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Abstract

In standard fMRI analysis all voxels are tested in a massive univariate approach, that
is, each voxel is tested independently. This requires stringent corrections for multiple
comparisons to control the number of false positive tests (i.e., marking voxels as active
while they are actually not). As a result, fMRI analyses may suffer from low power to
detect activation, especially in studies with high levels of noise in the data, for example
developmental or single-subject studies. Activated region fitting (ARF) yields a solution
by modeling fMRI data by multiple Gaussian shaped regions. ARF only requires a small
number of parameters and therefore has increased power to detect activation. If required,
the estimated regions can be directly used as regions of interest in a functional connectivity
analysis. ARF is implemented in the R package arf3DS4. In this paper ARF and its
implementation are described and illustrated with an example.
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1. Introduction

The main focus of functional magnetic resonance imaging (fMRI) analyses has been the lo-
calization of brain regions that are active during a particular task. This analysis is usually
performed using massive univariate testing of voxels: testing each voxel separately for activa-
tion. A problem with this approach is that it requires ad-hoc multiple comparison corrections
to control false positives (i.e., marking voxels as active while they are actually not), and that
these corrections are often conservative (Nichols and Hayasaka 2003), or require stringent
assumptions about the data (Worsley et al. 1996).

http://www.jstatsoft.org/
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Conservativeness is especially problematic in cases where data are very noisy. For example,
in developmental studies children often show increased levels of variability in brain responses
(Samanez-Larkin and D’Esposito 2008), leading to smaller chances of detecting activation.
But conservativeness can even be problematic in ‘standard’ studies when there are small
differences in activation levels between conditions, or when there are few replications (sessions
or blocks).

In recent years the focus is not only on localization, but also on how brain regions interact
during task (and non-task) performance, so-called connectivity analysis (Biswal et al. 1995;
Friston et al. 1997; Bassett and Bullmore 2006; Honey et al. 2009; Sporns 2010, 2011; Smith
et al. 2011). For localization, and especially for connectivity analysis, it is important that all
active brain regions (i.e., regions of interest, ROIs) are identified (Eichler 2005; Waldorp et al.
2011). Here the problem of conservativeness is especially problematic as failing to localize
ROIs can bias the connectivity analysis.

To address these problems we developed a framework termed activated region fitting (ARF,
Weeda et al. 2009, 2011). The ARF framework is based on the observation that fMRI activity
measured in the brain has a spatial extent of several millimeters and that this activity is
spatially smooth (Hartvig 2002). In standard univariate analysis this observation is neglected
as each voxel is treated as independent from any other. Inherently, this leads to loss of
information and results in less power to detect activated voxels. Incorporating the spatial
smoothness between voxels (i.e., voxels close to each other in space behave similarly) can
therefore be advantageous, see for example Bowman (2005); Penny and Friston (2003); Lukic
et al. (2007); Xu et al. (2009). In ARF this is accomplished by assuming that every active
brain region can be described by a Gaussian shaped model. An entire fMRI volume can
then be described by multiple ‘parameterized’ Gaussian regions of activation. The Gaussian
shape was chosen because: (i) it has a plausible shape; a highly active center with activity
diminishing farther away from the center, (ii) has a relatively simple parameterization, and
(iii) is flexible enough to model regions of different shapes and sizes. This parameterization
allows for hypotheses on the location of an active region, the spatial extent of an active region,
and the amplitude of an active region.

FMRI analysis using ARF has several advantages. The main one is that ARF has increased
power to detect activation as the number of parameters in the spatial model is low compared
to the number of voxels it describes. In Weeda et al. (2009) and Weeda et al. (2011) it was
shown in simulations that ARF has increased power over standard methods (Bonferroni, false
discovery rate, Genovese et al. 2002, and a cluster-size threshold, Forman et al. 1995). Also,
when applied to empirical data of a verbal feedback experiment (Christoffels et al. 2007) and
a go/no-go experiment (van Gaal et al. 2010) an increase in power over standard methods
was observed.

Another advantage of the ARF method is that the spatial model can be directly used as ROIs
in a connectivity analysis (Weeda et al. 2011). This allows researchers to identify which brain
regions covary, without having to specify ROIs a-priori. Traditionally ROIs are either defined
a-priori based on anatomical regions, or based on the thresholded outcome of a general linear
model (GLM) analysis. When ROIs are based on anatomical regions this requires that the
constituents of the network are already known, which is often not the case. When ROIs are
based on GLM outcomes connectivity analysis can be hindered by conservativeness of the
multiple comparison correction procedure, therefore missing regions in the network. Since
ARF has increased power (Weeda et al. 2009, 2011), it gives a better estimation of the regions
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in the network. Also, parameters in the spatial model allow for direct selection of the voxels
within a ROI: assigning higher weight to voxels in the center of a region. This alleviates
the need for post-hoc procedures to calculate ROI summary statistics. ARF thus integrates
the localization of brain regions and the analysis of the functional connections between these
regions in one framework.

The ARF framework is implemented in R (R Development Core Team 2011) in the package
arf3DS4 (Weeda 2011). The overview of this paper is as follows. First, the ARF method
is described in more detail. Second, the arf3DS4 package will be explained. Third, the
application of ARF will be illustrated with an example dataset.

2. Activated region fitting

The method of activated region fitting was developed to increase the power of detecting active
brain regions by capitalizing on the smooth spatial pattern inherently present in fMRI data.
In ARF this smooth pattern is modeled by fitting a spatial model consisting of multiple
Gaussian shaped regions to fMRI data. By fitting models with different complexity (i.e.,
different numbers of Gaussian shaped regions) ARF determines a model that best describes
the data while keeping the number of parameters in the model low. Subsequently, hypothesis
tests are performed on the parameters of the optimal model, allowing to test hypotheses on
location, spatial extent and amplitude of each region. The active regions can also be used
as ROIs in a connectivity analysis. By using each active region as a ROI, ARF uses the
model parameters to estimate trial-by-trial activity. Correlating these trial-by-trial estimates
of different regions gives the functional connectivity estimates (i.e., covariation of regions)
between regions.

Since the details of the ARF methods are described fully in Weeda et al. (2009) and Weeda
et al. (2011), we limit ourselves here to the most important functions of the method. We will
describe in detail the data requirements, the spatial model, model selection, and connectivity
estimation.

