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Abstract

Item response theory (IRT) is widely used in assessment and evaluation research to
explain how participants respond to item level stimuli. Several R packages can be used
to estimate the parameters in various IRT models, the most flexible being the ltm (Ri-
zopoulos 2006), eRm (Mair and Hatzinger 2007), and MCMCpack (Martin, Quinn, and
Park 2011) packages. However these packages have limitations in that ltm and eRm can
only analyze unidimensional IRT models effectively and the exploratory multidimensional
extensions available in MCMCpack requires prior understanding of Bayesian estimation
convergence diagnostics and are computationally intensive. Most importantly, multidi-
mensional confirmatory item factor analysis methods have not been implemented in any
R package.

The mirt package was created for estimating multidimensional item response theory
parameters for exploratory and confirmatory models by using maximum-likelihood meth-
ods. The Gauss-Hermite quadrature method used in traditional EM estimation (e.g.,
Bock and Aitkin 1981) is presented for exploratory item response models as well as for
confirmatory bifactor models (Gibbons and Hedeker 1992). Exploratory and confirma-
tory models are estimated by a stochastic algorithm described by Cai (2010a,b). Various
program comparisons are presented and future directions for the package are discussed.

Keywords: multidimensional IRT, model estimation, exploratory item factor analysis, confir-
matory item factor analysis, bifactor, R.

1. Introduction

Item response theory (IRT) is widely used in educational and psychological research to model
how participants respond to test items in isolation and in bundles (Thissen and Wainer 2001).
It is a general framework for specifying the functional relationship between a respondent’s
underlying latent trait level (i.e., commonly known as ‘ability’ in educational testing, or
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‘factor score’ in the factor analysis tradition1) and an item level stimulus. IRT methodology
attempts to model individual response patterns by specifying how the underlying latent traits
interact with the item’s characteristics — such as an item’s easiness or discrimination ability
— to form an expected probability of the response pattern. As such, a major goal of IRT
is to separate the item parameters and population sampled characteristics from manifest
data so that both may be understood and studied separately. This parameter separation
often requires advanced numerical analysis techniques for effective estimation and can become
computationally burdensome as the model complexity increases.

The simplest and most popular IRT models are those that specify a single (i.e., unidimen-
sional) latent trait. Unidimensional IRT models have been predominant across social science
and educational research mainly because of historical traditions, but also because multidimen-
sional parameter estimation procedures were not fully developed or studied (Baker and Kim
2004; Reckase 2009). While unidimensional models are often simpler and can have various
interesting and important measurement properties (e.g., Rasch models), many psychological
constructs are unavoidably multidimensional in nature. For instance, unobservable constructs
might be understood as a combination of sub-scale components nested within — or along-side
— a more general construct, or as compensatory or noncompensatory factors that combine
to influence the item response probabilities. A major impediment when deciding to utilize
these models has been that the estimation of the item parameters in higher dimensional space
(due to increasing the number of factors) is computationally difficult for standard numerical
integration techniques. However, with recent advances in estimation theory, coupled with
the advances in computational power of personal computers, multidimensional IRT research
is finally beginning to blossom as a feasible statistical analysis methodology (Edwards 2010;
Reckase 2009; Wirth and Edwards 2007).

Several R (R Development Core Team 2012) packages can be used to fit IRT models, such as:
the ltm package (Rizopoulos 2006), which can handle the Rasch, general latent trait, three-
parameter logistic, and graded response models; the eRm package (Mair and Hatzinger 2007),
which can fit the rating scale and partial credit models; and the MCMCpack package (Martin
et al. 2011), which can estimate k-dimensional unconstrained two-parameter item response
models (normal, heteroscedastic, and robust estimation) using a Markov chain Monte Carlo
(MCMC) approach. While useful in their own right, these packages have limitations in that
ltm and eRm can only analyze unidimensional IRT models effectively while the multidimen-
sional extensions available in MCMCpack require prior understanding of Bayesian estimation
diagnostics, are computationally demanding, can require a large amount of memory storage,
and are only available for dichotomous item response sets.

