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Abstract

R users can often solve optimization tasks easily using the tools in the optim func-
tion in the stats package provided by default on R installations. However, there are
many other optimization and nonlinear modelling tools in R or in easily installed add-on
packages. These present users with a bewildering array of choices. optimx is a wrapper
to consolidate many of these choices for the optimization of functions that are mostly
smooth with parameters at most bounds-constrained. We attempt to provide some diag-
nostic information about the function, its scaling and parameter bounds, and the solution
characteristics. optimx runs a battery of methods on a given problem, thus facilitating
comparative studies of optimization algorithms for the problem at hand. optimx can also
be a useful pedagogical tool for demonstrating the strengths and pitfalls of different classes
of optimization approaches including Newton, gradient, and derivative-free methods.

Keywords: minimization, maximization,wrapper, R, scaling, Newton, gradient.

1. Background

Most modern software systems for scientific computation are now large, complex aggregations
of tools and interface components. The system of interest to us here, R (R Development Core
Team 2011), is both a statistical package and computing language with extensive compu-
tational and graphical capabilities. It is not alone. There are other statistical tools (SAS,
Genstat, Stata), as well as mathematical packages such as Mathematica, Maple, MATLAB, and
Euler, and this is but a small sample of the available options.

Users of such complex systems often have a choice between several different tools for the
solution of a given problem. Novice users may have difficulty appreciating which is appropriate
to their situation. There may also be different interface or syntax requirements to use each
tool. Optimization tools, in particular, frequently present users with difficulties. Users who
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are experienced with the software system may still be unfamiliar with the vocabulary and
context of optimization. It is clear to us from postings on the R-help mailing list (https:
//stat.ethz.ch/mailman/listinfo/r-help) that many users of optim and related tools
are poorly informed about optimization, even if they have strong statistical knowledge. For
example, few statistical workers are experienced in modifying the expression of mathematical
functions to render them numerically stable (re-parameterization). Most users, ourselves
included, find it tedious or difficult to provide gradient information. There may be multiple
optima, plateaux or nearly flat regions on the functional surface, so that optimization tools
can return answers that are not acceptable to the user as solutions to the problem at hand,
even if they satisfactorily approximate the given optimization sub-task. McCullough and
Renfro (2000) and (McCullough 2004, Chapter 8) point out that there are many reasons that
a solver, unknowingly misused by a researcher, can return an incorrect answer. Sometimes,
these inaccuracies can have serious implications as exemplified by Dominici (2002).

Three of the methods in optim ("Nelder-Mead", "CG", "BFGS") were chosen and adapted
by one of us (Nash 1979) for use on computers with at most 8K bytes (that is K, not M)
of memory for both program and problem data. The Pascal codes in the second edition of
Nash (1979) in 1990 were converted to C using p2c (Gillespie 1993) and then interfaced to R
by Brian Ripley. At the time this was done, BASIC codes were available that have extended
features such as parameter bounds (box constraints, Nash and Walker-Smith 1987). Some
of these ideas have recently been made available in R packages Regmin (Nash 2011a) and
Rvmmin (Nash 2011b).

The 1970s vintage optim methods are still usable and useful. However, statistical problems
and optimization techniques have evolved. There are also useful optimization packages for R
exist outside of optim. Besides updating of some current R implementations of optim and
other optimization tools, tools to help users to better set up their problems and to understand
the output from optimization tasks are also needed.

Ultimately, we would like a package option "GUIDED" to assist the user in developing his or
her problem and in calling the appropriate function(s). In this, we take inspiration from the
decision tree for optimization software of (Mittelman 2008). However, our present work has
more limited aims.

We have aggregated a useful set of the existing tools for optimizing mostly smooth functions
of unconstrained or bounds-constrained parameters under a common calling syntax that is
close to that of optim. Within the optimx wrapper we have included checks on the parameter
bounds, if supplied; a computation of some scaling diagnostics; and some solution analysis,
primarily checks on the Karush-Kuhn-Tucker conditions (see Chapter 3 of Gill et al. 1981).
The process of developing optimx has revealed the majority of the issues we are likely to
encounter in building a comprehensive interface to R optimization facilities in cooperation
and collaboration with others.