2.1. Data

An ARF analysis is performed on unthresholded outcomes of a standard GLM analysis (Fris-
ton et al. 1995). To maintain flexibility this analysis can be performed in any fMRI analysis
package that supports export of fMRI data files in the NIfTI format, e.g., FSL (Smith et al.
2004), SPM (Friston et al. 2007), or R packages AnalyzeFMRI (Marchini and Lafaye de
Micheaux 2011; Bordier et al. 2011) or fmri (Tabelow and Polzehl 2011a,b). This allows
researchers to perform the basic fMRI analysis steps (e.g., registration, motion correction,
temporal filtering) and the GLM modeling steps in their preferred analysis package (see for
example Huettel et al. 2008; Jezzard et al. 2001; Lazar 2008, for an introduction to GLM
modeling). For the ARF method it is advised to not use spatial filtering (i.e., to not smooth
the data), as smoothing can impose an artificial Gaussian structure on the data, even in pure
noise cases, and therefore will result in overfitting. Standard, the output of a GLM analysis is
a 3 dimensional volume of β values with their associated standard errors (usually converted to
t or z values). For localization of active regions ARF requires several independent outcomes
of a GLM analysis. This can be different runs of an event-related design, or different blocks
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Figure 1: Overview of ARF analysis. First, data y (with t = 1, ..., T timepoints) of multiple
runs (r = 1, ..., R) are analyzed using standard GLM analysis. The unthresholded estimates
(b and σ2) are then averaged (creating b and w, respectively) and used to estimate the ARF
model. The model estimates are used to test hypothesis regarding location, spatial extent and
amplitude of regions. Functional connectivity estimates can be obtained by: (i) estimating
single trials y′ (with k = 1, ...,K trials) from the raw time series and (ii) correlating trial-by-
trial activity for each region in the model.

in a blocked design1. When estimating functional connectivity ARF requires in addition the
time series data on which the GLM was performed.

Let ytr be a (N × 1) vector of measurements of time-point t = 1, ..., T of run r = 1, ..., R
with N indicating the number of voxels in a volume. On these data (Figure 1, left panel) a
GLM analysis is performed. Let the outcomes of this GLM analysis (Figure 1, middle panel)
for each run be the (N × 1) vectors br (β values) and σ2r (squared standard errors of β)2.
The fitting of the ARF spatial model is performed on the averaged data (Figure 1, top-right
panel) over the runs:

b =
1

R

R∑
r=1

br (1)

1For purposes of conciseness we will use the term ‘run’ for an independent measurement (be it a run or a
block).

2Note that the outcomes can also be input as t values with the squared standard errors set to 1.
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with associated average variances:

w =
1

R2

R∑
r=1

σ2r (2)

For this the runs must be registered within each subject. In the ARF analysis the GLM
output b and σ2, and the averaged data b and w are used. To perform connectivity analysis
with ARF, in addition the raw time series data y are required (see Section 2.7).

2.2. Spatial model

The spatial model fitted to the averaged data consists of the sum of multiple Gaussian shapes
each with its own set of parameter values. The Gaussian shape is defined by parameters
for location, spatial extent (i.e., shape), and amplitude. Multiple Gaussian shapes are used
to describe all active regions in an fMRI volume. The spatial model for voxel n and region
j = 1, ..., J , with J indicating the number of regions in the model, is defined as:

f(xn, θ) =
J∑

j=1

θ10j
(2π)3/2|Σj |1/2

exp

[
−1

2
(xn − kj)

>Σ−1j (xn − kj)

]
(3)

In Equation 3 xn is a vector containing the x, y, and z coordinates for voxel n, kj is a vector
containing the center locations of a region (θ1j , θ2j , and θ3j respectively). The shape of region
j is defined by matrix Σj , defining the main axes and rotation of the elliptical shape of the
Gaussian:

Σj =

 θ24j θ4jθ5jθ7j θ4jθ6jθ8j
θ4jθ5jθ7j θ25j θ5jθ6jθ9j
θ4jθ6jθ8j θ5jθ6jθ9j θ26j


Where |Σj | denotes the determinant of Σj . In Figure 2 an example of the Gaussian model for
one region, overlaid to a structural brain image, is shown.

2.3. Parameter estimation

The parameters of the model are estimated by minimizing the weighted least squares (WLS)
function:

S(θ) = [b− f(X, θ)]>W−1[b− f(X, θ)] (4)

where f(X, θ) are the model estimates for each voxel in X, and W is a (N × N) diagonal
matrix with the averaged variances w on the diagonal. Since f is non-linear in θ the WLS
function is minimized using a Newton-type algorithm using the R function optim ("L-BFGS-B"
constrained optimization). To avoid invalid model predictions constraints are imposed on the
rotation parameters (θ7, θ8, and θ9) so they can only vary between −0.9 and 0.9. Furthermore
constraints are imposed on the location and width parameters so that they cannot exceed the
dimensions of the volume.

2.4. Model selection

The number of active regions (J) that best describe the fMRI data are determined by means
of model selection, that is, to find a model that fits the data well, while not being overly
complex. One metric that can incorporate model fit and complexity, and is especially useful
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Figure 2: Overview of the Gaussian shape model for one region, overlaid to a structural brain
image. The left panel shows the model in the x−y plane, the middle panel in the y−z plane,
and the right panel in the x−z plane. The region is centered at location (x, y, z) = (θ1, θ2, θ3),
with the width of the region defined by (θ4, θ5, θ6). The rotation of the region is defined by
(θ7, θ8, θ9). Not shown is θ10 which defines the level of activation (i.e., amplitude) of the
region. Note that the Gaussian is a continuous function, for purposes of clarity values outside
the 95% isocontour of the region are not shown.

in neuroimaging applications, is the Bayesian Information Criterion (BIC, Schwarz 1978;
Raftery 1999). The BIC penalizes for the number of parameters in the model, therefore
keeping model complexity under control. Without constants the BIC equals:

BIC = lnS(θ̂) + p lnN (5)

with p indicating the number of parameters in the spatial model. ARF fits models with
increasing numbers of regions to the data and chooses the model with the lowest BIC value
as the optimal model.

Currently the ARF method relies on the BIC for model selection to avoid complex models and
therefore to increase power to detect activations. The BIC was chosen because when there
is more than one model that is as close to the truth as possible, then the BIC will obtain
the smallest one, whereas, for example, the AIC will not (Sin and White 1996). In Weeda
et al. (2011) it was shown in simulations that BIC model selection yields adequate results.
However, these simulations only included a limited number of regions and therefore future
studies should address the question how well the BIC performs in more complex situations.
Also, future work might incorporate other selection criteria (e.g., AIC, QIC) so that multiple
criteria can be relied upon when choosing the optimal model.
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2.5. Hypothesis testing

Once a model is chosen, hypothesis tests can be performed. For this the standard errors of the
parameter estimates have to be calculated. Since the Gaussian shape is an approximation of
the shape of the ‘real’ activation, the spatial model is misspecified. Also, this model may be
misspecified in the number of regions that describe a dataset, as the number of regions in the
model may not equal the actual number of regions. To take into account this misspecification
(either in the number of regions or in the shape of the model), standard errors are derived using
the sandwich estimator (Waldorp 2009; White 1980). For a full description of the sandwich
procedure, see Weeda et al. (2009). Given this sandwich (co)variance matrix, hypothesis
tests are performed using Wald statistics (see Weeda et al. 2009 and Weeda et al. 2011). The
two most important hypotheses are (i) the amplitude of a region deviates from zero, and
(ii) the spatial extent of a region deviates from zero. Optionally hypotheses on the location
parameters can be tested to see whether they differ from a predefined location.

