, a researcher may not wish to make any distributional assumptions regarding
their data. All that is assumed about the random sample X1 = x1, . . . , Xn = xn is that the
underlying distribution function FX is a continuous, non-decreasing, probability distribution.
The basic form of [100×(1−α)%]/[100×P%] upper and lower nonparametric tolerance limits



Journal of Statistical Software 21

is

L = x(r)

U = x(s).

Here, x(j) corresponds to the j-th value from the ordered sequence of the original x1, . . . , xn
values. Computing nonparametric tolerance intervals involves finding the appropriate r and
s values, which is typically done using the beta distribution or the binomial distribution.

There are three methods the nptol.int function offers for computing r and s:

1. "HM": The Hahn-Meeker method (see Hahn and Meeker 1991), which uses an estimate
based on the binomial distribution; however, two intervals may be reported if an odd
number of observations must be trimmed from both sides.

2. "WILKS": The Wilks method (see Wilks 1941), which uses an estimate based on the beta
distribution to omit a certain number of observations from either side. For the two-sided
intervals, the tolerance intervals are symmetric about the center of the observed data.

3. "WALD": The Wald method (see Wald 1943), which is the same as the Wilks method
for the one-sided setting. For the two-sided setting, symmetry about the center of the
observed data is not assumed and this method finds all possible tolerance intervals, each
having at least the specified confidence level.

Continuing with the earlier example and the data generated earlier, the researcher still wishes
to claim with 90% confidence that 95% of the subjects get sleep above a certain number of
hours. Evaluation of a 90%/95% lower nonparametric tolerance interval is found by imple-
menting the nptol.int function:

R> set.seed(100)

R> x <- rlogis(20, 5, 1)

R> out <- nptol.int(x = x, alpha = 0.10, P = 0.95, side = 1,

+ method = "WILKS", upper = NULL, lower = NULL)

R> out

alpha P 1-sided.lower 1-sided.upper

1 0.1 0.95 2.18245 7.013099

Notice that the nptol.int function also has the arguments upper and lower, which can
(optionally) be used to specify known upper and lower limits for the data, respectively. Oth-
erwise, these are taken to be the maximum and minimum of the data set.

The output for this example yields α, P , and both one-sided tolerance limits. So, the re-
searcher can be 90% confident that at least 95% of the subjects will get at least 2.2 hours of
sleep per night, which is a more conservative estimate than that obtained when assuming the
data came from a logistic distribution. Figure 7 gives a control chart and histogram of this
data with the lower tolerance limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "lower",

+ x.lab = "Data", lty = "dashed", col = "gray")
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Figure 7: (a) Control chart and (b) histogram of the n = 20 logistically distributed values.
In each plot, the dashed red line gives the one-sided lower nonparametric tolerance limit.

Notice in the control chart how the red line for the tolerance limit passes through the actual
data point.

4.8. (Univariate) normal tolerance intervals

Suppose a company manufactures metal rings which are to be 5 inches thick. A quality
engineer wishes to assess how much the measurements of each ring differ from the nominal
thickness. The difference in thickness values appear to be normally distributed. The company
wishes to state with confidence level (1−α), that a proportion P of the metal rings are within a
certain range of thicknesses. Calculation of a two-sided normal tolerance interval can provide
such an answer for the company.

A random variable X follows a normal distribution if it has cumulative distribution function

FX(x;µ, σ) =

∫ x

t=−∞
(2πσ2)−1/2e−

(t−µ)2

2σ2 dt,

where −∞ < x < +∞, −∞ < µ < +∞ is the mean, and σ > 0 is the standard deviation.
Normal tolerance intervals require estimates of both parameters (µ̂ and σ̂) which can be
obtained by using maximum likelihood estimation. There is a great deal of literature on
normal tolerance intervals, but some of the more often cited references include Howe (1969)
and Weissberg and Beatty (1969).

[100 × (1 − α)%]/[100 × P%] lower and upper normal tolerance limits and a [100 × (1 −
α)%]/[100 × P%] two-sided normal tolerance interval are found according to equations (1),
(2), and (3), respectively, such that θ = (µ̂, σ̂)>. The formulas for estimating L and U for
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normally distributed data are:

L = µ̂− kσ̂
U = µ̂+ kσ̂.