Thus, this article describes and justifies the main features of optimx (Nash and Varadhan
2011), shows how this tool might be used, and presents some of the software engineering
issues encountered in building and maintaining an optimization infrastructure like optimx.

2. Function minimization approaches

In order that a single function call can be organized to address a variety of methods, it is
helpful to have a categorization of optimization methods, which this section will supply.
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We will focus on the minimization of general nonlinear functions of n parameters. These
parameters may have bounds, often called box constraints. Thus, we wish to solve the problem

x* = argmin(f(z)) subjectto L<z<U (1)

where z € R™ and f : R" — R. Ideally, we would like to assume f() is smooth, that is,
the function and all its derivatives are continuous. Many statistical problems do not fit this
assumption, but are sufficiently well-behaved that the function to be minimized is continuous,
with first and second derivatives defined and continuous in all but a restricted subset of
arguments. Problems with non-smooth objectives are the subject of ongoing work outside the
scope of this article.

To maximize a function, we will minimize the negative of that function. The special case that
f() is a sum of squared components (nonlinear least squares) has a large place in statistical
computing and also has special tools in R for its solution, in particular the function nls
based on Bates and Watts (1988). Such problems, for which general optimization tools are
usually not as reliable or efficient, are nonetheless common as tests, including many of the
test problems we use.

Methods for function minimization are most easily categorized by their use of derivative infor-
mation. Derivative-free methods require only the function to be evaluated. Gradient methods
use function values and gradients. Newton-like methods employ the second derivatives of the
function (Hessian matrix) and the gradient as well as the function value. Different conditions
allow different methods to be best suited to a particular problem, which may require specialist
knowledge. This has led to a lively debate on the level of knowledge users need to safely use
optimization tools intelligently.

It is also common to use numerical approximation of derivatives so that gradient methods
can be used when only function values are provided, but a first-order finite-difference ap-
proximation of a gradient requires p function evaluations per iteration, and this can be time-
consuming. Our experience and that of others is that analytic derivatives usually, but not
always, give more accurate solutions much more efficiently.

3. Tools in R for function minimization

Let us consider some of principal tools in R for the problem defined in Equation (1). The
base package in R has the optim function which includes five tools for function minimization:
"Nelder-Mead", "BFGS", "CG", "SANN" and "L-BFGS-B". The default is the "Nelder-Mead"
method from the second edition of Nash (1979), which is derivative-free. "CG" is a gradient
method, while "BFGS" and "L-BFGS-B" are quasi-Newton methods. "BFGS" is the Nash (1979)
version of the Fletcher (1970) variable metric method, while "L-BFGS-B" is a limited memory
quasi-Newton method of Byrd et al. (1995). The similarity in the names is unfortunate
in hiding rather large differences in underlying algorithms. For example, "BFGS" builds an
explicit matrix approximation to the inverse Hessian and uses a simple step-length backtrack
line search while "L-BFGS-B" uses a compact representation for the inverse Hessian and a true
line search as well as dealing explicitly with bounds constraints. "CG" offers three strategies
for the conjugate gradient method from Nash (1979).

The base package also has a function nlm (Schnabel et al. 1985) which is a Newton-like
method, and nlminb from the Port library (Fox 1997) — unconstrained and box-constrained
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optimization using PORT routines written by David Gay at Bell Labs (imported to R by
Douglas Bates) — which also uses gradients.

Outside the base package, the BB package (Varadhan and Gilbert 2009) includes the spg
function that uses projected gradients (Birgin et al. 2000). The most recent version of the
package can readily handle linear equality and inequality constraints, where the projection is
obtained by solving a quadratic programming sub-problem within each iteration. spg can also
handle nonlinear constraints provided the user can develop the correct projection for them,
but this is no trivial task except under special cases.

ucminf (Nielsen and Mortensen 2011) is another implementation of the (unconstrained) vari-
able metric approach (inverse Hessian BFGS update and line search) that is used by the
optim method BFGS, but its line search and strategic settings may give better performance.
A related effort is Rvmmin, an all-R version of the general algorithm with bounds constraints
as well as temporarily fixed parameters (masks).

More information than the above has been captured in the Comprehensive R Archive Network
(CRAN) task view “Optimization and Mathematical Programming” (Theussl 2011).