2.6. Procedure

The standard procedure for an ARF analysis is to fit models with different complexity (i.e.,
number of regions) to the data. Out of these models a BIC optimal model is chosen. Subse-
quently, hypotheses can be tested using the Wald statistics. For a model to be valid it must
fulfill three conditions: (i) the minimization routine has converged and parameter estimates
are not located on a bound, (ii) the model has the lowest BIC value (of a range of models), and
(iii) all regions in the model have an amplitude and spatial extent greater than zero according
to the Wald statistic. In general, the BIC optimal model has no or only a few regions that
do not pass the Wald test. This makes sense as a region with very small amplitude or extent
has little or no influence on the model fit, it will only ‘cost’ extra parameters.

2.7. Connectivity analysis

In addition to the localization of the active regions, a functional connectivity analysis, de-
scribing the (co)variation between the regions in the model, can be performed. In standard
connectivity analyses ROIs have to be chosen, either a-priori (based on anatomical regions)
or based on the outcomes of a GLM analysis. With ARF the activated regions in the model
can be directly used as ROIs in a connectivity analysis (Weeda et al. 2011).

Functional connectivity analysis can be performed after model fitting. For this we need to
estimate the single-trial data of the condition of interest. Note that we make a distinction
between single trials and time points. The latter are the raw data at each time-point, while the
former are estimates of brain activity of single trials and so need not be ordered temporally.
To estimate single-trial activity the raw time series are regressed to a model with for every
stimulus presentation (i.e., trial) a single regressor convolved with a hemodynamic response
function (HRF, see Boynton et al. 1996), see Figure 3 for an example of this conversion. The
outcome of this regression analysis thus leads to an estimate of brain activity of each trial.
ARF uses these single-trial data to estimate connectivity3 (see Weeda et al. 2011). For this,
we first concatenate the raw time series data of all runs R to obtain one time series, from

3Double dipping (Kriegeskorte et al. 2009) is a fundamental issue in fMRI analysis. In the ARF method
the locations of the regions are estimated from the mean activity map, whereas the connectivity is obtained
from the (co)variances. The mean and (co)variance are statistically independent (see e.g., Muirhead 1982).
Therefore, estimating functional connectivity using ARF is not affected by double dipping.
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Figure 3: Raw time series to single-trial estimation. The raw time series (y) are modeled
with a single (convolved) regressor for each stimulus presentation (at t = 10, 30, 60, 70, 85 in
this case). This results in estimates of activity (y′k) for each single trial k = 1, ...,K.

which we subsequently estimate the single-trial data. The outcomes of this analysis constitute
the data connectivity is estimated on.

Let y′k be the (N ×1) vector containing these estimated single-trial data for trial k = 1, ...,K.
Let Z be a (N × J) matrix with in each column the model estimates (f(X, θj), with unit
amplitude) for region j = 1, ..., J . For each trial k the single-trial data y′k are regressed on
the model:

y′k = Zγk + εk (6)

The vector of estimated trial-by-trial amplitudes γ̂k is then estimated:

γ̂k = (Z>Z)−1Z>y′k (7)

We then construct a (J × K) matrix G with in each column the trial-by-trial amplitudes
γ̂k. By correlating the rows of G we obtain a (J × J) matrix M containing the functional
connectivity estimates between regions (Figure 1, lower-right panel).

3. The arf3DS4 package

The activated region fitting (ARF) method is implemented in the arf3DS44 (Weeda 2011)
package for R (R Development Core Team 2011). This package was designed to work as
seamless as possible with standard fMRI analysis packages (e.g., FSL, Smith et al. 2004), and
therefore has a similar design: all data are stored in a predefined directory- and file-structure,
and functions perform their operations on these files. This has the advantage that all data
can be accessed easily, without putting too high demands on memory. It differs somewhat
from standard R usage, where usually no predefined directory structure is required.

Most functions in the arf3DS4 package save the objects they work on in predefined files in
the directory structure while also returning them to the R environment. The returned objects

4The arf3DS4 package can be obtained from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=arf3DS4, load the package by typing library("arf3DS4"). The current version of
arf3DS4 requires R version 2.12.0 or higher.

http://CRAN.R-project.org/package=arf3DS4
http://CRAN.R-project.org/package=arf3DS4
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thus act as a ‘working copy’ of the files in the experiment. This has the advantage that all
information (fMRI data, ARF objects) is always in the same location within the directory
structure, therefore facilitating analyses.

The arf3DS4 package uses S4 class objects. S4 classes have the advantage that the slots in the
classes are clearly defined and that classes can be used in a hierarchical way (e.g., inherited,
extended, see Appendix B for an overview of working with S4 classes). In arf3DS4 the S4 class
objects are used in an ‘object-oriented’ way, meaning that ARF functions often take the same
object as input and output. Most functions only modify (some of) the slots of the object and
return it afterwards. This differs from standard R usage where often the object returned by
a function is of a different type than the input object.

In the arf3DS4 package three classes are most important: the experiment class, holding
information on the directory structure, the data class, holding information on the data-files
in an experiment, and the model class, holding information on the fitted models. In the
next section these classes (together with some additional classes) will be explained in more
detail. First, it is explained how to set up and load an ‘experiment’ (i.e., the directory-
and file-structure). Thereafter, it is explained how to create and fit ARF models to data
in the experiment and how to customize behavior of minimization procedure, (co)variance
estimation, and Wald statistics calculation. Third, the procedure for finding an optimal
model is described. Finally, it is explained how to perform a connectivity analysis.

3.1. Setting up an experiment

The first step in an ARF analysis is to set up the ‘experiment’ structure. This means defining
the number and names of subjects in the analysis and the number and names of conditions.
Once these are defined, the outcomes of the GLM analysis must be copied to the appropriate
directories within the experiment structure. A last step is to perform the initial ARF data
processing: checking the fMRI data and creating the averaged fMRI data files.

Creating experiment directories

An ARF experiment is defined by an object of class experiment. This holds the information
on directory-locations, file-location, and number and names of subjects and conditions. To
create the experiment directories and experiment object call:

makeExpDirs(path, name, subjectind, conditionind)

In this function path is the path where the experiment with name name will be created,
subjectind is a character vector containing names of the subjects, and conditionind is
a character vector with names of conditions. For example, to create an experiment named
"Word Decision" on the desktop, with three subjects ("PP001", "PP002", and "PP003") who
each participated in two conditions ("Different Strings" and "Equal Strings"), type:

R> makeExpDirs("/Desktop/", "Word Decision", c("PP001", "PP002", "PP003"),

+ c("Different Strings", "Equal Strings"))

The directory structure of this experiment (located in /Desktop/Word Decision/) is shown
in Figure 4. The actual experiment object is saved in the experiment.Rda file. This is also
the file that will be read when loading the experiment. At this point the experiment still
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Figure 4: Directory structure for three subjects with two conditions.

Figure 5: Directory structure of a single condition.

contains no fMRI data, only the directories are defined.

