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Abstract

Data analysis sometimes requires the relaxation of parametric assumptions in order
to gain modeling flexibility and robustness against mis-specification of the probability
model. In the Bayesian context, this is accomplished by placing a prior distribution on
a function space, such as the space of all probability distributions or the space of all
regression functions. Unfortunately, posterior distributions ranging over function spaces
are highly complex and hence sampling methods play a key role. This paper provides an
introduction to a simple, yet comprehensive, set of programs for the implementation of
some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently,
DPpackage includes models for marginal and conditional density estimation, receiver op-
erating characteristic curve analysis, interval-censored data, binary regression data, item
response data, longitudinal and clustered data using generalized linear mixed models, and
regression data using generalized additive models. The package also contains functions to
compute pseudo-Bayes factors for model comparison and for eliciting the precision param-
eter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm.
To maximize computational efficiency, the actual sampling for each model is carried out
using compiled C, C++ or Fortran code.

Keywords: Bayesian semiparametric analysis, random probability measures, random func-
tions, Markov chain Monte Carlo, R.

1. Introduction

In many practical situations, a parametric model cannot be expected to properly describe

http://www.jstatsoft.org/


2 DPpackage: Bayesian Semi- and Nonparametric Modeling in R

the chance mechanism generating an observed dataset. Unrealistic features of some common
models (e.g., the thin tails of the normal distribution when compared to the distribution
of the observed data) can lead to unsatisfactory inferences. Constraining the analysis to a
specific parametric form may limit the scope and type of inferences that can be drawn from
such models. In these situations, we would like to relax parametric assumptions in order to
gain modeling flexibility and robustness against mis-specification of a parametric statistical
model. In the Bayesian context such flexible inference is typically achieved by placing a prior
distribution on infinite-dimensional spaces, such as the space of all probability distributions for
a random variable of interest. These models are usually referred to as Bayesian semiparametric
(BSP) or nonparametric (BNP) models depending on whether the problem can be specified
in such a way that the infinite-dimensional parameter θ can be written as θ = (θ1,θ2),
where θ1 is a finite-dimensional parameter and θ2 is an infinite-dimensional parameter, or
not (see, e.g., Dey, Müller, and Sinha 1998; Walker, Damien, Laud, and Smith 1999; Ghosh
and Ramamoorthi 2003; Müller and Quintana 2004; Hanson, Branscum, and Johnson 2005;
Hjort, Holmes, Müller, and Walker 2010).

BNP is a relatively young research area in statistics. First advances were made in the six-
ties and seventies, and were primarily mathematical formulations. It was only in the early
nineties with the advent of sampling based methods, in particular Markov chain Monte Carlo
(MCMC) methods, that substantial progress has been made. Posterior distributions rang-
ing over function spaces are highly complex and hence sampling methods play a key role.
The introduction of MCMC methods in the area began with the work of Escobar (1994) for
Dirichlet process mixtures. A number of themes are still undergoing development, including
issues in theory, methodology and applications. We refer to Walker et al. (1999), Müller and
Quintana (2004), Hanson et al. (2005) and Hjort et al. (2010) for recent overviews.

While BNP and BSP are extremely powerful and have a wide range of applicability, they are
not as widely used as one might expect. One reason for this has been the gap between the
type of software that many users would like to have for fitting models and the software that is
currently available. The most general programs currently available for Bayesian inference are
BUGS (see, e.g., Gilks, Thomas, and Spiegelhalter 1994) and OpenBugs (Thomas, O’Hara,
Ligges, and Sibylle 2006). BUGS can be accessed from the publicly available R program (R
Development Core Team 2011), using the R2WinBUGS package (Sturtz, Ligges, and Gelman
2005). OpenBugs can run on Windows and Linux, as well as from inside R. In addition,
various R packages exist that directly fit particular Bayesian models. We refer to Appendix C
in Carlin and Louis (2008), for an extensive list of software for Bayesian modeling. Although
the number of fully Bayesian programs continues to burgeon, with many available at little
or no cost, they generally do not include semiparametric models. An exception to this rule
is the R package bayesm (Rossi, Allenby, and McCulloch 2005; Rossi and McCulloch 2011),
including functions for some models based on Dirichlet process priors (Ferguson 1973). The
range of different Bayesian semiparametric models is huge. It is practically impossible to
build flexible and efficient software for the generality of such models.

In this paper we present an up to date introduction to a publicly available R (R Develop-
ment Core Team 2011) package designed to help bridge the previously mentioned gap, the
DPpackage, originally presented in Jara (2007). Although the name of the package is due
to the most widely used prior on the space of the probability distributions, the Dirichlet
process (DP Ferguson 1973), the package includes many other priors on function spaces. Cur-
rently, DPpackage includes models considering DP (Ferguson 1973), mixtures of DP (MDP
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Antoniak 1974), DP mixtures (DPM Lo 1984; Escobar and West 1995), linear dependent
DP (LDDP De Iorio, Müller, Rosner, and MacEachern 2004; De Iorio, Johnson, Müller, and
Rosner 2009), linear dependent Poisson-Dirichlet processes (LDPD Jara, Lesaffre, De Iorio,
and Quintana 2010), weight dependent DP (WDDP Müller, Erkanli, and West 1996), hier-
archical mixture of DPM of normals (HDPM Müller, Quintana, and Rosner 2004), centrally
standardized DP (CSDP Newton, Czado, and Chapell 1996), Polya trees (PT Ferguson 1974;
Mauldin, Sudderth, and Williams 1992; Lavine 1992, 1994), mixtures of Polya trees (MPT
Lavine 1992, 1994; Hanson and Johnson 2002; Hanson 2006; Christensen, Hanson, and Jara
2008), mixtures of triangular distributions (Perron and Mengersen 2001), random Bernstein
polynomials (Petrone 1999a,b; Petrone and Wasserman 2002) and dependent Bernstein poly-
nomials (Barrientos, Jara, and Quintana 2011). The package also includes models considering
penalized B-splines (Lang and Brezger 2004) and a general purpose function implementing
a independence chain Metropolis-Hastings algorithm with a proposal density function gener-
ated using PT ideas (Hanson, Monteiro, and Jara 2011). The package is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=DPpackage.

The article is organized as follows. Section 2 reviews the general syntax and design philosophy.
Although the material in this section was presented in Jara (2007), its inclusion here is
necessary in order to make the paper self-contained. In Sections 3, 4 and 5 the main features
and usages of DPpackage are illustrated by means of simulated and real life data analyses.
We conclude with additional comments and discussion in Section 6.

2. Design philosophy and general syntax

The design philosophy behind DPpackage is quite different from the one of a general purpose
language. The most important design goal has been the implementation of model-specific
MCMC algorithms. A direct benefit of this approach is that the sampling algorithms can
be made dramatically more efficient than in a general purpose function based on black-box
algorithms.

Fitting a model in DPpackage begins with a call to an R function, for instance, DPmodel, or
PTmodel. Here “model” denotes a descriptive name for the model being fitted. Typically, the
model function will take a number of arguments that control the specific MCMC sampling
strategy adopted. In addition, the model(s) formula(s), data, and prior parameters are passed
to the model function as arguments. The common arguments in every model function are
listed next.

(i) prior: An object list which includes the values of the prior hyper-parameters.