Recent innovations in optimization include a modification of the CG code to use a suggestion
by Dai and Yuan (2001). There is further work in this vein by Hager and Zhang (2006b) and
Hager and Zhang (2006a) which remains to be investigated for its potential for use in R. Nash
has coded the Dai/Yuan approach purely in R and added box constraints, yet the totality
is no more complex than the existing CG implementation in optim. This is available as the
Rcgmin package.

Another development has been the interfacing of several quadratic approximation approaches
of Powell (2002, 2006, 2008) by Katherine Mullen (aided by John Nash, Douglas Bates and
Ravi Varadhan) in the form of the minga package (Bates et al. 2011). This includes the three
derivative-free methods uobyqa, newuoa, and bobyga. uobyga is Powell’s original Fortran
code. uobyga appears to be superseded by newuoa of which bobyqga is the box-constrained
version. Ongoing work may allow us to confirm bobyga can optimize unconstrained problems
as efficiently as newuoa, and whether both dominate uobyqa, thereby simplifying the package
structure and documentation. Powell believes that users need to set control parameters for his
routines, while the general spirit of R functions is that default settings should at least provide
safe operation. This is an important issue that requires testing, analysis and compromise
to resolve. Indeed the Fortran version of bobyqa described in (Powell 2008) was not made
available until January 2009 pending selection of some options.

There are other packages concerning optimization among the approximately 3000 available
in the CRAN repositories of which the master site is at http://CRAN.R-project.org/. Sev-
eral packages for optimization specialized to problems in genomics are in the Bioconductor
collection (Gentleman et al. 2004). Many developmental packages, including some variants of
optimx and some of the tools it uses can be found on R-Forge, http://R-Forge.R-project.
org/. These large collections of packages underline two general and continuing issues for all
large scientific computing systems like R, that is, the selection of appropriate packages for
given problems and the aggregation of packages to obtain reliable and usable wrapper-tools
that are more accessible to users. optimx is an attempt to address these issues. Currently, in
optimx we provide a wrapper function that results in calls to the algorithms listed in Table 1.
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Algorithm Package  Method type Box constraints

Nelder-Mead stats Derivative-free  No
BFGS stats Quasi-Newton No
L-BFGS-B stats Quasi-Newton Yes
CG stats Gradient No
nlminb stats Newton Yes
ucminf ucminf Quasi-Newton No
nlm stats Newton No
uobyqa minga Derivative-free No
newuoa minga Derivative-free  No
bobyga minga Derivative-free  Yes
Rcgmin Rcgmin  Gradient Yes
Rvmmin Rvmmin Quasi-Newton Yes
spg BB Gradient Yes

Table 1: Optimization algorithms included in optimx.

4. A motivating example

To illustrate why optimx is a useful addition to CRAN, we consider the modeling of the
mineralization of terbuthylazine (Johannesen and Aamand 2003). This maximum likelihood
estimation problem was introduced to us by Anders Nielsen as part of work with the National
Center for Ecological Analysis and Synthesis (NCEAS) Non-Linear Modeling Working Group.
In abbreviated form, the problem involves the application of “free” terbuthylazine (a pesticide),
after which there are kinetic processes by which this is converted to and from a bound state,
with a concurrent one-way conversion to a mineralized form. The data consists of the amount
of the mineralized form at 26 time points, with initial amounts of free, bound and mineralized
form Fy = 100, By = 0 and My = 0. The model has three equations,

dBt/dt = —ki1By+ koF}
dF,/dt = k1B — (ks + ks)F,
AM,/dt = ksF,

However, the conservation of material means M; = 100 — By — F;. These equations can be
put into a matrix form by writing

_( B . B 0
Xt_(Ft) using XO_(lOO)

with the equations then consolidated as dX;/dt = AX; or their solution via the matrix
exponential as X; = exp(At) X, where

—ky ko
A = .
< k1 —(k?g + kg) )

Let Y; be the observed value of X3, subject to random error, such that Y; = X; + &;. We will
assume that the errors e, for different ¢ are independent of each other and follow a Gaussian
distribution: &; ~ N(0,0?).
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A negative log-likelihood can be computed as function nlogL as in the code below. optimx can
be applied to minimize nlogL with respect to the logarithms of the three kinetic parameters
(k1, ko, and k3) and o.