Copying fMRI data files

For each condition of each subject the data must be copied. FMRI data must be in NIfTI
format (see Appendix A for an explanation of the NIfTI format and the fmri.data class).
Within the directory of each condition there is a predefined directory structure to hold the
fMRI data (see Figure 5, for the "Different Strings" condition of subject "PP001"). Within
this /data directory the /beta and /weights directories hold the actual fMRI data (br and
σ2r respectively).

When the input data are t statistics only files containing the t statistics have to be copied to
the /beta directory, the /weights can be left empty as the appropriate files will be created
automatically. When the input data are β values, these have to be copied to the /beta direc-
tory while their standard errors have to be copied to the /weights directory. For example,
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Slot Description type(length)

@n Number of (brain)-voxels (all voxels that have a
@mask value > 0).

numeric(1)

@mask Vectorized mask for brain/non-brain voxels. Indi-
cates for each voxel if it is used in the analysis (all
values > 0 are used).

numeric(N)

@ss Sums of squares of the data. numeric(1)

@runs Number of runs (R) in the condition. numeric(1)

@betafiles Vector with names of beta-files. character(R)

@weightfiles Vector with names of weight-files. character(R)

@avgdatfile Name of average beta-file. character(1)

@avgWfile Name of average weight-file. character(1)

@avgtstatFile Name of average t statistics file. character(1)

Table 1: Overview of slots in the data class.

in Figure 5 there were 4 runs (of t statistics) in the "Different Strings" condition, so the
only files copied were tstat_run1.nii.gz through tstat_run4.nii.gz, the other files were
automatically created upon loading the experiment.

Loading the experiment

When all files are copied, the experiment must be updated with information on fMRI data
location, filenames, runs, and if the data concern t statistics or β values. This information is
stored within objects of the class data (see Table 1 for an overview of the data class). These
objects are saved in the data.Rda files in each conditions’ directory (see Figure 5). Note
that data objects do not contain actual fMRI data. ARF can automatically gather informa-
tion of fMRI data in an experiment and update all data objects. For this, the experiment
must be loaded with the "set" argument. To do this for an experiment located in path
experimentpath type:

R> loadExp(experimentpath, "set")

This will first gather information of fMRI data and create averages (b in avgdata.nii.gz,
and w in avgweights.nii.gz, which will be saved in the /avg directory, see Figure 5).
Subsequently, loadExp() will update the experiment (and the data objects) and load the
former into memory. The next time the experiment is loaded, the "set" argument can be
omitted. Only when adding/removing subjects or conditions, or when moving the entire
experiment to a different location, the ’set’ argument must be given the first time the
experiment is loaded.

3.2. Creating and customizing a model

The core of the arf3DS4 package is fitting models of increasing complexity and selecting the
optimal model. The information on a model is stored in the model class. This class inherits
an object of the data class and extends it with slots containing information on the model (see
Table 2 for the slots in the model class).
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Slot Description type(length)

@convergence Convergence information. character(#)

@iterates Number of iterations of the minimization routine. numeric(1)

@minimum Value of objective function (S(θ̂)) at the minimum. numeric(1)

@estimates Vector of parameter estimates, with p = (10× J) numeric(p)

@gradient Gradient at minimum. numeric(p)

@hessian Hessian matrix (2nd order partial derivatives). matrix(p,p)

@varcov (Co)variance matrix (using sandwich estimation). matrix(p,p)

@warnings Warnings returned by estimation procedures. character(#)

@fit Fit measures of the model (BIC (1) and RMSEA
(2)).

numeric(2)

@wald Wald statistics. wald class.
@regions Number of regions in spatial model. numeric(1)

@startval Starting values. numeric(p)

@proctime Processing time for minimization (1) and sandwich
estimation (2), both in seconds.

numeric(2)

@valid Is the model valid? logical(1)

Table 2: Overview of slots in the model class.

Creating a model

A first step in performing the actual ARF analysis is creating a model. To create a model
call:

R> mod <- newModel(modelname, regions, subject, condition)

This will create a new model object named modelname for subject subject and condition
condition with regions region(s) in the spatial model, and passes it to mod. Simultaneously
this will create a directory named modelname in the /models directory of the given condi-
tion (see Figure 6 for an example). In this directory are the model.Rda file, containing the
ARF model object, the options.Rda file, containing the options of the ARF model, and the
start.Rda file, containing starting values of the model. Also, there is a /data directory with
the model estimates (avgmodel.nii.gz) and additional files used by the arf3DS4 package.

Figure 6: Directory structure of an ARF model.
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Slot Description type(length)

@start.method Method to obtain starting-values. Values can be
’use’: use values in mod@startval, ’load’: use
values in start.Rda, or ’rect’: determine values
from data.

character(1)

@start.maxfac Search window for starting-values of width parame-
ters. Increase this value to get larger width starting
values. Default is 1.

numeric(1)

@min.iterlim Iteration limit for the minimization procedure. numeric(1)

@min.boundlim Boundary limit for the minimization procedure. If
a parameter is located on a bound, the minimiza-
tion procedure will exit if this parameter stays on
a bound for @min.boundlim subsequent iterations.

numeric(1)

@min.routine Which function to use for minimization. Currently
only optim.

character(1)

@opt.method Which optim method to use. Currently only
L-BFGS-B.

character(1)

@opt.lower Lower bounds for parameters θ1, ..., θ10. numeric(10)

@opt.upper Upper bounds for parameters θ1, ..., θ10. numeric(10)

@sw.type Which method to use for sandwich estimation. Val-
ues are ’diag’: use diagonal residual elements,
’full’: use full residual matrix.

character(1)

@output Defines output during minimization: ’none’ sup-
presses output, ’progress’ displays a progress
window.

character(1)

Table 3: Overview of slots in the options class.

Note that there are two instances of the same model object at this stage, namely in the mod

object and in the object saved in the model.Rda file. All functions that use model objects save
this object to the model.Rda while also returning it (in this case to mod). Model objects can
also be saved manually by calling saveModel(mod). Now that the model is created, starting
values have to be defined, and optionally the settings of the minimization routine can be
modified.

Customizing the model: Options

A model can be customized by modifying (i) settings of the minimization procedure, (ii)
how starting-values of the model are calculated, and (iii) selecting a method for parameter
(co)variance estimation. For this, an object of class options (saved in options.Rda) is
available in each model directory (for an overview of the slots in the options object, see
Table 3). To modify the options load them first by typing:

R> opt <- loadOptions(mod)

After changing slots of opt a call to saveOptions(opt, mod) saves the options object. It
will be loaded automatically by all ARF functions.
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Customizing the model: Starting values

The last thing to do before a model can be fitted to the data, is specify starting-values.
There are several methods to obtain starting-values, and all can be modified by adjusting
the @start.method slot of the options object. To let ARF determine the starting-values
from the data, set @start.method to ’rect’. The method will then determine starting-
values for the location, width, and amplitude parameters of all J regions, using the method
described in Weeda et al. (2009). Performance of this method can be modified by the value
in @start.maxfac; increasing this value will lead to larger starting-values for region width.