The estimate for k requires additional calculations regarding which type of normal tolerance
interval will be calculated. In the one-sided setting, there is an exact solution to k. Un-
fortunately, this is not the case for the two-sided setting. However, there are two methods
commonly employed for estimating k in the two-sided setting: the Weissberg-Beatty method
(Weissberg and Beatty 1969) and the Howe method (Howe 1969). The Howe method is an
improved approximation over the Weissberg-Beatty method, but both methods are available
options in this function for comparative purposes.

For the one-sided tolerance intervals,

k =
1√
n
t∗n−1;1−α(

√
nzP ),

such that n is the sample size, t∗d;1−α(δ) is the (1−α)-th quantile of a non-central t distribution
with d degrees of freedom and non-centrality parameter δ, and zP is the P -th percentile of
the standard normal distribution.

For the two-sided tolerance interval, the Howe method finds

k = uvw,

where

u = z 1+P
2

√
1 + n−1

v =

√
n− 1

χ2
n−1;α

w =

√
1 +

n− 3− χ2
n−1;α

2(n+ 1)2
,

such that n is the sample size and χ2
d;α is the α-th quantile of a χ2 distribution with d degrees

of freedom. The Weissberg-Beatty method finds

k = rv,

where
Φ(r +

√
n−1)− Φ(r −

√
n−1) = P

is solved for r using numerical methods (e.g., Newton’s method). In the above, Φ(·) denotes
the standard normal cumulative distribution function.

Tolerance intervals can also be found for log-normal data. If X∗ is a log-normal random
variable, then ln(X∗) = X is a normal random variable. The procedure outlined above can
be performed, except at the end a transformation back to the log-normal scale is performed
by taking eL and eU for the lower and upper limits, respectively.

Returning to the example, suppose the researcher has a batch of n = 100 rings and he
wishes to state with 95% confidence that 95% of the ring measurements fall within a certain
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Figure 8: (a) Control chart and (b) histogram of the n = 100 normally distributed values. In
each plot, the dashed red lines give the two-sided tolerance limits.

interval. Data were simulated using a normal distribution with mean µ = 0 and standard
deviation σ = 0.2. Evaluation of a 95%/95% two-sided normal tolerance interval is found by
implementing the normtol.int function:

R> set.seed(100)

R> x <- rnorm(100, 0, 0.2)

R> out <- normtol.int(x = x, alpha = 0.05, P = 0.95, side = 2,

+ method = "HE", log.norm = FALSE)

R> out

alpha P x.bar 2-sided.lower 2-sided.upper

1 0.05 0.95 0.0005825125 -0.4554493 0.4566144

Note that the normtol.int function contains the argument method for specifying whether to
use the Howe method ("HE") or the Weissberg-Beatty method ("WBE").

The output for this example yields α, P , the sample mean (which is an estimate of µ) and
the two-sided tolerance limits. So, the engineer can be 95% confident that at least 95% of the
rings will have measurements between about 4.5446 inches and 5.4566 inches. Figure 8 gives
a control chart and histogram of this data with the two-sided tolerance limits shown. These
plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "two",

+ x.lab = "Normal Data")
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4.9. (Multivariate) normal tolerance regions

Suppose the company which manufactures the metal rings from the univariate normal toler-
ance interval example also specifies that the diameter must be 15 inches. A quality engineer
wishes to assess how much the thickness and diameter measurements of each ring differ from
the specified values. These differences are assumed to follow a bivariate normal distribution.
Calculation of a multivariate normal tolerance region can provide such an answer for the
company.

A random vector X = (X1, . . . , Xp)
> follows a multivariate normal distribution if it has the

density function

fX(x;µ,Σ) =
1

(2π)p/2|Σ|1/2
e−(1/2)‖Σ−1/2(x−µ)‖2 ,

where x ∈ Rp, µ ∈ Rp, Σ is a p×p symmetric, positive-definite matrix, and ‖A‖2 = A>A for
any matrix A. Unlike the univariate setting, less literature on multivariate normal tolerance
regions is available. The method used here was developed in Krishnamoorthy and Mondal
(2006).