R> library("Matrix")
R> library("optimx")
R> dat <- read.table("min.dat", skip = 3, header = FALSE)
R> nlogl <- function(theta) {
k <- exp(thetal[1:3])
sigma <- exp(thetal[4])
A <- rbind(c(-k[1]1, k[2]), c(k[1], -(k[2] + k[3])))
x0 <- ¢(0,100)
sol <- function(t) 100 - sum(expm(A * t) }*} x0)
pred <- sapply(dat[, 1], sol)
-sum(dnorm(dat[,2], mean = pred, sd = sigma, log = TRUE))
}

Now carry out the optimization and display the result.

+ + + + + + + +

R> fit <- optimx(c(-2, -2, -2, -2), nlogL, hessian = TRUE,
+ control = list(all.methods = TRUE, trace = 2))

R> fit

par fvalues method fns
11 8.585494, -11.052841, 4.658852, 4.477432 153.3056 bobyqa 137
9 -19.173708, 17.416518, -44.176230, 2.533604 102.7661 Rcgmin 144
1 -27.551413, 26.888311, -64.750701, 2.533706  102.766 BFGS 73
5 -24.57290, 23.52085, -57.43591, 2.53360 102.766 nlm NA
10 -27.551412, 26.888313, -64.750702, 2.533601 102.766 Rvmmin 77
2 -14.051912, 11.625828, -31.597800, 2.533601 102.766 CG 560
3 -7.25629683, -1.4200733, -3.3243726, -0.3518798 19.26905 Nelder-Mead 223
8 -7.249683, -1.582542, -3.476132, -1.382814 0.9392184 ucminf 40
7 -7.249615, -1.582468, -3.476068, -1.382855 0.9392142 spg 217
4 -7.249608, -1.582466, -3.476067, -1.382813 0.9392142 L-BFGS-B 90
12 -7.249611, -1.582464, -3.476065, -1.382814 0.9392142 newuoa 3017
6 -7.249611, -1.582464, -3.476065, -1.382815 0.9392142 nlminb 32

grs itns conv KKT1 KKT2 xtimes

11 NA NULL 0 TRUE FALSE 26.206
9 69 NULL 0 TRUE FALSE 92.218
1 22 NULL 0 TRUE FALSE 46.927
5 NA 26 0 TRUE FALSE 33.906
10 18 NULL 0 TRUE FALSE 31.218
2 101 NULL 1 TRUE FALSE 256.048
3 NA NULL 0 FALSE FALSE 42.199
8 40 NULL O FALSE TRUE 42.663
7 NA 178 0 FALSE TRUE 176.043
4 90 NULL 0 FALSE TRUE 153.142
12 NA NULL 0 TRUE TRUE 569.952
6 120 27 0 TRUE TRUE 29.021



Journal of Statistical Software

Of the methods in the function optim, all but method SANN are subsumed in optimx, but
among them only L-BFGS-B has succeeded. Moreover, we copied Anders Nielsen’s formula-
tion of this problem that works with the logarithm of the parameters, guaranteeing that they
are positive and in some cases improving the scaling of the problem. When we used a formu-
lation in the direct scale of the parameters, with an approximately equivalent starting point,
again we found none of the optim methods gave a satisfactory minimum approximation, but
some of the additional methods in optimx did reasonably well, though the optimality tests
(referred to as KKT1 and KKT2 in the output and discussed later) were reported as not
satisfied.

We believe that it is important to be able to provide at least approximate solutions when
problems are presented in rather poor formulations, even as we wish to encourage and provide
guidance to better approaches. This has motivated the scaling and Karush-Kuhn-Tucker
(KKT) optimality tests in optimx.

5. From optim to optimx

We want optimx to offer a pathway to update the optimization methods in legacy codes where
optim is called by some R tools, for example, in time series and neural networks problems.
Thus optimx has a calling sequence intentionally similar to that of optim, namely,

Inf,
NULL,

optimx(par, fn, gr = NULL, hess = NULL, lower = -Inf, upper
method = c("Nelder-Mead", "BFGS"), itnmax = NULL, hessian
control = list(), ...)