Alternatively starting-values can be supplied manually. When @start.method is set to ’use’,
ARF uses starting-values in the mod@startval slot. When set to ’load’, ARF loads starting-
values from the start.Rda object in the model directory. The starting-values must be supplied
as a vector of length p beginning with the values of θ1 through θ10 for region 1, for region 2,
etc.

3.3. Fitting a model

When the starting values are set we can fit the model to the data. The simplest way to fit a
model is by calling:

R> mod <- fitModel(mod)

This will call the minimization routine, given the options in the options.Rda file. Note that
the above function-call is a clear example of the object-oriented use of the S4 classes: the
entire model object (mod) is passed to fitModel. This function updates (some) slots of the
object, and returns the updated object to mod again (and it also saves the updated object to
the model.Rda file).

If @output.mode is set to ’progress’, during minimization an extra window will open, show-
ing progress of the fit procedure. At each iteration the objective function value (S(θ̂)), the
norm of the gradient vector, and the decrease in the objective function are given. In addi-
tion the spatial extent parameters (θ7j , θ8j , θ9j) of the regions are displayed with indicators
whether they are at a bound. Display of the progress window can be suppressed by setting
the @output.mode slot of the options object to ’none’.

After model convergence the Hessian matrix is calculated, as well as the residuals of the
model and the BIC. Subsequently the model object is saved and returned. If the model does
not converge, the model returns (and saves) a model object with encountered errors in the
@warnings slot. In this case the @valid slot will be set to FALSE, otherwise the @valid slot
will be TRUE.

Sandwich (co)variance estimation

The next step is to calculate the sandwich (co)variance matrix of the parameter estimates,
as these are used in the Wald statistics procedure. The sandwich estimator requires the
(co)variance matrix of the residuals (b−f(X, θ̂)) to penalize the parameter (co)variance esti-
mates for model misspecification. ARF has two options to calculate the residual (co)variance
matrix, (i) using only the diagonal elements in this matrix (@sw.type = "diag"), or using
all elements (@sw.type = "full"). The "diag" method is very fast, but can slightly under-



Journal of Statistical Software 15

Slot Description type(length)

@consts Matrix where constants used for the hypotheses are
defined (defaults to all zero’s)

matrix(J,5)

@stats Values of Wald statistic matrix(J,5)

@df1 Vector of (model) degrees of freedom for the F test. numeric(5)

@df2 Vector of (error) degrees of freedom for the F test. numeric(5)

@pvalues P values for the F test on the Wald statistics. matrix(J,5)

Table 4: Overview of slots in the wald class.

estimate the variance of parameter estimates when data were smoothed with a large kernel
width (note that smoothing is not advised, see Section 2.1).

To calculate the (co)variances call:

R> mod <- varcov(mod)

This will calculate the sandwich (co)variance estimates, and also update the @varcov slot,
save model to the model.Rda file, and return it to mod. If any errors occur during estimation,
varcov() will add these to the @warnings slot. Errors may occur for example when the
(co)variance matrix is singular.

Wald statistics

Wald statistics are calculated for each region in the model separately. There are three hy-
potheses that can be tested: (i) the spatial extent (|Σj |) of region j is greater than zero, (ii)
the amplitude (θ10j) of region j is greater than zero, and (iii) the center (θ1j , θ2j , θ3j) of region
j is located at a predefined location. To estimate Wald statistics call:

R> mod <- wald(mod)

This will fill in the @wald slot of the model object with an object of class wald (see Table 4
for the slots of this class), save the model and return in it to mod.

Each column in the matrices of the wald class defines a hypothesis, while rows indicate
regions. The fourth column tests the spatial extent hypothesis, the fifth column the amplitude
hypothesis, and first three columns test the location hypotheses. To customize hypotheses
the matrix in @consts can be modified. For example, to test the hypothesis that the center
location of region j differs from a certain value (i.e., (θ1j , θ2j , θ3j) = (25, 12, 16)), the first
column of the jth row of @consts is set to 25, the second to 12, and the 3rd to 16. For extent
and amplitude hypotheses the columns of this matrix are left at zero (testing whether these
parameters deviate from 0).

3.4. Finding an optimal model

The range in which to search for an optimal model depends on the data. For example, are the
data a contrast between two active conditions or between an active and baseline condition?
The former will usually elicit far less activation than the latter.
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Determining a range of models

Ideally, the entire range of possible models is estimated, starting with a model with one
region and ending the search when the BIC has increased for successive models. In practice
this approach can be be very time consuming. Alternatively, the following approach might
be adopted.

First, plot the averaged t statistics and threshold this map liberally. This (hopefully) shows
some ‘clustered’ areas of activation. Count the number of clusters, and use this as the initial
number of regions in the model. Note that ARF always uses unthresholded data (optional
thresholding is only used for visualization purposes). Second, fit this model, and check the
Wald statistics. If all (or almost all) statistics for extent and amplitude are significant, the
optimal number of regions is probably higher than the initial estimate. If several statistics for
extent and amplitude do not pass the Wald test, the optimal number of regions is probably
lower than the initial estimate. Adjusting the number of regions in large steps (> 10 regions)
will give an approximate range in which the optimal model lies. All models within that range
can then be fitted and the one with the smallest BIC is chosen.

3.5. Connectivity analysis

Besides the localization of active regions, the arf3DS4 package can also estimate functional
connectivity between active regions. Connectivity estimates are derived after an optimal
model is found and requires the dataset used in the GLM analysis: the raw time series data
(ytr).

Locating trials in raw time series

The raw time series must be available in each subjects’ /funcs directory (see Figure 7 for
subject "PP001"). To calculate the single-trial data ARF needs to know at which time-points
in the raw-time series a stimulus was presented. For every run (r = 1, ..., R) in a condition,
the appropriate times in the raw times-series at which stimuli were presented must be set. To
set the timings call:

setFuncTimings(subject, condition, run, timings, func_data)

This changes the timings5 for the run run (of condition condition of subject subject) with
the values (in seconds) in vector timings and links them to the raw time series file specified
in func_data (which should be in the subjects’ /funcs directory). For example when the
stimuli of the 2nd run of the "Different Strings" condition (of subject "PP001") were
presented at 10, 30, 60, 70 and 85 seconds in the experiment, type: setFuncTimings("PP001",
"Different Strings", 2, c(10, 30, 60, 70, 85), "raw_time_series.nii.gz"). This
links the data of the second run to the data in the raw time series. Note that the raw time
series do not have to be in a single file. Just change func_data to the appropriate filename
in the call to setFuncTimings.

5When stimulus presentation lengths are available these can be added to the values of timings by using a
stimlen attribute: attr(timings, "stimlen") <- stim_len. In this case stim_len is a vector of the same
length of timings containing the presentation lengths.
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Figure 7: Location of files used for functional connectivity.

Calculating single-trial data

Once the timings are set, the actual single-trial data can be calculated. This is done by
calling:

R> makeSingleTrialEvents(subject, condition, sefilename)

This will concatenate the raw time series data (for runs r = 1, ..., R) and regress these to a
model with a single HRF6 regressor for each trial k = 1, ...,K (using the timings we’ve just
linked). When completed the function will create a file named sefilename (in this example
sefilename = "single_trials.nii.gz") in the /data/funcs directory (see Figure 7 for
subject "PP001") of condition condition of subject subject, with the single-trial data.