Normal tolerance regions require estimates of both parameters µ and Σ. The usual estimates
are given by

x̄ =
1

n

n∑
i=1

xi

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>,

respectively. A [100×(1−α)%]/[100×P%] normal tolerance region gives, with 100×(1−α)%
confidence, a region where at least 100×P% of the population will be enclosed. The tolerance
region is given by

{x : ‖S−1/2(xi − x̄)‖2 ≤ c},
where c is the tolerance factor to be determined such that

Pr[PrX{‖S−1/2(xi − x̄)‖2 ≤ c;x, S} ≥ P ] = 1− α.

The method for computing c requires a more detailed discussion which can be found in
Krishnamoorthy and Mondal (2006). A basic sketch of the Monte Carlo algorithm is as
follows:

1. Generate independent χ2 random variables and Wishart random matrices.

2. Compute the eigenvalues of the randomly generated Wishart matrices.

3. Iterate the above B times to generate the sample values T1, . . . , TB, where Ti is a
function of the randomly generated quantities in steps 1 and 2. Then the 100× (1−α)-
th percentile of the Ti’s is an approximate tolerance factor c.

Returning to the example, suppose the researcher uses the same batch of n = 100 metal
rings. He wishes to state with 95% confidence that 95% of the ring measurements fall within
a certain region. Data were simulated using a bivariate normal distribution with

µ =

(
0
0

)
and Σ =

(
0.2 0
0 0.5

)
.
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Computing the tolerance factor for a 95%/95% multivariate normal tolerance region is found
by implementing the mvtol.region function:

R> set.seed(100)

R> x1 <- rnorm(100, 0, 0.2)

R> x2 <- rnorm(100, 0, 0.5)

R> x <- cbind(x1, x2)

R> out <- mvtol.region(x = x, alpha = 0.05, P = 0.95, B = 10000)

R> out

0.05

0.95 7.456825

Notice that the structure of the multivariate data assumes that each row of the matrix is an
observation. The mvtol.region takes the argument B, which is used to specify the size of the
Monte Carlo sample. Also, the arguments alpha and P can actually take a vector of values.
If specifying a vector of values, then the output will be a matrix of tolerance factors with
number of rows equal to the length of P and number of columns equal to the length of alpha.

The output for this example yields the tolerance factor for the given combination of α and P .
So, the engineer can be 95% confident that at least 95% of the rings will have measurements
within the region shown in Figure 9(a). The scatterplot for this bivariate normal tolerance
region is obtained by typing

R> plottol(out, x)

For an example with trivariate data (i.e., p = 3), suppose a researcher wishes to obtain the
95%/95% tolerance factor for some population when a sample of size n = 150 is collected.
Data were simulated using a trivariate normal distribution with

µ =

 −7
13
20

 and Σ =

 8.7 −3.2 1.3
−3.2 9.6 −3.1
1.3 −3.1 6.9

 .

Generation of this data and computation of the tolerance factor for a 95%/95% multivariate
normal tolerance region is found by typing the following code:

R> set.seed(100)

R> x1 <- rnorm(150, 0, 1)

R> x2 <- rnorm(150, 0, 1)

R> x3 <- rnorm(150, 0, 1)

R> Sig <- matrix(c(8.7, -3.2, 1.3, -3.2, 9.6, -3.1, 1.3, -3.1, 6.9),

+ 3, 3)

R> tmp <- eigen(Sig)

R> Sig.5 <- cbind(tmp$vectors) %*% diag(sqrt(tmp$values)) %*%

+ solve(cbind(tmp$vectors))

R> x <- t(Sig.5 %*% rbind(x1, x2, x3) + c(-7, 13, 20))

R> out1 <- mvtol.region(x = x, alpha = 0.05, P = 0.95, B = 10000)

R> out1



Journal of Statistical Software 27

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

95% / 95% Tolerance Region

X

Y

(a) (b)

Figure 9: (a) Scatterplot of the bivariate normal data with a 95%/95% tolerance region.
(b) 3D scatterplot of the trivariate normal data with a 95%/95% tolerance region.

0.05

0.95 9.130484

Figure 9(b) displays a 95%/95% trivariate normal tolerance region for this simulated data
(which has an approximate tolerance factor c = 9.1305 from the above output). The 3D
scatterplot for this trivariate normal tolerance region is obtained by typing

R> plottol(out1, x)

The scatterplot in Figure 9(b) is generated using the plot3d function in the rgl package
(Adler and Murdoch 2010). The advantage of using this package is that it is a 3D real-time
rendering program. So one can use their mouse cursor on scatterplots like Figure 9(b) and
rotate it in real-time.