2. Item response models

Item response models typically follow a monotonically increasing probability form with respect
to the underlying latent traits. Two well known and commonly used logistic response models
for dichotomous and polytomous item responses are the Birnbaum (1968) three-parameter
model (3PL; which can be reduced to a 1PL or 2PL model) and the Samejima (1969) ordinal
response model, respectively. Although first introduced as unidimensional modeling functions,
both models can readily generalize to incorporate more than one factor. Let i = 1, . . . , N

1The terms ‘traits’ and ‘factors’ are used interchangeably throughout.
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represent the distinct participants, j = 1, . . . , n the test items, and suppose that there are
m latent factors θi = (θi1, . . . , θim) with associated item slopes αj = (α1, . . . , αm). For the
multidimensional 3PL model, the probability of answering a dichotomous item correctly is

Φ(xij = 1|θi,αj , dj , γj) = γj +
(1− γj)

1 + exp [−D(α>j θi + dj)]
(1)

where dj is the item intercept, γj is the so-called ‘guessing’ parameter, and D is a scaling
adjustment (usually 1.702) used to make the logistic metric more closely correspond to the
traditional normal ogive metric (Reckase 2009).

For Samejima’s (1969) multidimensional ordinal response model, suppose that there are Cj
unique categories for item j, with intercepts dj = (d1, . . . , d(Cj−1)). Here we define the
boundary of response probabilities as

Φ(xij ≥ 0|θi,αj ,dj) = 1,

Φ(xij ≥ 1|θi,αj ,dj) =
1

1 + exp [−D(α>j θi + d1)]
,

Φ(xij ≥ 2|θi,αj ,dj) =
1

1 + exp [−D(α>j θi + d2)]
,

...

Φ(xij ≥ Cj |θi,αj ,dj) = 0

These boundaries lead to the conditional probability for the response xij = k to be

Φ(xij = k|θi,αj ,dj) = Φ(xij ≥ k|θi,αj ,dj)− Φ(xij ≥ k + 1|θi,αj ,dj) (2)

Note that the 3PL is in fact a special case of the ordinal response model (with the inclusion
of a lower asymptote parameter) and can be defined with boundaries in the same fashion,
where (2) would consist of only two possible values: [1−Φ(xij = 1|θi,αj , dj , γj)] and Φ(xij =
1|θi,αj , dj , γj). Recognizing this, and letting Ψ be the collection of all item parameters,
allows us to declare the likelihood equations more concisely.

Expressing the data in indicator form, where

χ(xij) =

{
1, if xij = k

0, otherwise

the conditional distribution for the ith n× 1 response pattern vector, xi, is

L`(xi|Ψ,θ) =

n∏
j=1

Cj−1∏
k=0

Φ(xij = k|Ψ,θi)
χ(xij) (3)

Assuming a distributional form g(θ) (most often a multivariate normal) the marginal distri-
bution becomes

P`(Ψ|x) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
−∞

L`(xi|Ψ,θ)g(θ)dθ (4)



4 mirt: Multidimensional Item Response Theory in R

where there are m-fold integrals to be evaluated. Finally, this brings us to the observed
data likelihood function. Letting X represent the complete N × n data matrix, the observed
likelihood equation is

L(Ψ|X) =
N∏
i=1

[∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
−∞

L`(xi|Ψ,θ)g(θ)dθ

]
(5)

2.1. Exploratory and confirmatory item analysis

IRT can be applied in a way that is analogous to exploratory and confirmatory factor analysis
for continuous variables (McDonald 1999). Historically, IRT models began in a confirmatory
spirit by modeling the item response probabilities as a function of a single underlying fac-
tor, with varying degrees of how the item slopes (e.g., Rasch versus 2PL) and intercepts
(e.g., ordinal, nominal, or partial credit) were related. But IRT can also be applied in an
exploratory manner, whereby the number of dimensions are not assumed known beforehand,
and are instead estimated empirically by comparing nested models (Bock and Aitkin 1981) or
by rotating the factor loadings matrix to find a more parsimonious structure (Bock, Gibbons,
and Muraki 1988). The TESTFACT program (Wood et al. 2003) was specifically designed for
this approach, but other software exist that use different methods of estimation, such as NO-
HARM (Fraser 1998) and Mplus’s various WLS estimators (Muthén and Muthén 2008), which
use limited-information algorithms, and BMIRT (Yao 2008) which uses Bayesian MCMC es-
timation techniques.