The argument names here are almost identical to those for optim, though not necessarily in
the same order. par provides the vector of initial parameters. fn, gr, and hess are the user-
supplied functions to compute the objective function and optionally its gradient and Hessian
at a set of parameters. hess is not an argument to optim, but some methods callable by
optimx may be able to use the Hessian. lower and upper are the parameter bounds. method
is now a vector of methods that will be applied to a given objective function; in optim we
are restricted to a single choice. The function argument itnmax is a vector of iteration limits
for the chosen methods and corresponds to the scalar maxit element of the control list in
optim. For consistency with optim, the argument hessian is permitted as a logical variable
indicating whether the computed Hessian at the final parameter estimates should be returned.
The default is hessian = FALSE, but the element kkt of the control list, which determines
if the KKT optimality conditions will be tested, defaults to TRUE for any problem that does
not have a large number of parameters, and the Hessian will usually be computed.

The dot-dot-dot argument ... is used as in many other R packages to provide named data
to the objective, gradient and hessian functions. It could also be used to input controls to
particular optimizers that are extra to the ones provided by optimx, for example, parscale
values that are used only by some of the methods.

The control list serves the same general function as that in optim, but there are several new
options, some of which we describe below.

Some guidance and ease-of-use issues that we have considered and partially addressed in
optimx are:



8 Unifying Optimization Algorithms: optimx for R

e Indicators that the solution is optimal.
e Scaling tests.

¢ Permitting maximization of functions by simply setting the control argument maximize
to TRUE.

e Checking box constraints for validity.

For the first of these, we have included code to evaluate the KKT conditions (see Chapter 3
of Gill et al. 1981). The first-order KKT test checks whether the gradient at the final pa-
rameter estimate is small, and the second-order KKT test checks whether the Hessian at the
final parameter estimate is positive definite, except when some of the parameters are on the
boundary in which case the Hessian is allowed to be positive semi-definite. KKT tests are not
evaluated in high-dimensional problems since the computation of gradients and Hessians can
be prohibitively expensive. Note that for efficiency, we compute the Hessian as the Jacobian
of the gradient when a gradient function is available.

Bad scaling, in our experience, is a common cause of unsatisfactory results (second only to mis-
coded gradients for local optimization). optim allows for both parameter scaling and function
scaling, but these facilities are not, in our view, easy to use, and they complicate the optimizer
code. Such scaling facilities are also not a part of many other R optimization packages, making
it awkward to provide scaling generally within optimx in a consistent manner. However, we
include a test on the scaling of parameters and (where supplied) bounds. This test issues a
warning when we believe there are serious differences in scale in different dimensions.

To maximize a function, we need to minimize the negative of the objective function. That
is, within our code we must redefine the user objective and gradient function to the neg-
ative of those supplied. In optim, we can use the function scaling to do this by setting
control$fnscale = -1. In BB::spg, there is an explicit control argument maximize which
can be set to TRUE for maximization. We have used this construct in optimx because we
believe it is simpler for users than fnscale. Indeed, optimx will stop if users attempt to use
both maximize and fnscale.

Upper and lower bounds on parameters, that is, box constraints, are very helpful in making
users think about the scale and nature of the parameters being optimized. Indeed, our
experience is that asking the user for bounds encourages the user to propose much better
scalings and starting values. We caution that overly stringent bounds can interfere with
efficient optimization by some methods. Bounds are permitted in optimx via L-BFGS-B,
bobyga from minga, Rcgmin, Rvimmin, nlminb, and spg from BB.

There are several issues we considered tackling but, as yet, have only addressed in experimen-
tal codes. These are automatic choice of starting values, uncertainty measures on solution
parameters, masks (temporarily fixed parameters), and the handling of inadmissible argu-
ments to function or gradient sub-programs.

Users typically do not provide either scale or bounds, but nonlinear optimization codes rarely
allow them to escape providing starting parameters. Where particular problems are common,
we could follow the approach of the selfStart capability for nls. Unfortunately, the variety
of problems is daunting, and it is likely that progress to automatic selection of starting values
will be made where optimization problems arise within other packages, such as those for
maximum likelihood or subject-specific problems.
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Most statisticians want measures of uncertainty (“standard errors”) for the parameters deter-
mined from the optimization, i.e., the covariance matrix of parameters at the convergence.
This is an important concept, but depends on the origin and structure of the function be-
ing minimized. Therefore, we provide for return of the (approximate) Hessian matrix at the
suggested optimum by setting hessian = TRUE, which measures the curvature of the objec-
tive function at the final estimate. Measures of uncertainty can be easily obtained from the
Hessian matrix, except when one or more of the box constraints are active at the solution.