(ii) mcmc: An object list which must include the integers nburn giving the number of burn-
in scans, nskip giving the thinning interval, nsave giving the total number of scans to
be saved, and ndisplay giving the number of saved scans to be displayed on screen,
that is, the function reports on the screen when every ndisplay iterations have been
carried out and returns the process runtime in seconds. For some specific models, one
or more tuning parameters for Metropolis steps may be needed and must be included
in this list. The names of these tuning parameters are explained in each specific model
description in the associated help files.

(iii) state: An object list giving the current value of the parameters, when the analysis is
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the continuation of a previous analysis, or giving the starting values for a new Markov
chain, which is useful to run multiple chains starting from different points.

(iv) status: A logical variable indicating whether it is a new run (TRUE) or the continuation
of a previous analysis (FALSE). In the latter case, the current value of the parameters
must be specified in the object state.

Inside the R model function the inputs are organized in a more useable form, the MCMC
sampling is performed by calling a shared library written in a compiled language, and the
posterior sample is summarized, labeled, assigned into an output list, and returned. The
output list includes,

(i) state: An object list containing the current value of the parameters.

(ii) save.state: An object list containing the MCMC samples for the parameters. This list
contains two matrices randsave and thetasave, which contain the MCMC samples of
the variables with random distribution (errors, random effects, etc.) and the parametric
part of the model, respectively.

In order to exemplify the extraction of the output elements, consider the abstract model fit:

fit <- DPmodel(..., prior, mcmc, state, status, ....)

The lists can be extracted using the following code:

fit$state

fit$save.state$randsave

fit$save.state$thetasave

Based on these output objects, it is possible to use, for instance, the boa (Smith 2007) or the
coda (Plummer, Best, Cowles, and Vines 2006) R packages to perform convergence diagnostics.
For illustration, we consider the coda package here. It requires a matrix of posterior draws
for relevant parameters to be saved as a mcmc object. Assume that we have obtained fit1,
fit2, and fit3, by independently running a model function three times, specifying different
starting values each. To compute the Gelman-Rubin convergence diagnostic statistic for the
first parameter stored in the thetasave object, the following commands may be used:

library("coda")

coda.obj <- mcmc.list(

chain1 = mcmc(fit1$save.state$thetasave[,1]),

chain2 = mcmc(fit2$save.state$thetasave[,1]),

chain3 = mcmc(fit3$save.state$thetasave[,1]))

gelman.diag(coda.obj, transform = TRUE)

The second command line above saves the results as a mcmc.list object class and the third
command line computes the Gelman-Rubin statistic from these three chains.

Generic R functions such as print, plot, summary and anova have methods to display the
results of the DPpackage model fit. The function print displays the posterior means of the
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parameters in the model, and summary displays posterior summary statistics (mean, median,
standard deviation, naive standard errors, and credibility intervals). By default, the function
summary computes the 95% highest posterior density (HPD) intervals using the Monte Carlo
method proposed by Chen and Shao (1999). The user can display the order statistic estimator
of the 95% credible interval by using the following code:

summary(fit, hpd = FALSE)

The plot function displays the trace plots and a kernel-based estimate of the posterior distri-
bution for the parameters of the model. Similarly to summary, the plot function displays the
95% HPD regions in the density plot and the posterior mean. The same plot but considering
the 95% credible region can be obtained by using the following code:

plot(fit, hpd = FALSE)

The anova function computes simultaneous credible regions for a vector of parameters from
the MCMC sample using the method described by Besag, Green, Higdon, and Mengersen
(1995). The output of the anova function is an anova-like table containing the pseudo-contour
probabilities for each of the factors included in the linear part of the model.

The following sections will show how model fitting fuctions in DPpackage are implemented in
the context of density regression, survival data and education data. A complete description
of the currently available functions is given in the supplementary material file.

3. Bayesian density regression

Density estimation is perhaps the most traditional inference problem addressed by BNP infer-
ence. DPpackage provides several models to implement density estimation, including DPM,
PT, Bernstein polynomials and more. Details are described in the on-line supplementary ma-
terial and in the package documentation. We describe in more detail an extension of the basic
density estimation problem to density regression. Density regression is the fully nonparamet-
ric version of traditional regression problems for data {(xi, yi)}ni=1, where xi ∈ X ⊂ Rp is a
set of predictors, and yi ∈ R is the response variable. Rather than assuming a functional form
for the mean function and/or a common error distribution the problem is cast as inference
for a family of conditional distributions

{Gx : x ∈ X ⊂ Rp} ,

where yi | xi
ind.∼ Gxi . The current version of DPpackage considers several BNP models

for related random probability distributions based on particular implementations of the de-
pendent DP (DDP) proposed by MacEachern (1999, 2000), a natural generalization of the
approach discussed by Müller et al. (1996) for nonparametric regression to the context of con-
ditional density estimation, and the hierarchical mixture of DPM models (HDPM) proposed
by Müller et al. (2004). In this section we show how to perform conditional density estimation
using BNP models for related probability distributions, also referred to as Bayesian density
regression, using the DPcdensity and LDDPdensity functions.
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3.1. The linear dependent DP model

MacEachern (1999, 2000), proposed the DDP as an approach to define a prior model for an
uncountable set of random measures indexed by a single continuous covariate, say x, {Gx :
x ∈ X ⊂ R}. The key idea behind the DDP is to create an uncountable set of DPs (Ferguson
1973) and to introduce dependence by modifying the Sethuraman (1994)’s stick-breaking
representation of each element in the set. If G follows a DP prior with precision parameter α
and base measure G0, denoted by G ∼ DP (αG0), then the stick-breaking representation of
G is

G(B) =
∞∑
l=1

ωlδθl(B), (1)

where B is a measurable set, δa(·) is the Dirac measure at a, θl | G0
iid∼ G0 and ωl =

Vl
∏
j<l(1 − Vj), with Vl | α

iid∼ Beta(1, α). MacEachern (1999, 2000) generalizes (1) by
assuming the point masses θ(x)l, l = 1, . . ., to be dependent across different levels of x, but
independent across l.

De Iorio et al. (2004) and De Iorio et al. (2009) proposed a particular version of the DDP
where the component of the atoms defining the location in a DDP mixture model follows a
linear regression model θl(x) = (x>βl, σ

2
l ), where x is a p-dimensional design vector. An

advantage of this model for related random probability measures, referred to as the linear
DDP (LDDP), is that it can be represented as DPM of linear (in the coefficients) regression
models, when the model is convolved with a normal kernel. This approach is implemented in
the LDDPdensity function, where for the regression data (yi,xi), i = 1, . . . , n, the following
model is considered:

yi|G
ind.∼

∫
N
(
yi|x>i β, σ2

)
dG(β, σ2),

and

G|α,G0 ∼ DP (αG0) ,

where G0 ≡ Np (β|µb,Sb) Γ
(
σ−2|τ1/2, τ2/2

)
. The LDDP model specification is completed

with the following hyper-priors:

α|a0, b0 ∼ Γ (a0, b0) , τ2|τs1 , τs2 ∼ Γ(τs1/2, τs2/2),

µb|m0,S0 ∼ Np(m0,S0) and Sb|ν,Ψ ∼ IWp(ν,Ψ).