4.10. Uniform tolerance intervals

Suppose the time (in hours) between successive shutdowns of an unreliable machine is uni-
formly distributed. The company which owns this machine wants to state with confidence
level (1− α), an upper limit on the amount of time when a proportion P of all unscheduled
shutdowns will occur. Calculation of a one-sided upper uniform tolerance interval can provide
such an answer for the company.

A random variable X is uniformly distributed if it has cumulative distribution function

FX(x; θ1, θ2) =
x− θ1

θ2 − θ1
,
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Figure 10: (a) Control chart and (b) histogram of the n = 50 uniformly distributed values.
In each plot, the dashed red line gives the one-sided upper tolerance limit.

where θ1 < x < θ2. The maximum likelihood estimates of θ1 and θ2 are x(1) and x(n) (i.e.,
the minimum and maximum values from a sample of size n), respectively.

[100 × (1 − α)%]/[100 × P%] lower and upper uniform tolerance limits and a [100 × (1 −
α)%]/[100 × P%] two-sided uniform tolerance interval are found according to equations (1),
(2), and (3), respectively, such that θ = (θ̂1, θ̂2)>. The formulas for estimating uniform
tolerance intervals (see Faulkenberry and Weeks 1968) are:

L =
(x(n) − x(1))(1− P )

(1− α)1/n
+ x(1)

U =
(x(n) − x(1))P

α1/n
+ x(1).

Approximate tolerance limits for the two-sided setting are found by replacing α by α/2 and
P by (P + 1)/2 in the above formulas.

Returning to the example, the company needs to be 95% confident of the upper time limit
when 95% of all unscheduled shutdowns will occur. The data were generated using a uniform
distribution with θ1 = 0 and θ2 = 48. Evaluation of a 95%/95% upper uniform tolerance
interval is found by implementing the uniftol.int function:

R> set.seed(100)

R> x <- runif(50, 0, 48)

R> out <- uniftol.int(x = x, alpha = 0.05, P = 0.95, lower = 0, side = 1)

R> out

alpha P 1-sided.lower 1-sided.upper

1 0.05 0.95 2.377392 47.91036
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The output for this example yields α, P , and both one-sided tolerance limits (even though
in this example we are only interested in the upper limit). So the company can state with
95% confidence that 95% of the shutdowns of this machine will occur before 47.9 hours since
the previous shutdown. Notice that lower = 0 since we know that the distribution of these
times is bounded below by 0.

Finally, Figure 10 gives a control chart and histogram of this data with the upper tolerance
limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "upper",

+ x.lab = "Uniform Data")

4.11. Weibull and extreme-value tolerance intervals

Suppose an engineer is testing the endurance (in millions of revolutions) of ball bearings,
which are adequately modeled using a Weibull distribution. The engineer wishes to state
with confidence level (1− α), that a proportion P of all bearings will have at least a certain
number of revolutions. Calculation of a one-sided lower Weibull tolerance interval can provide
such an answer for the engineer.

A random variable X has a Weibull distribution if it has cumulative distribution function

FX(x; θ, β) = 1− e−(x/θ)β ,

where x > 0, with shape parameter β > 0 and scale parameter θ > 0. Let a random variable
Y be such that Y = ln(X). Then Y has an extreme-value distribution (also called the Gumbel
distribution for the minimum) if it has cumulative distribution function

FY (y; ξ, δ) = 1− exp

{
−e

y−ξ
δ

}
,

where −∞ < y < +∞, ξ = ln(θ) (so −∞ < ξ < +∞), and δ = β−1 (so δ > 0). The maximum
likelihood estimates of the parameters (δ̂ and ξ̂) can be found by using a Newton-Raphson
algorithm initialized with the method of moments estimates. The maximum likelihood esti-
mates of the parameters (β̂ and θ̂) can be found by taking a log transformation on the data,
finding the maximum likelihood estimates for δ and ξ, and then transforming those estimates
back to the Weibull scale.