In Nash and Walker-Smith (1987) we borrowed an idea of Duggleby (1984) and also allowed
masks, that is, parameters which are frozen at a fixed value for a given “run” of a program,
but which can be allowed later to participate in the optimization. Masks are part of Rcgmin
and Rvmmin. An interface to masks is planned for optimx as soon as some clear practical
examples are available, and the essential structure for masks is already present in optimx.

Also from Nash and Walker-Smith (1987), we have considered ways to manage inadmissible
arguments to the objective function. This is often a cause of failure when, for example, the
square root of a negative number or a zero-divide is requested. In such cases, the objective
function code should return a value that can be interpreted as “objective is non-computable”.
Some minimization tools can cope with such returned data. For example, if there is a line
search, then we can reduce the step size and try again. However, this implies we need to modify
every minimizer. Some experimentation is already in process with an extension of Rvmmin
on R-forge that is set up to check for and handle “non-computable” returns. However, we
consider that we need to work with other developers to gradually integrate such capabilities
generally.

6. Capabilities and controls

optimx is a “wrapper” unifying many existing optimization tools under one calling sequence.
We want to use this as a prototype upon which to develop and incorporate better user interface
capabilities.

In unifying the calls to the various minimizers in R, we were forced to address several particular
matters. First, the control list varies considerably from package to package, and there is
both overlap and inconsistency. For example, output detail is controlled by the integer trace
in optim, the integer iprint in minga::bobyqga, the logical trace in BB::spg. We chose in
optimx to use the integer trace to control the volume of output generated.

Different functions have different calling syntax (number, meaning and order of arguments).
Cleaning this up is mostly a matter of detail work to recast the invocation. For example nlm
required us to adapt our wrapper to provide an objective function that can have gradient
and/or Hessian attributes specified.

As mentioned earlier, we added code to assess the KKT conditions for a satisfactory local
minimum. The control kkt defaults to TRUE to run KKT tests of results, since we believe they
provide important information to users. However, to avoid very long run times, we set kkt
FALSE if the problem has > 500 parameters when an analytic gradient function gr is supplied,
or > 50 parameters otherwise.

The user may also supply two tolerances kkttol and kkt2tol that are used to decide if a
gradient is near zero, if Hessian eigenvalues are negative, and if the ratio of the extreme
Hessian eigenvalues implies that some are essentially zero. The choice of defaults for these



10 Unifying Optimization Algorithms: optimx for R

parameters is challenging because of the range of problems and scalings that may be provided
by users. At the time of writing, kkttol defaults to 0.001 and kkt2tol defaults to le — 6.
Users are advised to consult the source code if they need to delve deeper into the KKT
conditions.

The numDeriv package (Gilbert 2011) makes it fairly easy to compute numerical approxima-
tions to gradients, Jacobians and Hessians. If the user supplies gradient or Hessian functions,
we automatically check them before starting the optimization by using numDeriv tools and
stop if there is a serious discrepancy. Note that some optimization tools, e.g., Rvmmin, allow
a choice of numDeriv or a simple forward difference approach to approximate derivatives,
but optimx simply passes along a null gradient function so that each method uses its own
numerical gradient approximation.

As mentioned above, we include a scale check on parameters and bounds. Currently, we warn
when the log of the range of a parameter exceeds 3, i.e., we want parameters to be between
1 and 20 in size approximately. Such tools are imperfect; we welcome discussion.

A logical control follow.on is set TRUE (default is FALSE) in the case that multiple methods
are specified will allow the final parameters of one method to be used as the starting set
for the next. For example, we might use Nelder-Mead as a first try with fairly arbitrary
starting values, then refine the solution with a gradient method such as L-BFGS-B. One of
the examples given in the 7optimx documentation uses a generalized Rosenbrock test function
via the invocation

R> ans9 <- optimx(startx, fn = genrose.f, gr = genrose.g, hess = genrose.h,
+ method = c("Nelder-Mead", "ucminf"), itnmax = c(200, 75),

+ control = list(follow.on = TRUE, save.failures = TRUE,trace = TRUE),
+ gs = 10)

where the number of cycles of each of the Nelder-Mead and ucminf methods is controlled by
the vector itnmax.