3.2. The weight dependent DP model

Let x>i =
(
1, z>i

)
, where zi is a p-dimensional vector of continuous predictors. The LDDP

of the previous section defines a mixture model where the weights are independent of the
predictors z, given by

fz(·) =
∞∑
l=1

ωlN(·|β0l + z>βl, σ
2
l ),
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where the weights ωl follow a stick-breaking construction and (β0l,βl, σ
2
l )

iid∼ G0. Motivated
by regression problems with continuous predictors, different extensions have been proposed by
making the weights dependent on covariates (see, e.g., Griffin and Steel 2006; Duan, Guindani,
and Gelfand 2007; Dunson, Pillai, and Park 2007a; Dunson and Park 2008), such that

fz(·) =
∞∑
l=1

ωl (z)N(·|β0l + z>βl, σ
2
l ). (2)

An earlier approach that is related to the latter references and that also induces a weight-
dependent DP model, as in expression (2), was discussed by Müller et al. (1996). These
authors fitted a “standard” DPM of multivariate Gaussian distributions to the complete data
di = (yi, zi)

>, i = 1, . . . , n, and looked at the induced conditional distributions. Although
Müller et al. (1996) focused on the mean function only, m(z) = E(y|z), their method can
be easily extended to provide inferences for the conditional density at covariate level z, that
is, a “density regression” model in the spirit of Dunson et al. (2007a). The extension of
the approach of Müller et al. (1996) for related probability measures is implemented in the
DPcdensity function, where the model is given by

di|G
iid∼
∫
Nk (di|µ,Σ) dG(µ,Σ),

and

G|α,G0 ∼ DP (αG0) ,

where k = p + 1 is the dimension of the vector of complete data di, the baseline distribu-
tion G0 is the conjugate normal-inverted-Wishart (IW) distribution G0 ≡ Nk

(
µ|m1, κ

−1
0 Σ

)
IWk (Σ|ν1,Ψ1). To complete the model specification, the following hyper-priors are assumed

α|a0, b0 ∼ Γ (a0, b0) ,

m1|m2,S2 ∼ Nk (m2,S2) ,

κ0|τ1, τ2 ∼ Γ (τ1/2, τ2/2) ,

and

Ψ1|ν2,Ψ2 ∼ IWk (ν2,Ψ2) .

This model induce a weight dependent mixture models, as in expression (2), where the com-
ponents are given by

ωl(z) =
ωlNp(z|µ2l,Σ22l)∑∞
j=1 ωjNp(z|µ2j ,Σ22j)

β0l = µ1l −Σ12lΣ
−1
22lµ2l,

βl = Σ12lΣ
−1
22l,



8 DPpackage: Bayesian Semi- and Nonparametric Modeling in R

and

σ2
l = σ2

11l −Σ12lΣ
−1
22lΣ21l,

where the weights ωl follow a DP stick-breaking construction and the remaining elements
arise from the standard partition of the vectors of means and (co)variance matrices given by

µl =

(
µ1l

µ2l

)
and Σl =

(
σ2

11l Σ12l

Σ21l Σ22l

)
,

respectively.

The DPcdensity function fits a marginalized version of the model, where the random proba-
bility measure G is integrated out. Full inference on the conditional density at covariate level
z is obtained by using the ε-DP approximation proposed by Muliere and Tardella (1998),
with ε = 0.01.

3.3. Simulated example

We replicate the results reported by Dunson et al. (2007a), where a different approach is
proposed. Following Dunson et al. (2007a), we simulate n = 500 observations from a mixture
of two normal linear regression models, with the mixture weights depending on the predictor,
different error variances and a non-linear mean function for the second component,

yi | xi
ind.∼ exp{−2xi}N(yi|xi, 0.01) + (1− exp{−2xi})N(yi|x4

i , 0.04), i = 1, . . . , n.

The predictor values xi are simulated from a uniform distribution, xi
iid∼ U(0, 1). The following

code is useful to plot the true conditional densities and the mean function:

R> dtrue <- function(grid, x) {

+ exp(-2 * x) * dnorm(grid, mean = x, sd = sqrt(0.01)) +

+ (1 - exp(-2 * x)) * dnorm(grid, mean = x^4, sd = sqrt(0.04))

+ }

R> mtrue <- function(x) exp(-2 * x) * x + (1 - exp(-2 * x)) * x^4

The data were simulated using the following code:

R> set.seed(0)

R> nrec <- 500

R> x <- runif(nrec)

R> y1 <- x + rnorm(nrec, 0, sqrt(0.01))

R> y2 <- x^4 + rnorm(nrec, 0, sqrt(0.04))

R> u <- runif(nrec)

R> prob <- exp(-2 * x)

R> y <- ifelse(u < prob, y1, y2)

The extension of the DPM of normals approach of Müller et al. (1996) considered by the
DPcdensity function, was fitted using the hyper-parameters a0 = 10, b0 = 1, ν1 = ν2 =
4, m2 = (ȳ, x̄)>, τ1 = 6.01, τ2 = 3.01 and S2 = Ψ−1

2 = 0.5S, where S is the sample
covariance matrix for the response and predictor. The following code illustrates how the
hyper-parameters are specified:
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R> w <- cbind(y, x)

R> wbar <- apply(w, 2, mean)

R> wcov <- var(w)

R> prior <- list(a0 = 10, b0 = 1, nu1 = 4, nu2 = 4, s2 = 0.5 * wcov,

+ m2 = wbar, psiinv2 = 2 * solve(wcov), tau1 = 6.01, tau2 = 3.01)

A total number of 25,000 scans of the Markov chain cycle implemented in the DPcdensity

function were completed. A burn-in period of 5,000 samples was considered and the chain was
subsampled every 4 iterates to get a final sample size of 5,000. The following code illustrate
the MCMC specification:

R> mcmc <- list(nburn = 5000, nsave = 5000, nskip = 3, ndisplay = 1000)

The following commands were used to fit the model, where the conditional density estimates
were evaluated on a grid of 100 points on the range of the response:

R> fitWDDP <- DPcdensity(y = y, x = x, xpred = seq(0, 1, 0.02),

+ ngrid = 100, compute.band = TRUE, type.band = "HPD",

+ prior = prior, mcmc = mcmc, state = NULL, status = TRUE)

Using the same MCMC specification, the LDDP model was also fitted to the data. The
LDDPdensity function was used to fit a mixture of B-splines models with x>β = β0 +∑6

j=1 ψj(x)βj , where ψk(x) corresponds to the kth B-spline basis function evaluated at x,
as implemented in the bs function of the splines R package. The LDDP model was fitted
using Zellner’s g-prior (Zellner 1983), with g = 103. The following values for the hyper-

parameters were considered: a0 = 10, b0 = 1, m0 =
(
X>X

)−1
X>y, S0 = g

(
X>X

)−1
,

τ1 = 6.01, τs1 = 6.01, τs2 = 2.01, ν = 9, and Ψ−1 = S0. The following piece of code illustrate
the prior specification:

R> library("splines")

R> W <- cbind(rep(1, nrec), bs(x, df = 6, Boundary.knots = c(0, 1)))

R> S0 <- 1000 * solve(t(W) % * % W)

R> m0 <- solve(t(W) % * % W) % * % t(W) % * % y

R> prior <- list(a0 = 10, b0 = 1, m0 = m0, S0 = S0, tau1 = 6.01,

+ taus1 = 6.01, taus2 = 2.01, nu = 9, psiinv = solve(S0))