Estimating connectivity

Now that we have the single-trial data for all voxels in a volume, we only need to estimate the
single-trial amplitudes of the individual brain regions (i.e., the trial-by-trial activity of each
brain region). To perform this estimation call:

R> con <- fitConnectivity(mod, funcfilename)

This will use the model estimates in mod to obtain, for each single trial k in file funcfilename,
estimates for the amplitude of each region in the model (γ̂k). The vectors of trial-by-trial
amplitudes are then used to calculate correlations between regions. Output is an object of
class arfcorrelation containing slots for the trial-by-trial estimates (@timebyreg, (K×J)),
correlation matrix M (@corr, (J × J)), and their respective p values (@corr.pval). The
arfcorrelation object is also saved in the /data/funcs directory as a file named funcfilename

with a .Rda extension.

6By default a standard double-gamma HRF is used, the parameters of the double-gamma function can be
adjusted by modifying the values in the hrf.control-list passed to makeSingleTrialEvents.
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4. The ARF example data

In this section a step-by-step ARF analysis is performed based on the example data included in
the arf3DS4 package. The example data are a simplification of data found in real experiments
to allow the user to freely experiment with the data without the computational burden of a
real dataset. To see the ARF method applied to real data, the dataset used in Weeda et al.
(2011) is available to users (see Section 5).

The example data consist of three anatomically shaped regions (HarvardOxford Probabilistic
Atlas from FSL, Smith et al. 2004; Inferior Frontal Gyrus (IFG), as used in Weeda et al. 2011)
placed at spatially distinct locations in a 32×32×16 map, with white noise added. The time
series of each region consist of 10 stimuli convolved with a single-gamma HRF (Glover 1999),
spaced 10 seconds apart. The total length of each time series is 110 seconds with a 1 second
sampling interval. The amplitude of each stimulus was varied within the time series. Between
the three regions the amplitudes of the time series were set to correlate moderately (0.35, 0.5
and 0.7). In total two runs were simulated for the example data.

To analyze the example data, first load the arf3DS4 package:

R> library("arf3DS4")

Then, to load the dataset type:

R> data("arf-example-data")

This will create a function makeExample() in the R environment. Running makeExample()

will create the experiment directories, copy the data-files to the experiment, and load it. The
‘setting up’ part will thus be performed automatically. The directory structure of the example
experiment can be seen in Figure 8. By default, the experiment is created in the directory
where the arf3DS4 package was installed. Optionally, it can be saved in a user specified path.
Here we will make the example experiment directories on the desktop (you can modify this
to your own directory). To perform this action type:

R> makeExample("/users/wouter/Desktop/")

R will yield the following output:

Experiment correctly set. Experiment saved to /Users/wouter/Desktop/

example-experiment/experiment.Rda

Loaded experiment example-experiment (version 2.5-2)

indicating that the experiment passed al sanity checks and is loaded into the environment.

4.1. The experiment structure

When loading the experiment ARF stores several internal values in a separate environment
(.arfInternal). This environment is crucial to the ARF functions and must therefore always
be available. It also contains the experiment object. To see this experiment object type:

R> getExp()
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Figure 8: Expanded directory structure of the example experiment, showing all data and
object files.

[ ARF experiment ]

name: EXAMPLE-EXPERIMENT

path: /Users/wouter/Desktop/example-experiment/

subjects[1]

> wouter

conditions[1]

> A

This shows that the directories are in /Users/wouter/Desktop/example-experiment/, and
that there is one subject ("wouter") who participated in one condition ("A"). The func-
tion makeExample() has copied two files, tstat_a_run1.nii.gz and tstat_a_run2.nii.gz.
These contain t statistics and therefore are the only files that were copied. Subsequently
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Figure 9: Slice-by-slice plot of the average t statistics of the example experiment.

loadExample() was called with the "set" argument, creating the weight files
(weight_tstat_a _run1.nii.gz and weight_tstat_a_run2.nii.gz) and the average data
files (avgdata.nii.gz, avgweight.nii.gz, and avgtstat.nii.gz).

4.2. Getting a feel for the data

Now that the experiment is loaded, we can set up a model. First, it might be an idea to get
a feel for the data. This may help in finding an initial number of regions for a model. We’ll
first load the data object (not the actual fMRI data) of condition "A" of subject "wouter",
by typing:

R> dat <- loadData(subject = "wouter", condition = "A")

This loads the information on where the data files are located, and how they are named.
We can use the slots of this object to read in the fMRI data. More specifically, the average
t statistics file, which we will plot, is in the @avgtstatFile slot (containing the full path of
this file). To read in this data (now it is the actual fMRI data) type:

R> avgtstat <- readData(dat@avgtstatFile)

The fmri data is now in the avgtstat object. To plot the data the standard plot command
can be used:
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Figure 10: Plot of t values exceeding 1.65.

R> plot(avgtstat)

This will show a slice-by-slice overview of the data volume (see Figure 9). As Figure 9 shows
the entire range of data-values, even the ones close to zero, this might be misleading. We can
therefore better show a plot in which small values are omitted. We can for example use a
t value of 1.65 (roughly corresponding to applying an uncorrected threshold of p < 0.05) to
threshold the image. We can plot this image by supplying a zerotol argument to plot:

R> plot(avgtstat, zerotol = 1.65)

As can be seen in Figure 10 there are three quite distinct activation blobs, and a lot of
scattered single voxel activity. We therefore decide to start with three activated regions.

4.3. Fitting the model

To create a model with three regions we’ll call the newModel() function:

R> mod <- newModel(modelname = "3regions", regions = 3, subject = "wouter",

+ condition = "A")

This will create a model named "3regions" (with 3 regions in the spatial model) and save
it within the /models/3regions directory, while also passing it to mod. We want the ARF
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procedure to determine the starting values from the data, so we’ll have to change the default
options for this model. To change the @start.method slot to "rect", and save the options
again, call:

R> opt <- loadOptions(mod)

R> opt@start.method <- "rect"

R> saveOptions(opt, mod)

The model is now ready to be fitted. Instead of calling the fitting, (co)variance, and Wald
functions separately, we’ll this time use a wrapper function. By calling processModel(), ARF
will determine the starting values, run the minimization procedure (fitModel()), calculate
the (co)variance matrix (varcov()), and perform the Wald tests (wald()) on the amplitude
and spatial extent of the regions in the model:

R> mod <- processModel(mod)

The process may take one or two minutes (depending on the speed of the computer). While
processing the R console will look like this:

[ 3regions ]

arf process for data wouter - A started 2010-10-23 18:31:16

fitting 3 region(s)

After convergence this information will be appended with:

[optim] Optim converged in 232 iterations.