[100× (1−α)%]/[100×P%] lower and upper extreme-value tolerance limits and a [100× (1−
α)%]/[100×P%] two-sided extreme-value tolerance interval are found according to equations
(1), (2), and (3), respectively, such that θ = (ξ̂, δ̂)>. Then, letting λw = ln(− ln(w)), n
be the sample size, and td;1−α∗(γ) be the (1 − α)-th quantile of a non-central t distribution
with d degrees of freedom and non-centrality parameter γ, the formulas for estimating the
one-sided extreme-value tolerance limits (based on those in Bain and Engelhardt 1981) are:

L = ξ̂ −
δ̂t∗n−1;α(−

√
nλP )

√
n− 1

U = ξ̂ −
δ̂t∗n−1;1−α(−

√
nλ1−P )

√
n− 1

.
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Furthermore, the formulas for estimating the one-sided Weibull tolerance limits are:

LW = eL

UW = eU .

Finally, a random variable Z follows a Gumbel distribution for the maximum if it has cumu-
lative distribution function

FZ(z; ξ, δ) = 1− exp

{
−e−( z−ξ

δ
)

}
,

where −∞ < z < +∞, −∞ < ξ < +∞, and δ > 0. The maximum likelihood estimates of
the parameters (δ̂ and ξ̂) can also be found by using a Newton-Raphson algorithm. Then,
the formulas for estimating the one-sided tolerance limits for the Gumbel distribution for the
maximum are:

L = ξ̂ +
δ̂t∗n−1;α(−

√
nλ1−P )

√
n− 1

U = ξ̂ +
δ̂t∗n−1;1−α(−

√
nλP )

√
n− 1

.

Approximate tolerance intervals for the two-sided settings of all three distributions discussed
above are found by replacing α by α/2 and P by (P + 1)/2 in the above formulas.

Returning to the example, the engineer wishes to be 90% confident that 90% of all bearings
will have at least a certain number of revolutions. The data were generated using a Weibull
distribution with β = 3 and θ = 75. Evaluation of a 90%/90% lower Weibull tolerance interval
is found by implementing the exttol.int function:

R> set.seed(100)

R> x <- rweibull(150, 3, 75)

R> out <- exttol.int(x = x, alpha = 0.10, P = 0.90,

+ dist = "Weibull", NR.delta = 1e-8)

R> out

alpha P shape.1 shape.2 1-sided.lower 1-sided.upper

1 0.1 0.9 3.084836 74.48706 33.41646 101.8583

Notice that the exttol.int function has the argument dist for specifying whether the data
is assumed to come from a Weibull distribution (i.e., dist = "Weibull") or from an extreme-
value distribution (i.e., dist = "Gumbel"). If the data follows one of the Gumbel distribu-
tions, then the argument ext is used for specifying whether the data is modeling the distri-
bution of maximum values (i.e., ext = "max") or minimum values (i.e., ext = "min"). Also,
the option NR.delta specifies the stopping criterion used for the Newton-Raphson algorithm
for the maximum likelihood estimates.

The output for this example yields α, P , estimates of the two distributional parameters using
Newton-Raphson (i.e., shape and scale parameters for the Weibull distribution or location
and scale parameters for the extreme-value distribution), and both one-sided tolerance limits
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Figure 11: (a) Control chart and (b) histogram of the n = 150 Weibull distributed values. In
each plot, the dashed red line gives the one-sided lower tolerance limit.

(even though in this example we are only interested in the lower limit). So, the engineer can
state with 90% confidence that 90% of the ball bearings should have at least 33.42 million
revolutions. Figure 11 gives a control chart and histogram of this data with the lower tolerance
limit shown. These plots are obtained by typing

R> plottol(out, x = x, plot.type = "both", side = "lower",

+ x.lab = "Weibull Data", lty = "dashed", col = "gray")

5. Regression tolerance intervals

As with tolerance regions for multivariate normal data, the calculated regression tolerance
intervals can be overlayed on a scatterplot of the sample data using the plottol function.
All three regression settings we discuss can be plotted in a similar manner, provided that the
regression model is a function of only one predictor.

5.1. Linear regression tolerance intervals

Suppose a quality engineer wishes to model the quality scores of small businesses as a function
of the amount spent on program funding (in thousands of dollars). The engineer wishes to
claim with confidence level (1 − α), that a proportion P of all such businesses that spend a
given amount are within certain limits on their quality scores. Calculation of two-sided linear
regression tolerance intervals can provide such a quantification for the engineer.