The following commands were used to fit the model, where the conditional density estimates
were evaluated on a grid of 100 points on the range of the response,

R> xpred <- seq(0, 1, 0.02)

R> Wpred <- cbind(rep(1, length(xpred)),

+ predict(bs(x, df = 6, Boundary.knots = c(0, 1)), xpred))

R> fitLDDP <- LDDPdensity(formula = y ~ W - 1, zpred = Wpred, ngrid = 100,

+ compute.band = TRUE, type.band = "HPD", prior = prior, mcmc = mcmc,

+ state = NULL, status = TRUE)

Figures 1 and 2 show the true density, the estimated density and pointwise 95% HPD intervals
for a range of values of the predictor for the WDDP and LDDP model, respectively. The
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Figure 1: Simulated data - WDDP model: True conditional densities of y|x (in red), posterior
mean estimates (black continuous line) and pointwise 95% HPD intervals (black dashed lines)
for: (a) x = 0.1, (b) x = 0.25, (c) x = 0.48, (d) x = 0.76, and (e) x = 0.88. Panel (f) shows
the data, along with the true and estimated mean regression curves.
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Figure 2: Simulated data - LDDP model: True conditional densities of y|x (in red), posterior
mean estimates (black continuous line) and pointwise 95% HPD intervals (black dashed lines)
for: (a) x = 0.1, (b) x = 0.25, (c) x = 0.48, (d) x = 0.76, and (e) x = 0.88. Panel (f) shows
the data, along with the true and estimated mean regression curves.
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estimates correspond approximately to the true densities in each case. The figures also display
the plot of the data along with the estimated mean function, which is very close to the true
one under both models.

In both functions, the posterior mean estimates and the limits of pointwise 95% HPD intervals
for the conditional density for each value of the predictors are stored in the model objects
densp.m, and densp.l and densp.h, respectively. The following code illustrates how these
objects can be used in order to get the posterior estimates for x = 0.1 in the LDDP model.
This code was used to draw the plots displayed in Figures 1 and 2.

R> par(cex = 1.5, mar = c(4.1, 4.1, 1, 1))

R> plot(fitLDDP$grid, fitLDDP$densp.h[6,], lwd = 3, type = "l", lty = 2,

+ main = "", xlab = "y", ylab = "f(y|x)", ylim = c(0, 4))

R> lines(fitLDDP$grid, fitLDDP$densp.l[6,], lwd = 3, type = "l", lty = 2)

R> lines(fitLDDP$grid, fitLDDP$densp.m[6,], lwd = 3, type = "l", lty = 1)

R> lines(fitLDDP$grid, dtrue(fitLDDP$grid, xpred[6]), lwd = 3,

+ type = "l", lty = 1, col = "red")

Finally, both functions return the posterior mean estimates and the limits of point-wise 95%
HPD intervals for the mean function in the model objects meanfp.m, and meanfp.l and
meanfp.h, respectively. The following code was used to obtain the estimated mean function
under the LDDP model, along with the true function.

R> par(cex = 1.5, mar = c(4.1, 4.1, 1, 1))

R> plot(x, y, xlab = "x", ylab = "y", main = "")

R> lines(xpred, fitLDDP$meanfp.m, type = "l", lwd = 3, lty = 1)

R> lines(xpred, fitLDDP$meanfp.l, type = "l", lwd = 3, lty = 2)

R> lines(xpred, fitLDDP$meanfp.h, type = "l", lwd = 3, lty = 2)

R> lines(xpred, mtrue(xpred), col = "red", lwd = 3)

4. Mixed-effects models with nonparametric random effects

Standard implementations of generalized linear mixed models (GLMM) typically assume inde-
pendent and identically distributed random effects from a parametric distribution. Different
BNP strategies have been proposed to relax the parametric assumption, including DP, DPM
of normals, and PT (see, Jara, Hanson, and Lesaffre 2009, for a review and methods based
on PT), which are available in the current version of DPpackage. In this section we show how
to fit a semiparametric GLMM using the PTglmm function. The example further illustrates
that a proportional-hazards model with nonparametric frailties can be fitted using any of the
BNP-GLMM functions.

4.1. A semiparametric GLMM

Assume that for each of m experimental units the regression data (Yij ,xij , zij), 1 ≤ i ≤ m,
1 ≤ j ≤ ni, is recorded, where Yij is a response variable, and xij ∈ Rp and zij ∈ Rq are p- and
q-dimensional design vectors, respectively. The observations are assumed to be conditionally
independent with exponential family distribution,

p (Yij | ϑij , τ) = exp {[Yijϑij − b(ϑij)] /τ} c (Yij , τ) .
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The means µij = E (Yij | ϑij , τ) and variances σ2
ij = V ar (Yij | ϑij , τ) are related to the

canonical ϑij and dispersion parameter τ via µij = b
′
(ϑij) and σ2

ij = τb
′′

(ϑij), respectively.

The means µij are related to the p-dimensional and q-dimensional “fixed” effects vectors βF

and βR, respectively, and the q-dimensional “random” effects vector bi via the link relation

h(µij) = ηij = x>ijβ
F + z>ijβ

R + z>ijbi, (3)

where, h(·) is a known monotonic differentiable link function, and ηij is called the linear pre-
dictor. Due to software limitations, the analyses are often restricted to the setting in which the

random effects follow a multivariate normal distribution, b1, . . . , bm | Σ
iid∼ Nq (0,Σ). BNP

extensions incorporate a probability model for the random effects distribution in order to bet-
ter represent the distributional uncertainty and to avoid the effects of the miss-specification of
an arbitrary parametric random effects distribution. Under these approaches, the parametric
assumption is relaxed by considering

b1, . . . , bm | G
iid∼ G,

and

G | H ∼ H,

where H is one of the previously mentioned probability models for probability distributions
(e.g., DP, DPM, PT). Even though any of the BNP models can be considered with this
aim, its implementation is not direct and it is necessary to discuss some important issues
regarding the specification of the model. Specifically, it is important to stress that under
parameterization given by expression (3), βR represents the mean of random effects, and
bi represents the subject-specific deviation from the mean. It follows that fixing the mean
of the normal prior distribution for the random effects b at zero in the parametric context
corresponds to an identification restriction for the model parameters (see, e.g., Newton 1994;
San Mart́ın, Jara, Rolin, and Mouchart 2011). Equivalently, the random probability measure
must be appropriately restricted in a semiparametric GLMM specification. In our settings,
the location of G is “confounded” with the parameters βR. Although such identification issues
present no difficulties for a Bayesian analysis in the sense that a prior is transformed into a
posterior using the sampling model and the probability calculus, if the interest focuses on a
“confounded”parameter, then such formal assurances have little practical value. Furthermore,
as more data become available, the posterior mass will not concentrate on a point in the model,
making asymptotic analysis difficult. As pointed out by Newton (1994), from a computational
point of view, identification problems imply ridges in the posterior distribution and MCMC
methods can be difficult to implement in these situations.

Following Jara et al. (2009), we consider the following re-parameterization of the model

ηij = x>ijβ + z>ijθi,

θ1, . . . ,θm | G
iid∼ G,

and

G | H ∼ H
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where β = βF , and θi = βR+bi, and we center the nonparametric priors for G at an Nq (µ,Σ)
distribution. Notice that samples under the original parameterization can be obtained in a
straightforward manner from the MCMC samples, as discussed by Jara et al. (2009). When
a DP or DPM prior is used to model the random effects distribution, Dunson, Yang, and
Baird (2007b) and Li, Müller, and Lin (2007) proposed alternative strategies to avoid the
identifiability problem described above, but these approaches are not implemented in the
current version of DPpackage.