<modelfit>

minimum: 17737

BIC : 47397

RMSEA: 1.3

calculating variance/covariance matrix...ok

calculating wald statistics...ok

If the model is valid, the information of the fitted model is displayed:

[ ARF 3regions ]

regions: 3

valid: TRUE

warnings:

modelinfo:

[optim] Optim converged in 232 iterations.

fit (BIC,RMSEA): 47397 1.3

minimum: 17737.41

estimates:

[ 1] ( 28, 16, 9) [ 1.9 1.9 4.5 ~ -0.1 -0.0 0.0]* [ 666]*

[ 2] ( 7, 5, 9) [ 1.9 1.8 5.0 ~ -0.0 -0.1 0.0]* [ 642]*

[ 3] ( 9, 27, 9) [ 1.9 1.9 4.8 ~ 0.1 0.1 0.1]* [ 670]*

* Wald tests significant at .05 (uncorrected for number of regions)
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modelfile saved in '/Users/wouter/Desktop/example-experiment/subjects/wouter/

conditions/A/models/3regions/model.Rda'

arf process stopped at 2010-10-23 18:31:43

In this case we have a valid model without warnings. The minimization procedure converged
in 232 iterations7, with the minimum of the objective function S(θ̂) = 17737.41. The BIC-
value for this model was 47397. The parameter estimates for the three regions are grouped by
type, first the three location parameters, then the extent parameters (widths ~ rotation), and
finally the amplitude parameter. This model indicates that there are three (approximately
equally sized) regions at locations (28, 16, 9), (7, 5, 9) and (9, 27, 9), all approximately equally
active. The * behind the extent and amplitude parameters indicates that the Wald test was
significant, which for this model is true for all regions.

4.4. Selecting an optimal model

We now have a valid model, but we don’t know if this model has the minimum BIC value.
For this we have to fit other models with different numbers of regions and compare the BIC
values. Judging from the Wald tests (indicating that all regions have an amplitude and extent
greater than zero), we probably need at least these three regions in the model.

We will set up a simple sequence of models by making a loop around the model fit procedure.
We’ll try models with 2 (just to be sure) and 4 regions.

R> for(region in c(2, 4)) {

+ mod <- newModel(modelname = paste(region, "regions", sep = ""),

+ regions = region, subject = "wouter", condition = "A", options = opt)

+ mod <- fitModel(mod)

+ }

This will create a new model, one with 2 and one with 4 regions, and fit these models.
Notice that the opt object (containing the options from the 3 regions model) is passed to
the newModel() function. This creates a new options object for the new model using opt

as a template (this saves having to load and save the options at every step). After running
we’ll now have to decide which model has the minimum BIC. We can do this, by checking
the output on the console and seeing which model has the minimum, or more formally, by
loading each model and getting the BIC values from there. The fastest way to do this is by
calling the minBIC() function:

R> minBIC("wouter", "A")

This will check the models in the /A/models directory and return an object of class sequence
with the names of the models, the number of regions in each model, their BIC values, and
minimum (S(θ̂)).

<ARF sequence> modelname regions minimum BIC valid optimal

7The actual number of iterations may differ between platforms. The actual parameter estimates,
(co)variance estimates, and Wald statistics are equal across platforms within acceptable precision.
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2regions 2 18917 48479 TRUE FALSE

3regions 3 17737 47397 TRUE TRUE

4regions 4 17690 47446 TRUE FALSE

Note that only valid models are shown. The optimal model (with the lowest BIC value) is
also indicated. In this case our original model with 3 regions has the minimal value, and is
thus the optimal model for this dataset. We can plot the model estimates easily by calling
plot on the model object (that we’ll have to load again, since we used the same mod object
for the other models too). A model can be loaded by loadModel(). This function takes as
input the model name, subject name, and condition name. In our example this is:

R> mod <- loadModel("3regions", "wouter", "A")

It can also take as input a list of model names and a number indicating which model of the
list to load. To get a list of all models of a condition of a subject type:

R> mnames <- showModels("wouter", "A")

R> mnames

experiment: example-experiment

subject: wouter

condition: A

modelnames: [1] 2regions

[2] 3regions

[3] 4regions

The "3regions" model can then be loaded by typing:

R> mod <- loadModel(mnames, 2)

Now that our model is loaded, we can plot it by calling plot(mod) on the model object. This
has the same effect as reading in and plotting the model estimates file (/A/models/3regions/data
/avgmodel.nii.gz), which was saved there after minimization. Note that this file can also
be opened in fMRI data viewers like FSLView or MRICron. Figure 11 shows the estimated
model.

4.5. Connectivity analysis

The activated regions of our optimal model can be directly used as ROIs for connectivity
analysis. In the example dataset, the single-trial data (single_events.nii.gz) are already
calculated from the raw time series, and are located in the /data/funcs/ directory (see
Figure 8). The only thing to be done is to call the connectivity analysis:

R> con <- fitConnectivity(mod, "single_events.nii.gz")

This will calculate the trial-by-trial amplitudes and estimate the connectivity between the
regions. The function returns an object of class arfcorrelation to con and saves a file named
single_events.Rda in the /data/models/3regions/data directory. To see the correlations
between the regions we can look at the @corr and @corr.pval slots of con:
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Figure 11: Slice-by-slice plot of the estimated model.

R> con@corr

[,1] [,2] [,3]

[1,] 1.0000000 0.2172220 0.7340559

[2,] 0.2172220 1.0000000 0.1321265

[3,] 0.7340559 0.1321265 1.0000000

R> con@corr.pval

[,1] [,2] [,3]

[1,] 0.0000000000 0.3576002 0.0002291734

[2,] 0.3576002365 0.0000000 0.5786998380

[3,] 0.0002291734 0.5786998 0.0000000000

This is the 3× 3 correlation matrix of the 3 regions with the associated p values. As can be
seen only the amplitudes of region 1 and 3 (co)vary significantly (ρ1,3 = 0.73, p < 0.0017,
Bonferroni corrected).
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5. Empirical data

The outline in the previous section gives an overview on how to perform an analysis with ARF.
In practice datasets are far more complex, but the same steps can be followed nonetheless.
To give an overview of the analysis process for a real dataset, the data used in Weeda et al.
(2011) are available online (http://home.medewerker.uva.nl/w.d.weeda1/). The data are
from a single subject from a single condition of a go/no-go experiment where the go/no-go
cues were given subliminally (for details see van Gaal et al. 2010; Weeda et al. 2011). The
archive contains the experiment directory structure and the optimal model. To use the data,
extract the directory structure to a certain location and open the script in R. This will load
the experiment and open the optimal model with 23 regions. In addition, a slice-by-slice plot
of the estimated model is shown. This plot shows the 23 estimated active regions for the
unconscious no-go > go contrast. Values in red-yellow indicate regions where no-go activity
was greater than go activity, values in blue-lightblue indicate regions where go activity was
greater than no-go activity.

6. Conclusion

Activated region fitting (ARF) uses a spatial model to parameterize active brain areas. This
allows researchers to test hypotheses of location, spatial extent, and amplitude of these brain
areas with greater power. An additional advantage is that the parameters of the activated
regions can be directly used to calculate functional connectivity between brain areas.