The logical control save.failures when TRUE (default) keeps “answers” from runs where the
method does not return with the value of conv equal to 0. This is useful to see what a method
has done when no apparent solution is obtained.

The logical control all.methods is set TRUE (default is FALSE) if we want to use all methods
that are applicable to the problem presented, that is, to the function, gradient, hessian and
box constraints. Within the code, it is simple to restrict the list of methods used, as we
may wish to avoid unnecessary computations. For example, at the time of writing, uobyqa is
omitted. We acknowledge that such trimming of the list of methods is contrary to the spirit
of all.methods, but fear a different name for this control would be cumbersome.

We find that all.methods is a very useful tool for comparing the performance of different
methods. A package developer who needs to solve an unconstrained or box-constrained opti-
mization problem can use this feature to compare the performance of various optimizers on
his class of problems, and choose the most appropriate one for his/her package. We have
already used this option in the terbuthylazine example.

The control sort.result is set TRUE by default to sort results in decreasing order of the final
function value so that the bottom of the output table lists the “best” results when multiple
methods are run.
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A logical control starttests defaults to TRUE to run tests of the function and parameters for
feasibility relative to bounds, to check gradient code against numerical approximations, and
to check parameter and bounds scaling before we run optimization methods.

By default, we emit warnings where appropriate, but may suppress them by setting the logical
control dowarn = FALSE.

On return, optimx provides a data frame where each row corresponds to one method. Each
row gives similar content to the list returned by optim for a single method, with the addition,
in particular, of the method name and the execution time. We have, however, chosen to use
the name fvalues for the returned best function values, rather than the name value. There
are also logical elements KKT1 and KKT2 reporting the results of (approximate) tests of
the Kuhn-Karush-Tucker conditions for gradient and hessian respectively. As with optim,
termination or “convergence” codes vary with the method. We believe it would be helpful to
standardize such codes, and welcome collaboration toward this goal.

We have also chosen to return other information, such as the Hessian approximation at the
solution, in the form of attributes. These have a sufficiently complicated structure to warrant
writing the utility function get.result, which facilitates the retrieval of useful information
from the returned data structure. Examples included in optimx show the usage. Users need
to be aware that optimx can return a large volume of data, especially when all.methods =
TRUE, and similarly generate a large amount of output when trace is set greater than 1.

Users intending to embed optimx in application packages or scripts should generally avoid
calling multiple optimization methods with optimx. The facility for calling multiple methods
is intended to streamline the choice of a method in such tasks, not to run a battery of
optimizations on each problem. Note that the “best” solution is, however, available in the
final row of the returned data frame. This will be the only row if a single method is called,

7. Conclusion and outlook

Ultimately, we believe the greatest benefit that we can aim to provide is advice, backed by
empirical evidence as well as mathematical and computational results, on suitable methods
for particular optimization problems that users encounter. Along with many similar software
systems, R has far too many tools that cannot easily be differentiated by users. The issue
is not that any of these tools are “bad”, but that there are so many the user gets confused
and may mis-apply them. Even those of us familiar with optimization may have difficulty
in discerning subtle yet important differences between methods and how they are invoked.
optimx is a first step to simplifying at least the mechanical details. Moreover, it can assist the
task of building a base of standardized testing to give well-supported advice that is focussed
on optimization tools in R.

Such a base of experience is not yet in place. In the course of the present work, we sometimes
found that our “traditional wisdom” concerning performance and reliability of methods was
at odds with the results of experimentation using optimx. The summary table produced
by optimx for comparing different methods has been very useful in this regard. We intend
an ongoing effort to provide easy-to-use software that we hope will allow for collaborative
evaluation and analysis of optimization methods and problems, as well as tools for regular
application to statistical problems.

optimx is a useful wrapper for unifying the optimization of essentially smooth, box-constrained

11
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problems. Development versions appear first on R-Forge (http://R-Forge.R-project.
org/), then move to CRAN (http://CRAN.R-project.org/package=optimx). We are con-
tinuing our development of optimx and related tools to include more capabilities and to
enlarge the understanding of them.
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