The PTglmm function considers the PT prior for G as described in Jara et al. (2009), such that

G | α,µ,Σ,O ∼ PTM (Πµ,Σ,O,Aα),

where M is the maximum level of the partition to be updated, Πµ,Σ,O = {πj}j≥0 is a set of
partitions of Rq, indexed by the centering mean µ, centering covariance matrix Σ and the
matrix O, and Aα is a family of non-negative vectors controlling the variability of the process
indexed by α > 0. Here O is a q×q orthogonal matrix defining the “direction” of the partition
sets and the PT prior is centered around Nq (µ,Σ) distribution.

The models in PTglmm are completed by assuming the following prior distributions:

β ∼ Np

(
β0,Sβ0

)
,

τ−1|τ1, τ2 ∼ Γ (τ1/2, τ2/2) ,

µ | µb,Sb ∼ Nq (µb,Sb) ,

Σ | ν0,T ∼ IWk (ν0,T ) ,

O ∼ Haar(q),

and

α | a0, b0 ∼ Γ (a0, b0) ,

where Γ, IW , and Haar refer to the Gamma, inverted Wishart, and Haar distributions,
respectively. Notice that the inverted Wishart prior is parameterized such that E(Σ) =
T−1/(ν0 − q− 1). Notice also that the Haar measure induces a uniform prior on the space of
the orthogonal matrices.

4.2. A proportional hazards model with nonparametric frailties

We show that DPpackage functions for fitting GLMM can be used to fit the Cox proportional
hazards model (Cox 1972) with nonparametric frailties in this section. Consider right-censored
survival data where failure times are repeatedly observed within a group or subject. Let i =
1, . . . , n denote the strata over which repeated times-to-event are recorded, and j = 1, . . . , ni
denote the repeated observations within stratum i. The data are denoted by {(wij , tij , δij) :
i = 1, . . . , n, j = 1, . . . , ni}, where tij is the recorded event time, δi = 1 if tij is an observed
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failure time and δij = 0 if the failure time is right censored at tij , and wij is a p-dimensional
vector of covariates.

The baseline hazard function λ0(t) corresponds to an individual with covariates w = 0 and
survival time T0. Given that the baseline individual has made it up to t, T0 ≥ t, the baseline
hazard is how the probability of expiring in the next instant is changing. In terms of the
baseline survival function S0(t) = P (T0 > t) and density f0(t), this is given by

λ0(t) = lim
ε→0+

P (t ≤ T0 < t+ ε|T0 ≥ t)
ε

=
f0(t)

S0(t)
.

The conditional proportional hazards assumption stipulates that

λ(tij |zij) = λ0(t) exp(w>ijγ + θi),

where θ = (θ1, . . . , θn)> are random effects, termed frailties in the survival literature. Often
the frailties θi, or exponentiated frailties eθi , are assumed to be iid from some parametric
distribution such as N(0, σ2), gamma, positive stable, etc. We consider a PT prior for the
frailties distribution below.

The specification is conditional because proportionality only holds for survival times within a
given group i, not across groups unless the distribution of θi is positive stable (see, e.g., Qiou,
Ravishanker, and Dey 1999). Precisely, for individuals j1 and j2 within group i,

λ(tij1 |wij1)

λ(tij2 |wij2)
= exp{(wij1 −wij2)>γ}.

Often the baseline hazard is assumed to be piecewise constant on a partition of R+ comprised
of K intervals, yielding the piecewise exponential model. References are too numerous to list.
See, for instance, Walker and Mallick (1997), Aslanidou, Dey, and Sinha (1998), and Qiou
et al. (1999). Assume that

λ0(t) =

K∑
k=1

λkI{ak−1 < t ≤ ak},

where a0 = 0 and aK = ∞, although in practice aK = max{tij} is sufficient. The prior
hazard is specified by cutpoints {ak}Kk=0 and hazard values λ = (λ1, . . . , λK)>. If the prior on
λ is taken to be independent gamma distributions, the model can approximate the gamma
process on a fine mesh (Kalbfleisch 1978). Regardless, the resulting model implies a Poisson
likelihood for “data” yijk, taking values yijk = 0 when tij /∈ (ak−1, ak] or δij = 0, and yijk = 1
when tij ∈ (ak−1, ak] and δij = 1, for k = 1, . . . ,K(tij), where K(t) = max{k : ak ≤ t}. The
likelihood for (β,λ,γ) is given by

L(β,λ,γ) =

n∏
i=1

ni∏
j=1

K(tij)∏
k=1

e− exp{log(λk)+w>
ijβ+γi}∆ijk

[elog{λK(tij)
}+w>

ijβ+γi
]δij

,

∝
n∏
i=1

ni∏
j=1

K(tij)∏
k=1

p(yijk|µijk),
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where p(y|µ) is the probability mass function for a Poisson(µ) random variable, µijk =
exp{log(λk) + w>ijβ + γi}∆ijk, and ∆ijk = min{ak, tij} − ak−1. Thus, the Cox model as-
suming a piecewise constant baseline hazard can be fitted in any software which allows for
Poisson regression. Note that if covariates are time dependent as well, and change only at
values included in {ak}Kk=0, the likelihood is trivially extended to include wijk above for
k = 1, . . . ,K(tij), rather than wij .

4.3. Kidney patient data

We consider data on n = 38 kidney patients discussed by McGilchrist and Aisbett (1991).
Each of the patients provides ni = 2 infection times, some of which are right censored.
McGilchrist and Aisbett (1991) found that only gender was significant, and so we follow
Aslanidou et al. (1998), Walker and Mallick (1997), Qiou et al. (1999), and Hemming and
Shaw (2005) in considering only this covariate in what follows. We fitted the semiparametric
proportional hazards regression model using a nonparametric prior for the frailties distribu-
tion. The commands used to prepare the data to fit the model are given in the supplementary
material. The original dataset, d[i, j], is a 38 by 6 matrix, which for each row (from left to
right) contains the subject indicator, ti1, δi1, ti2, δi2, and the gender indicator. Ten intervals
were considered with cutpoints {a1, . . . , a10} taken from the empirical distribution of the data.

We performed the analysis using the PTglmm function for the responses

yi = (yi11, . . . , yi1K(ti1), . . . , yi21, . . . , yi2K(ti2)),

where xij is a 11-dimensional design vector containing the gender indicator and the indicator
for the interval associated with the corresponding response. Finally, we set β> = (γ>,λ>),
and assume

G ∼ PTM (Πσ2
,Aα).