A multiple linear regression model is used to model the linear relationship between a response
variable Y with a given set of predictor variables X1, . . . , Xp−1. The multiple regression model
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is defined as
Y = β0 + β1X1 + . . .+ βp−1Xp−1 + ε,

where β0, β1, . . . , βp−1 are the p regression parameters and ε is a normally distributed error
term with mean 0 and variance σ2. For a data set of size n, the estimated regression model
(estimated using ordinary least squares) is given by

yi = β̂0 + β̂1xi,1 + . . .+ β̂p−1xi,p−1 + ei

= ŷi + ei,

where the ei’s are the residuals and the ŷi’s are the fitted values for this regression equation.
Tolerance limits can then be constructed using these fitted values.

[100 × (1 − α)%]/[100 × P%] one-sided regression tolerance limits for each observation i are
given by

L = ŷi − σ̂k1,i

U = ŷi + σ̂k1,i,

respectively. σ̂ is estimated by the root mean square error and

k1,i =
t∗n−p;1−α(

√
n∗i z
∗
P )√

n∗i
,

where t∗d;1−α(γ) is the (1 − α)-th quantile of a non-central t distribution with d degrees
of freedom and non-centrality parameter γ, z∗P is the P -th quantile of a standard normal
distribution, and

n∗i =
σ̂2

s.e.(ŷi)2

such that s.e.(ŷi) is the standard error of ŷi. The value n∗i is called the “effective number
of observations” by Wallis (1946), which means when n∗i is divided into the variance of an
observation, then the result is the variance of the statistic.

[100 × (1 − α)%]/[100 × P%] two-sided regression tolerance limits for each observation i are
given by

L = ŷi − σ̂k2,i

U = ŷi + σ̂k2,i,

where k2,i is estimated according to the formula in Krishnamoorthy and Mathew (2009). Let
f = n− p. Then

k2,i =

√√√√fχ2
1;P (1/n∗i )

χ2
f ;α

where χ2
d;α(δ) is the α-th quantile of a non-central χ2 distribution with d degrees of freedom

and non-centrality parameter δ.

Returning to the example, suppose the quality engineer has data from n = 100 small busi-
nesses. The engineer wishes to be 95% confident that 95% of all such businesses that spend
a given amount are within certain limits on their quality scores. The data were generated
assuming (β0, β1) = (20, 5) and that the random error follows a normal distribution with
mean 0 and standard deviation σ = 3. Evaluation of 95%/95% two-sided regression tolerance
limits is found by implementing the regtol.int function:
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Figure 12: Scatterplot of the simulated linear regression data with the ordinary least squares
line in black and 95%/95% linear regression tolerance limits in red.

R> set.seed(100)

R> x <- runif(100, 0, 10)

R> y <- 20 + 5 * x + rnorm(100, 0, 3)

R> out <- regtol.int(reg = lm(y ~ x), new.x = NULL, alpha = 0.05, P = 0.95,

+ side = 2)

R> out[1:5, ]

alpha P y y.hat 2-sided.lower 2-sided.upper

[1,] 0.05 0.95 22.76428 21.33912 14.43466 28.24357

[2,] 0.05 0.95 25.93468 21.72047 14.81959 28.62136

[3,] 0.05 0.95 28.51155 22.64589 15.75344 29.53834

[4,] 0.05 0.95 25.46921 24.39543 17.51807 31.27280

[5,] 0.05 0.95 23.84511 25.98808 19.12346 32.85270

The regtol.int function takes an object of class lm and uses the appropriate estimates from
that fitted object to estimate the linear regression tolerance limits. This function also has
the option new.x which can be used to specify new levels of the predictor for which the user
wishes to construct tolerance limits.

The output for this example yields α, P , yi, ŷi, and the two-sided tolerance limits. The output
will have one row for each observation as well as any new levels of predictor(s) which the user
has specified through the new.x argument. The output for this example has been truncated
to show only the first five observations. Figure 12 gives a scatterplot of this data along with
the least squares regression line and the tolerance limits. This plot is obtained by typing

R> plottol(out, x = cbind(1, x), y = y, side = "two", x.lab = "X",

+ y.lab = "Y")
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5.2. Nonlinear regression tolerance intervals

Suppose an engineer is dealing with a physical process which is known to have a specified
nonlinear relationship. The engineer wishes to claim with confidence level (1 − α), that a
proportion P of all responses for a given level of the predictor are within certain limits. Cal-
culation of two-sided nonlinear regression tolerance intervals can provide such a quantification
for the engineer.