The use of Gaussian shaped functions to estimate regions of activity has one fundamental
assumption, namely that the underlying activity is spatially smooth (Hartvig 2002). This
assumption reflects the trade-off between power to detect activation and spatial resolution.
In the current implementation ARF uses a relatively simple spatial model (a low number of
active regions) that increases the power to detect activation and reduces spatial resolution.
Using a more complex spatial model (that is, using multiple Gaussian shapes to model a single
active region), will increase the spatial resolution, but does so at the cost of decreased detection
power. Currently, ARF also assumes that there is tissue homogeneity within activated regions.
In other words, information about different tissue types is not taken into account in the
procedure. Future work might include this type of information. For example, shapes can be
used that are constrained to remain within the same tissue type.

Smoothing in combination with random field theory (RFT) is another way to increase power
in fMRI. It has, however, been shown that RFT can be conservative when the smoothing
is insufficient (Nichols and Hayasaka 2003). A possible solution to this problem is to adapt
the smoothing procedure, taking into account spatial correlations (Tabelow et al. 2006). In
ARF spatial information is used in the modeling step, as the parameters (i.e., the Gaussian
shapes) of the spatial model are estimated from the data, leading to increased power without
smoothing.

The arf3DS4 package (Weeda 2011), implementing the ARF method, is designed to be com-
patible with other fMRI analysis packages. This makes the usage of the package somewhat
different from standard R use. Especially the emphasis on the directory structure of an ex-
periment, requires different user input. The main difference in this sense is that all data
in an experiment (fMRI data, and R objects) are directly saved in, and accessed from, the
experiments’ directory structure.

http://home.medewerker.uva.nl/w.d.weeda1/
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The use of S4 classes, makes extensions of the arf3DS4 package possible. As the slots of
the classes are defined (and fixed), developing, for example, new methods for these classes
is straightforward. Possible extensions of the arf3DS4 package include functions for auto-
matically finding an optimal model, or functions to facilitate copying data to the directory
structure. The possibilities of using R for the analysis of fMRI data are endless (see for ex-
ample Tabelow et al. (2011)), and the arf3DS4 package can be a useful addition to the free
tools available for fMRI analysis.
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A. NIfTI files and the fmri.data class

The NIfTI format (NIfTI Data Format Working Group 2005) is implemented in the arf3DS4
package using the fmri.data class. Objects of this class contain the fMRI data, NIfTI header-
information, and additional information on the file (e.g., .hdr/.img pair or single .nii file).
Table 5 gives the most important slots of the fmri.data class that can be accessed. For all
NIfTI header information variables please refer to http://nifti.nimh.nih.gov/. An object
of class fmri.data holds all data in the @datavec vector. This vector is indexed with x
increasing fastest, then y, and then z. The filename and location of the fMRI data-file are in
the @name and @fullpath slots, the @extension slot holds the extension of the filename.

A file can be read using readData(filename), with filename indicating the name of the file
(including the path; if the path is not included the current working directory is searched).
readData returns an object of class fmri.data. To write to a NIfTI file type writeData(

object, datavector), with object an object of class fmri.data and datavector an op-
tional vector of datapoints. If datavector is not given the existing values in the @datavec slot
are used. The @fullpath, @name, and @extension slots are used to determine the filename
(and location) to which is written.

Access to the fMRI data of the fmri.data object can be direct via the @datavec slot (in
vectorized form) or using R array indexing (in a 3D/4D array). For example, to show the
data of the 16th slice out of a 3-dimensional volume type (with fmri_object an object of
class fmri.data):

R> fmri_object[ , , 16]

Also elements can be replaced using array indexing:

R> fmri_object[12, 32, 16] <- 0

this sets the element at x = 12, y = 32, and z = 16 to 0. Note that after this replacement,
the file has to be written to disk (using writeData(fmri_object)) to save the changes.

A.1. Visualizing fMRI data

There are summary and plot functions for the fmri.data class. The summary function gives

Slot Description type(length)

@fullpath Full path of the location of the file. character(1)

@name Name of the file (excluding extension). character(1)

@extension Extension of the file (.nii, .img/.hdr). character(1)

@gzipped Is the file gzipped (compressed)? logical(1)

@dims dims[1] indicates number of dimensions (3=3D vol-
umes, 4=4D time series), dims[2..4] indicate x,y,
and z dimensions, dims[5] indicate number of vol-
umes.

numeric(8)

@pixdim Voxel dimensions (in @xyzt_units units). numeric(8)

@xyzt_units Spatial and time units (default is mm and seconds). character(1)

@datavec Vector of datapoints for all x, y, z, t numeric(#)

Table 5: Overview of slots in the fmri.data class.

http://nifti.nimh.nih.gov/
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Variable Default value Description

zerotol 1e-3 Tolerance for zero-values, all values below the
value of zerotol are set to 0.

what c("all", "pos", "neg") Plot all "all" data, or only positive "pos" or
negative "neg" data.

col c("rgb", "gray") Modify the plot colors to be RGB, or grayscale.
volume 1 Which volume to plot (when data are time se-

ries).
slices 1:x@dims[4] Vector of slices to plot.
max.asp NULL Maximum aspect ratio between x and y axes.
device NULL Which device to plot to (can be for example

pdf(), x11(), or jpeg()). By default (when
device = NULL) the default plot device of R is
used.

Table 6: Plot options for the fmri.data class.

information on the distribution of the data (quantiles, interquartile range, minimum, max-
imum, mean, and median). Plotting an fmri.data object by default gives a slice-by-slice
overview of the data. There are several options that can be passed to the plot function to
modify how the data is plotted. The defaults of a call to plot(fmri_object) are shown in
Table 6. When plotting multiple slices to a graphics device that is to small, an error (most
likely: figure margins are too large) is thrown. Increasing the size of the graphics device
will usually solve this problem.

B. S4 classes

All arf3DS4 objects belong to an S4 class. These classes have predefined slots, holding
different types of information. To access a slot of a class use the ’@’ operator. So, for example
to access the @estimates slot of object mod of class model type:

R> mod@estimates

To replace this slot with the vector c(1, 2, 3) type:

R> mod@estimates <- c(1, 2, 3)

Alternatively arf3DS4 has specific accessor and replacement functions for all classes. These
functions are defined as follows: .classname.slotname(object), where classname is the
name of the class, slotname is the name of the slot and object is an object of class classname.
For example to access the @estimates slot of object mod of class model type:

R> .model.estimates(mod)

This method can also be used to replace the slot of the object: .classname.slotname(object)
<- value, will replace the appropriate slot of object with the value in value. For example,
to replace the @estimates slot with value type:
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R> .model.estimates(mod) <- value

The slots in the S4 classes have a predefined type (e.g., numeric, logical, character, matrix)
and trying to replace a slot with an object of a different type will result in an error. Most
S4 class objects in arf3DS4 also have default values of the slots. Objects of S4 classes can
be created (with slots at their default values) by typing: new("classname"), with classname
being the name of the class. To view the available slots of a class type slotNames(object).
To also view summaries of the values of these slots type str(object).
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