We consider a M = 5 finite PT prior which was centered around a N(0, σ2) distribution and
constrained to have median-0 (frstlprob = TRUE in the prior object below). The values for
the hyper-parameters β0 and Sβ0

were obtained from a penalized quasi-likelihood (PQL) fit,
using the glmmPQL function available from the MASS package (Venables and Ripley 2002).
The matrix Sβ0

was inflated by a factor of 100. The remaining hyper-parameters were
a0 = b0 = 1, ν0 = 3, and T = I1. The following code illustrate the prior specification:

R> library("MASS")

R> fit0 <- glmmPQL(fixed = y ~ gender + loghazard - 1 + offset(log(off)),

+ random = ~ 1 | id, family = poisson(log))

R> beta0 <- fit0$coefficients$fixed

R> Sbeta0 <- vcov(fit0)

R> prior <- list(M = 5, a0 = 1, b0 = 1, nu0 = 3, tinv = diag(1, 1),

+ mu = rep(0, 1), beta0 = beta0, Sbeta0 = Sbeta0, frstlprob = TRUE)

Starting values for the model parameters were obtained from the PQL fit. The following code
illustrate how the starting values are specified in the state object.

R> beta <- fit0$coefficients$fixed

R> b <- as.vector(fit0$coefficients$random$id)
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R> mu <- rep(0, 1)

R> sigma <- getVarCov(fit0)[1, 1]

R> state <- list(alpha = 1, beta = beta, b = b, mu = mu, sigma = sigma)

A single Markov chain cycle of length 25, 000 was completed. The full chain was sub-sampled
every 20 steps after a burn in period of 5,000 samples, to give a reduced chain of length
5,000. In the code below, tune3 = 1.5, corresponds to the standard deviation of the lognor-
mal candidate generating distribution used in the Metropolis-Hastings step for the precision
parameter of the PT.

R> mcmc <- list(nburn = 5000, nsave = 5000, nskip = 19, ndisplay = 1000,

+ tune3 = 1.5)

The code for fitting the model, extracting the posterior inferences and the frailties densities
estimates using PTglmm is given below.

R> fitPT <- PTglmm(fixed = y ~ gender + loghazard,

+ offset = log(off), random = ~ 1 | id, family = poisson(log),

+ prior = prior, mcmc = mcmc, state = state, status = FALSE)

R> summary(fitPT)

R> predPT <- PTrandom(fitPT, predictive = TRUE, gridl = c(-2.3, 2.3))

R> plot(predPT)

The abridged output is given below. The output lists the estimated effect for gender β̂1 =
−1.13 followed by K = 10 estimated log-hazard values. Notice that the intercept term in the
posterior information for the “fixed” effects (regression coefficients in the output), corresponds
to the mean of the frailties distribution G. The posterior median estimate of the centering
variance was σ̂2 = 0.35 and close to the posterior median of the frailties variance (0.33).
Further, the posterior median (95% credible interval) for α was 0.75 (0.04; 3.77). The trace
plots of the parameters (not shown) indicate a good mixing of the chain. The acceptance
rates for the Metropolis-Hastings steps associated with the regression coefficients, frailties,
centering variance and precision parameter was 36, 61, 43 and 0.46%, respectively. Notice
that the 0 values for the acceptance rates in the output corresponds to the centering mean,
which is not sampled, and the decomposition of the centering covariance matrix. The latter
is only sampled for dimensions greater or equal than 2.

Walker and Mallick (1997) analyzed these data with piecewise exponential model and frailties
following a PT with fixed centering variance, PT 8(Π100,A0.1) and find β̂1 = −1.0. McGilchrist
and Aisbett (1991) obtain β̂1 = −1.8, but with other nonsignificant covariates included.
Aslanidou et al. (1998) also reportes β̂ = −1.0. Hemming and Shaw (2005) obtain β̂ = −1.7
and Qiou et al. (1999) obtain β̂ = −1.1 under the positive stable and β̂ = −1.6 under gamma
frailties, respectively. The deviance information criterion (DIC), as presented by Spiegelhalter,
Best, Carlin, and Van der Linde (2002), was 398 for either PT or normal model (not shown),
so the normal model does about the same from a predictive standpoint based on the DIC.

Bayesian semiparametric generalized linear mixed effect model

Call:
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PTglmm.default(fixed = y ~ gender + loghazard, random = ~1 |

id, family = poisson(log), offset = log(off), prior = prior,

mcmc = mcmc, state = state, status = FALSE)

Posterior Predictive Distributions (log):

Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.99200 -0.22250 -0.10970 -0.48500 -0.05714 -0.01381

Model's performance:

Dbar Dhat pD DIC LPML

379.21 360.63 18.58 397.79 -200.29

Regression coefficients:

Mean Median Std.Dev. Naive.Std.Err. 95%CI-L 95%CI-U

(Intercept) -0.0004 0.0015 0.0960 0.0013 -0.2066 0.2021

gender -1.1321 -1.1296 0.3219 0.0045 -1.7762 -0.5117

loghazard1 -4.2608 -4.2375 0.4412 0.0062 -5.1598 -3.4611

loghazard2 -3.7898 -3.7638 0.5018 0.0070 -4.8383 -2.8794

loghazard3 -3.9792 -3.9691 0.4556 0.0064 -4.9028 -3.1213

loghazard4 -3.0627 -3.0526 0.4526 0.0064 -4.0124 -2.2353

loghazard5 -3.2581 -3.2477 0.4219 0.0059 -4.1039 -2.4603

loghazard6 -3.9951 -3.9805 0.4544 0.0064 -4.9103 -3.1403

loghazard7 -4.9343 -4.9183 0.5365 0.0075 -6.0496 -3.9150

loghazard8 -3.6883 -3.6845 0.4479 0.0063 -4.5692 -2.8232

loghazard9 -3.6723 -3.6673 0.4810 0.0068 -4.6112 -2.7315

loghazard10 -4.1246 -4.1272 0.4966 0.0070 -5.0749 -3.1886

Baseline distribution:

Mean Median Std.Dev. Naive.Std.Err 95%CI-L 95%CI-U

mu-(Intercept) 0.000 0.000 0.000 0.000 0.000 0.000

sigma-(Intercept) 0.430 0.354 0.294 0.004 0.119 1.212

Precision parameter:

Mean Median Std.Dev. Naive.Std.Err 95%CI-L 95%CI-U

alpha 1.058 0.751 1.022 0.014 0.044 3.769

Random effects variance:

Mean Median Std.Dev. Naive.Std.Err 95%CI-L 95%CI-U

R.E.Cov-(Intercept) 0.378 0.331 0.222 0.003 0.096 0.948

Acceptance Rate for Metropolis Steps = 0.3570 0.6072 0 0.428 0.463 0

Number of Observations: 413

Number of Groups: 38

Figure 3 shows the estimated frailty distribution from these data along with the posterior
mean of the frailty term for each patient. The distribution is remarkably Gaussian-shaped,
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Figure 3: Kidney data: Posterior mean of the frailty distribution. The posterior mean of the
individual frailty terms are shown in red dots.
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Figure 4: Kidney data: Posterior estimates (median and point-wise 95% credible intervals)
for the survival function for time to infection. The results for males and females are shown
in panels (a) and (b), respectively.

in contrast to the analysis presented in Walker and Mallick (1997), which showed two well
defined density modes corresponding to men and women. We were unable to duplicate this
result across several sets of hyper-prior values, including the consideration of PT 8(Π100,A0.1).
In retrospect, this is not surprising. Two well separated modes would typically indicate an
omitted covariate, although gender was included as a risk factor in the model.