A nonlinear regression model is used to model the nonlinear relationship between a response
variable Y with a given set of predictor variables X1, . . . , Xp. The nonlinear regression model
is defined as

Y = f(β, X1, . . . , Xp) + ε,

where β is a vector of regression parameters and ε is an error term following a specified
distribution which is not necessarily normal. For a data set of size n, the estimated nonlinear
regression model is given by

yi = f(β̂, xi,1, . . . , xi,p) + ei

= ŷi + ei,

where the ei’s are the residuals and the ŷi’s are the fitted values for this regression equation.
Tolerance limits are again constructed based on these fitted values. The estimation done in
the nlregtol.int function is through the nonlinear least squares routine nls.

[100× (1−α)%]/[100×P%] nonlinear regression tolerance limits are constructed in a similar
manner as for the linear regression case. The only difference is how the effective sample
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Figure 13: Scatterplot of the simulated nonlinear regression data with (a) a nonlinear
least squares curve in black and 95%/95% nonlinear regression tolerance limits in red and
(b) LOESS curve in black and 95%/95% nonparametric regression tolerance limits in red.
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size n∗i is calculated. For the nonlinear setting, n∗i is a function of the partial derivatives of
f(β, xi,1, . . . , xi,p) with respect to each of the regression parameters (i.e., the gradient of f(·)).
The remaining formulas are the same. Further details can be found in Wallis (1946).

Returning to the example, suppose the physical process has the nonlinear relationship

Y = β1 + (0.49− β2)e−β2(X−8),

where Y is the response and X is some predictor. The engineer wishes to be 95% confident
that 95% of all observed responses are within certain limits for a given level of the predictor.
The data were generated assuming (β1, β2) = (0.39, 0.11) and that the random error follows
a normal distribution with mean 0 and standard deviation 0.01. Evaluation of 95%/95%
two-sided nonlinear regression tolerance limits is found by implementing the nlregtol.int

function:

R> set.seed(100)

R> x <- runif(50, 5, 45)

R> f1 <- function(x, b1, b2) b1 + (0.49 - b1) * exp(-b2 * (x - 8)) +

+ rnorm(50, 0, 0.01)

R> y <- f1(x, 0.39, 0.11)

R> formula <- as.formula(y ~ b1 + (0.49 - b1) * exp(-b2 * (x - 8)))

R> out <- nlregtol.int(formula = formula, xy.data = data.frame(cbind(y, x)),

+ x.new = NULL, side = 2, alpha = 0.05, P = 0.95)

R> out[1:5, ]

alpha P y.hat y 2-sided.lower 2-sided.upper

[1,] 0.05 0.95 0.3961376 0.3773059 0.3695132 0.4227620

[2,] 0.05 0.95 0.3942112 0.3783508 0.3673801 0.4210423

[3,] 0.05 0.95 0.3946146 0.3812180 0.3678379 0.4213912

[4,] 0.05 0.95 0.3959679 0.3838453 0.3693298 0.4226059

[5,] 0.05 0.95 0.3976938 0.3881386 0.3711657 0.4242218

The nlregtol.int function requires the user to specify formula, which is a nonlinear model
formula consistent with that used in nls (type help("nls") for more details). Also, the data
must now be entered as a data.frame for the argument xy.data. Note that the response
must appear in the first column of the specified data.frame.

The output for this example yields α, P , ŷi, yi, and the two-sided tolerance limits. The
output will have one row for each observation as well as any new levels of predictor(s) which
the user has specified. The output for this example has again been truncated after the first
five observations. Figure 13(a) gives a scatterplot of this data along with the nonlinear least
squares regression fit and the tolerance limits. This plot is obtained by typing

R> plottol(out, x = x, y = y, side = "two", x.lab = "X", y.lab = "Y")

5.3. Nonparametric regression tolerance intervals

Consider the nonlinear regression tolerance bounds example from earlier. Suppose now that
the engineer does not know the functional form of the relationship and decides to fit a non-
parametric curve to the data. The engineer still wishes to claim with confidence level (1−α),
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that a proportion P of all responses for a given level of the predictor are within certain lim-
its. Calculation of two-sided nonparametric regression tolerance bounds can provide such a
quantification for the engineer.