Confirmatory item analysis is useful when more than one factor is thought to be present in
the data but various constraints (such as zero slopes) should be imposed. One of the first
approaches in this spirit was the bifactor method (Holzinger and Swineford 1937) explicated
by Gibbons and Hedeker (1992) for dichotomous data. The inspiration for bifactor models
is that a single factor is believed to be present in all items, but with additional clusters of
local dependencies formed by other independent specific factors. This approach was later
generalized to polytomous data (Gibbons et al. 2007) and further expanded to accommodate
more than one local dependency caused by specific factors (Cai 2010c).

A more general approach that accommodates linear constraints and missing data can be found
in stochastic estimation techniques, such as Bayesian MCMC estimation with Metropolis-
Hastings sampling (Metropolis, Rosenbluth, Teller, and Teller 1953; Hastings 1970), Gibbs
sampling (Casella and George 1992), or by employing the Metropolis-Hastings Robbins-Monro
(MH-RM) algorithm (Cai 2010b). The MH-RM algorithm is explained in more detail below
since it is implemented in the mirt package.

3. Parameter estimation

IRT parameter estimation has been a progressive science over that past 60 years, moving from
heuristic estimation techniques to more advanced Bayesian MCMC methods (Baker and Kim
2004). The early focus was on estimating the item specific parameters for unidimensional
models, and until Bock and Aitkin (1981) introduced an EM based estimation solution IRT,
applications were largely limited to small testing situations (Baker and Kim 2004). The EM
algorithm, which was introduced by using fixed Gauss-Hermite quadrature, appeared to be



Journal of Statistical Software 5

a reasonable solution for lower dimensional models without compromising numerical accu-
racy. Unfortunately this technique quickly becomes inefficient as the number of dimensions
increases, since the number of quadrature points required for estimating the ‘E-step’ increases
exponentially and must be accommodated for by decreasing the number of quadrature. A
partial solution for a moderate number of dimensions was described by Schilling and Bock
(2005), where the authors demonstrated that adaptive quadrature could be used for better
accuracy when a smaller number of quadratures per dimension is used, but the problem of
high-dimensional solutions still remained.

More recently, a solution to the high-dimensionality problem has been to employ stochastic
estimation methods for exploratory and confirmatory item analysis. Bayesian MCMC meth-
ods have been explored by Edwards (2010) and Sheng (2010), and both authors have released
software to estimate the parameters for polytomous and dichotomous response models, respec-
tively. These methods are not implemented in the mirt package, so they will not be discussed
further, but see Bolt (2005) and Wirth and Edwards (2007) for more thorough reviews of using
these full-information estimation methods and for item response model estimation in general.
The two methods that are implemented in the mirt package are the fixed quadrature EM
method for exploratory (Bock et al. 1988; Muraki and Carlson 1995) and bifactor (Gibbons
and Hedeker 1992; Gibbons et al. 2007) models, and the Metropolis-Hastings Robbins-Monro
method for exploratory (Cai 2010a) and confirmatory (Cai 2010b) polytomous models.

3.1. Estimation using the expectation-maximization algorithm

Bock and Aitkin (1981) were the first to propose a feasible method for estimating the item
parameters of large scale tests using a method similar to the Expectation-Maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977). As explained in Bock et al. (1988) and Muraki
and Carlson (1995) this method is appropriate for low to moderate factor solutions, so long
as the number of quadratures per dimension decreases as the number of factors increases. For
the following EM estimation methods we will explore only the special case when all the data
are dichotomous. To begin, approximate (4) for each unique response vector by using m-fold
Gauss-Hermite quadrature

P̃` =

Q∑
qm=1

· · ·
Q∑
q2

Q∑
q1

L`(x`|Ψ,K)g(Kq1)g(Kq2) . . . g(Kqm) (6)

From this result the observed likelihood based on the u unique response patterns with ru
individuals with identical patterns becomes

L(Ψ|X) =
N !