Finally, Figure 4 shows the posterior median and 95% credible interval for survival curves
for males and females, taking the individual-level heterogeneity modeled through the frailty
distribution into account.
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5. Dependent random effects distributions

Although different BNP strategies have been proposed to relax the parametric assumption
of the random effects distribution in mixed models, the assumption of exchangeable random
effects has rarely been tested or relaxed, possibly obscuring important features of the among-
subjects variation. We show how to fit dependent GLMM in the context of educational data
using the LDDPrasch function in this section.

5.1. The dependent semiparametric Rasch model

The statistical analyses of educational measurement data are usually based in Rasch-type
models (see, e.g., De Boeck and Wilson 2004). Rasch-type models (Rasch 1960) can be
viewed as a particular case of GLMM (see, e.g., Doran, Bates, Bliese, and Dowling 2007;
De Boeck, Bakker, Zwitser, Nivard, Hofman, Tuerlinckx, and Partchev 2011), where the linear
predictor, ηij , is modeled as a linear function of two parameters, ηij = θi − βj , where θi ∈ R
corresponds to the ability of subject i, i = 1, . . . , n, and βj ∈ R corresponds to the difficulty of
probe/item j, j = 1, . . . ,m. The difficulty and ability parameters are interpreted as fixed and
random effects, respectively. The structural assumptions underlying the model specification
implies an important property of the models, namely, that the vectors of individual response
patterns, Y i = (Yi1, . . . , Yim), and then total number of correct responses (total score), form
an iid process conditionally on the difficulty parameters, β = (β1, · · · , βm), and the abilities
distribution G (see, e.g., San Mart́ın et al. 2011). The common distribution of Y i, for all
i ∈ N, is given by

P [Y i = y | β, G] = E {P [Y i = y | θ,β] | β, G} ,

=

∫  ∏
1≤j≤n

P [Yij = yij | θ, βj ]

G(dθ),

for y ∈ {0, 1}m.

In many practical applications the exchangeability assumption is not appropriate and a par-
tially exchangeable model that emphasizes the explanatory use of the model may be more
appropriated. De Boeck and Wilson (2004) discussed a wide variety of explanatory Rasch-type
models that incorporate predictor information in the model. When the predictors represent
characteristics of the individuals, the abilities parameters have been modeled using a location
model given by

θi = x>i γ + ui, (4)

and

u1, . . . , un | G ∼ G, (5)

where γ are “fixed” regression coefficients and the ui represent “residual” random effects.
Therefore, the model becomes a more general GLMM. Although a semiparametric specifica-
tion of the model given by expressions (4) and (5), obtained by considering a BNP model
for G, provides flexibility in capturing different distributional shapes and, at the same time,
allows for non-exchangeable abilities, it implies that the vector of covariates xi acts modify-
ing the location of the distribution of the subject specific behaviors only. However, a more
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thorough evaluation of the effect of the predictors should account for potential changes in
other characteristics of the abilities distribution than just the location. For instance, it is
useful to examine for potential changes in the symmetry and multimodality of the abilities
distribution.

The LDDPrasch functions considers the LDDP mixture of normals prior for the ablities in a
Rasch model, as described in Fariña, Quintana, San Mart́ın, and Jara (2011). The model is
given by

Yij |πij
ind∼ Bernoulli(πij),

logit(πij) = θi − βj ,

β2:k|β0,Sβ0 ∼ Nk−1(β0,Sβ0),

θi|G
ind.∼

∫
N
(
θi|x>i γ, σ2

)
dG(γ, σ2).

and

G | α,G0 ∼ DP (αG0) ,

where G0 ≡ Np (γ | µb,Sb) Γ
(
σ−2|τ1/2, τ2/2

)
. Notice that the first difficulty parameter is

fixed at 0 in order to avoid identification problems (see, San Mart́ın et al. 2011). The LDDP
model specification is completed with the following hyper-priors:

α|a0, b0 ∼ Γ (a0, b0) ,

τ2|τs1 , τs2 ∼ Γ(τs1/2, τs2/2),

µb|m0,S0 ∼ Np(m0,S0),

and

Sb|ν,Ψ ∼ IWp(ν,Ψ).

5.2. Chilean educational data

We consider data from the Chilean system for educational quality measurement (sistema de
medicición de la calidad de la educación, SIMCE). The Chilean education system is subject
to several performance evaluations regularly at the school, teacher and student level. In
the latter case, SIMCE has developed mandatory census-type tests to regularly assess the
educational progress at three stages: 4th and 8th grades in primary school (9 and 13 years old
children, respectively), and 2nd grade in secondary school (16 years old children). The SIMCE
instruments are designed to assess the achievement of fundamental goals and minimal contents
of the curricular frame in different areas of knowledge, currently Spanish, mathematics and
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science. Here we focus on data from the math test applied in 2004 to 8 grader examinees in
primary school. The test consists of 45 multiple choice items questions with 4 alternatives.
The response Yij ∈ {0, 1} is a binary variable indicating whether the individual i answers
item j correctly.

The main purpose of collecting these data is to monitor standards and progress of educational
systems, focusing on characterizing the population (and its evolution) rather than individual
examinees. It is of particular interest to understand the way in which some factors at individ-
ual and/or school level could explain systematic differences in the performance of students in
order to establish policies to improve the education system. For instance, a significant char-
acteristic of the Chilean elementary and secondary education system is a variety of different
school types. These are grouped as Public I, financed by the state and administered by county
governments; Public II, financed by the state and administered by county corporations; Pri-
vate I, financed by the state and administered by the private sector; Private II, fee-paying
schools that operate solely on payments from parents and administered by the private sector.

In order to evaluate the effect of the type of school and gender on the student performance
we consider the LDDPrasch function. For illustration purposes, we consider a subset of 500
children. We refer to Fariña et al. (2011) for a full analysis of the complete data. In this
analysis, xi includes an intercept term, three dummy variables for the type of school and the
gender indicator. The LDDP Rasch model was fitted assuming β2:45 ∼ N44(0, 103I44), α = 1,
µ0 = 05, S0 = 100I5, τ1 = 6.01, τs1 = 6.01, τs2 = 2.01, ν = 8, Ψ = I5. The following code
illustrates the prior specification in the LDDPrasch function.

R> prior <- list(alpha = 1, beta0 = rep(0, 44), Sbeta0 = diag(1000, 44),

+ mu0 = rep(0, 5), S0 = diag(100, 5), tau1 = 6.01, taus1 = 6.01,

+ taus2 = 2.01, nu = 8, psiinv = diag(1, 5))

A single Markov chain cycle of length 25, 000 was completed. The full chain was sub-sampled
every 4 steps after a burn in period of 5,000 samples, to give a reduced chain of length 5,000.

R> mcmc <- list(nburn = 5000, nskip = 3, ndisplay = 1000, nsave = 5000)

For each gender and type of school the density of the abilities distribution was evaluated on a
grid of 100 equally spaced points in the range (−3, 8). The following code was used to create
the design matrix for the prediction, where the first column corresponds to the intercept, the
next three columns correspond to the dummy variable for the type of school (types), and the
last column corresponds to the gender indicator (1= girl).