A nonparametric regression model is used to model the nonlinear relationship between a
response variable Y with a given set of predictor variables X1, . . . , Xp, but with no parameters.
The nonparametric regression model is defined as

Y = f(X1, . . . , Xp) + ε,

which is free of any parameters and ε is a random error term which is only assumed to
have mean 0. For a data set of size n, the estimated regression model (estimated using a
nonparametric smoothing technique) is given by

yi = f̂(xi,1, . . . , xi,p) + ei

= ŷi + ei,

where the ei’s are the residuals and the ŷi’s are the fitted values for the chosen nonparametric
regression routine. Tolerance limits for nonparametric regression can be constructed based
on the residuals. First it is necessary to find e(r) and e(s) in the same manner as done for
nonparametric tolerance intervals (where e(j) corresponds to the j-th value from the ordered
sequence of the residuals). Then, [100×(1−α)%]/[100×P%] upper and lower nonparametric
regression tolerance limits are given by

L = ŷi + e(r)

U = ŷi + e(s).

The methods for determining r and s are given in the section on nonparametric tolerance
intervals.

Returning to the example and the data generated earlier, suppose the engineer fits a LOESS
curve (Cleveland, Devlin, and Grosse 1988) to the data. The engineer wishes to be 95%
confident that 95% of all observations are within certain limits. Evaluation of 95%/95% two-
sided nonparametric regression tolerance limits is found by implementing the npregtol.int

function:

R> set.seed(100)

R> x <- runif(50, 5, 45)

R> f1 <- function(x, b1, b2) b1 + (0.49 - b1)*exp(-b2*(x - 8)) +

+ rnorm(50, 0, 0.01)

R> y <- f1(x, 0.39, 0.11)

R> y.hat <- fitted(loess(y ~ x))

R> out <- npregtol.int(x = x, y = y, y.hat = y.hat, alpha = 0.05, P = 0.95,

+ side = 2, method = "WILKS", upper = NULL, lower = NULL)

R> out[1:5, ]

alpha P x y y.hat 2-sided.lower 2-sided.upper

[1,] 0.05 0.95 36.21434 0.3838453 0.3919522 0.3701138 0.4112673

[2,] 0.05 0.95 36.10338 0.3965609 0.3919601 0.3701217 0.4112752

[3,] 0.05 0.95 35.81206 0.3773059 0.3919991 0.3701607 0.4113142

[4,] 0.05 0.95 35.50204 0.4045567 0.3920930 0.3702547 0.4114081

[5,] 0.05 0.95 37.49610 0.4114723 0.3921572 0.3703188 0.4114723
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Notice that the npregtol.int function also has a method argument which specifies the es-
timation method to use for determining the indices of the ordered residuals to use for the
tolerance limits. As with the nptol.int function, the possible methods include the Wilks
method ("WILKS"), the Wald method ("WALD"), and the Hahn-Meeker method ("HM").

The output for this example yields α, P , xi, yi, ŷi, and the two-sided tolerance limits. The
output will have one row for each observation. The output for this example has also been
truncated to show only the first five observations. Figure 13(b) gives a scatterplot of this data
along with the fitted regression line obtained using the LOESS procedure and the two-sided
tolerance limits. This plot is obtained by typing

R> plottol(out, x = x, y = y, y.hat = y.hat, side = "two", x.lab = "X",

+ y.lab = "Y")

Details on the LOESS procedure in R can be found by typing help("loess").

6. Discussion

Tolerance limits enjoy a fairly rich history in the literature and have a very important role in
engineering and manufacturing applications. The tolerance package was developed to provide
a central collection of functions to estimate tolerance limits for some of the more frequent
settings found in practice, including certain discrete and continuous univariate distributions,
the multivariate normal distribution, and common regression settings. This package by no
means provides an exhaustive collection of functions for the many tolerance intervals available;
however, it will be maintained to supplement its current capabilities. Functions under con-
sideration include tolerance limits for survival regressions, semi-parametric regression models,
and non-normal multivariate distributions. Additional plotting capabilities for the multiple
regression setting will also be explored.
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