R> zpred <- matrix(c(1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,

+ 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,

+ 1, 0, 0, 1, 1), nrow = 8, ncol = 5, byrow = TRUE)

Based on the previous specification, the LDDPrasch function was used to fit the model, using
the following code:

R> fitLDDP <- LDDPrasch(formula = y ~ types + gender, prior = prior,

+ mcmc = mcmc, state = NULL, status = TRUE, zpred = zpred,

+ grid = seq(-3, 8, len = 100), compute.band = TRUE)
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Figure 5: SIMCE data: Posterior estimates (mean and point-wise 95% HPD intervals) for
the ability distribution for type of school and gender. The results for boys are shown in
panels (a), (c), (e) and (g) for type of school Public I, Public II, Private I, and Private II,
respectively. The results for girls are shown in panels (b), (d), (f) and (h) for type of school
Public I, Public II, Private I, and Private II, respectively.
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Different shapes in the resulting posterior densities were observed. Figure 5 displays the
posterior mean and point wise 95%HPD interval for the random effects distribution for dif-
ferent combinations of the predictors. The density estimates show a clear departure from the
commonly assumed normality of the random effects distributions. We found no important
differences in the behavior of boys and girls. Children in Public I and II schools showed a
similar skewed to the right random effects distribution. The estimated abilities distributions
for children in private schools were shifted to the right in comparison with the distribution
observed for children from public schools. This shift was more pronounced for children in
fee-paying schools that operate solely on payments from parents and administered by the
private sector (Private II) than those from schools financed by the state and administered
by the private sector (Private I). A bimodal random effects distribution was observed in the
abilities distributions from private schools.

6. Concluding remarks

Because the main obstacle for the practical use of BSP and BNP methods has been the lack
of estimation tools, we presented an R package for fitting some frequently used models. Until
the release of DPpackage, the two options for researchers who wished to fit a BSP or BNP
model were to write their own code or to rely heavily on particular parametric approximations
to some specific processes using the BUGS code given in Peter Congdon’s books (see, e.g.,
Congdon 2001). DPpackage is geared primarily towards users who are not willing to bear the
costs associated with either of these options.

Chambers (2000) conceptualized statistical software as a set of tools to organize, analyze
and visualize data. Data organization and visualization of results is based on R capabilities.
Chambers (2000) also proposed requirements and guidelines for developing and assessing
statistical softwares. These requirements may be discussed with respect to DPpackage.

1. Easy specification of simple tasks: The documentation contains examples, and similar
problems can be analyzed by moderate modifications of the model description files. The
examples have been chosen so that they demonstrate the functionality of DPpackage
with well-known datasets.

2. Gradual refinement of the tasks: The user can enhance a nonparametric model by adding
covariates, and by fixing part of the baseline distributions and the precision parameters.

3. Arbitrarily extensive programming: DPpackage has a programming environment for
implementing sophisticated proposal distributions, if the default proposals are not suf-
ficient. Each source file contains a detailed specification of the corresponding function
which is useful for potential user/developers who wish to modify the source files. In
addition, we are currently working on a DPpackage developer’s manual that will help
users who would like to add new functionality to the package.

4. Implementing high-quality computations: Also, because the source code in a compiled
language is available, new procedures can be added and the old ones modified to improve
performance and flexibility.

5. Embedding the results of items 2–4 as new simple tools: DPpackage has the capability of
continuing a Markov chain from the last value of the parameters of a previous analysis.
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As the MCMC samples are saved in matrix objects, both parts of the Markov chain can
be easily merged.

Many improvements to the current status of the package can be made. For example, all
DPpackage modeling functions compute conditional predictive ordinates for model compari-
son. However, only some of them compute the effective number of parameters pD and the
DIC. These and other model comparison criterion will be included for all functions in future
versions of DPpackage.

The implementation of more models, the development of general-purpose sampling functions,
real-time visualization of simulation progress, and the ability to handle large data set prob-
lems, through the use of sparse matrix techniques (George and Liu 1981), are the topic of
further improvements.
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Católica de Chile. URL http://www.mat.puc.cl/~ajara/Publications.html.

Besag J, Green P, Higdon D, Mengersen K (1995). “Bayesian Computation and Stochastic
Systems.” Statistical Science, 10(1), 3–66.

Carlin BP, Louis TA (2008). Bayesian Methods for Data Analysis. 3rd edition. Chapman and
Hall/CRC, New York.

Chambers JM (2000). “Users, Programmers, and Statistical Software.” Journal of Computa-
tional and Graphical Statistics, 9(3), 404–422.

Chen MH, Shao QM (1999). “Monte Carlo Estimation of Bayesian Credible and HPD Inter-
vals.” Journal of Computational and Graphical Statistics, 8(1), 69–92.

http://www.mat.puc.cl/~ajara/Publications.html


26 DPpackage: Bayesian Semi- and Nonparametric Modeling in R

Christensen R, Hanson T, Jara A (2008). “Parametric Nonparametric Statistics: An Intro-
duction to Mixtures of Finite Polya Trees.” The American Statistician, 62(4), 296–306.

Congdon P (2001). Bayesian Statistical Modelling. John Wiley & Sons, New York.

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society
B, 34(2), 187–220.

De Boeck P, Bakker M, Zwitser R, Nivard M, Hofman A, Tuerlinckx F, Partchev I (2011). “The
Estimation of Item Response Models with the lmer Function from the lme4 Package in R.”
Journal of Statistical Software, 39(12), 1–28. URL http://www.jstatsoft.org/v39/i12/.

De Boeck P, Wilson M (2004). Explanatory Item Response Models: A Generalized Linear and
Nonlinear Approach. Springer-Verlag, New York.

De Iorio M, Johnson WO, Müller P, Rosner GL (2009). “Bayesian Nonparametric Nonpro-
portional Hazards Survival Modelling.” Biometrics, 65(3), 762–771.

De Iorio M, Müller P, Rosner GL, MacEachern SN (2004). “An ANOVA Model for Dependent
Random Measures.” Journal of the American Statistical Association, 99(465), 205–215.

Dey D, Müller P, Sinha D (1998). Practical Nonparametric and Semiparametric Bayesian
Statistics. Springer-Verlag, New York.

Doran H, Bates D, Bliese P, Dowling M (2007). “Estimating the Multilevel Rasch Model:
With the lme4 Package.” Journal of Statistical Software, 20(2), 1–18. URL http://www.

jstatsoft.org/v20/i02/.

Duan JA, Guindani M, Gelfand AE (2007). “Generalized Spatial Dirichlet Process Models.”
Biometrika, 94(4), 809–825.

Dunson DB, Park JH (2008). “Kernel Stick-Breaking Processes.” Biometrika, 95(2), 307–323.

Dunson DB, Pillai N, Park JH (2007a). “Bayesian Density Regression.” Journal of the Royal
Statistical Society B, 69(2), 163–183.

Dunson DB, Yang M, Baird D (2007b). “Semiparametric Bayes Hierarchical Models with
Mean and Variance Constraints.” Technical report, Department of Statistical Science, Duke
University. URL http://ftp.stat.duke.edu/WorkingPapers/07-08.html.

Escobar MD (1994). “Estimating Normal Means with a Dirichlet Process Prior.” Journal of
the American Statistical Association, 89(425), 268–277.

Escobar MD, West M (1995). “Bayesian Density Estimation and Inference Using Mixtures.”
Journal of the American Statistical Association, 90(430), 577–588.

Fariña P, Quintana FA, San Mart́ın E, Jara A (2011). “A Dependent Semiparametric
Rasch Model for the Analysis of Chilean Educational Data.” Technical report, Depart-
ment of Statistics, Pontificia Universidad Católica de Chile. URL http://www.mat.puc.
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