r1! r2! . . . ru!
P̃ r11 P̃ r22 . . . P̃ ruu (7)

Differentiating with respect to an arbitrary item parameter within item j and integrating out
the m-dimensions of θ gives

∂ logL(Ψ|X)

∂ψj
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
−∞

r̄j − N̄Φj(θ)

Φj(θ)[1− Φj(θ)]
· ∂Φj(θ)

∂ψj
g(θ)d(θ) (8)

where

r̄j =
u∑
`=1

r`x`jL`(xi|Ψ,θ)

P̃`
, (9)
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and

N̄ =
u∑
`=1

r`L`(xi|Ψ,θ)

P̃`
. (10)

Approximating (8) by using quadratures gives

∂ logL(Ψ|X)

∂ψj
=

Q∑
qm

· · ·
Q∑
q2

Q∑
q1

r̄j − N̄Φj(X)

Φj(X)[1− Φj(X)]
· ∂Φj(X)

∂ψj
g(Kq1)g(Kq2) . . . g(Kqm) (11)

The ‘E-step’ of the EM algorithm consists of finding (9) and (10) by treating Ψ as provisionally
known when computing L`(K). The ‘M-step’ then consists of finding the 0 root of (11)
independently for each item. The EM process is repeated until the change between iterations
falls below some pre-specified tolerance.

A special case for EM estimation: The bifactor model

The full-information bifactor model (Gibbons and Hedeker 1992; Gibbons et al. 2007) com-
bines a unidimensional model with the so-called ‘simple structure’ item loadings model (Thur-
stone 1947). The purpose is to estimate a common latent trait alongside independent com-
ponents for each item so that local dependencies are accounted for properly. The bifactor
model can specify only one additional item specific factor (although see Cai 2010c), but is
not limited in the number of factors estimated since the quadratures remain fixed regardless
of the number of specific factors extracted.

Define P` as

P` =

∫ ∞
−∞

(
m∏
s=2

∫ ∞
−∞

L`(θ1, θs)g(θs)dθs

)
g(θ1)dθ1 (12)

where L`(θ1, θs) =

n∏
j=1

([Φjs(θ1, θs)]
x`j [1 − Φjs(θ1, θs)]

1−x`j )cjs , and cjm indexes the nonzero

loading of item j on dimension m, where only one value in cjm is equal to 1, otherwise cjm = 0.

The gradient with respect to an arbitrary parameter from item j, expressed in quadrature
form, is then

∂ logL(Ψ|X)

∂ψj
∼=

Q∑
q1

m∑
s=2

cjs

Q∑
qs

r̄js(K)− N̄s(K)Φjs(K)

Φjs(K)[1− Φjs(K)]
· ∂Φjs(K)

∂ψj
g(Kqs)g(Kq1) (13)

where

E`m(θ1) =

∏m
s=2

∫
θs
L`s(θ1, θs)g(θs)dθs∫

θs
L`m(θ1, θm)g(θm)dθm

, (14)

r̄jm(K) =

u∑
`=1

r`x`j [E`m(Kq1)]
L`(Kq1,Kqm)

P̃`
, (15)

and

N̄m(K) =
u∑
`=1

r`[E`m(Kq1)]
L`(Kq1,Kqm)

P̃`
. (16)
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As before, (15) and (16) are computed by treating Ψ as provisionally known, and (13) is then
solved for each item independently. This model has the benefit of having a fixed number of
quadratures regardless of the number of specific factors estimated, and is closely related to
‘Testlet’ response models (Wainer, Bradlow, and Wang 2007).

3.2. Estimation via the Metropolis-Hastings Robbins-Monro algorithm

The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm estimates the item parame-
ters by using a stochastically imputed complete-data likelihood with an assumed population
distributional form (typically, multivariate normal)

L(Ψ|X,θ) =

N∏
i=1

L`(xi|Ψ,θ)g(θ|µ,Σ). (17)

For exploratory item factor analysis the population mean vector µ is usually assumed to
be a fixed m × 1 vector of zeros, and Σ is assumed to be a fixed m × m identity matrix.
However, in confirmatory item analysis various elements in µ and Σ may be estimated in a
way analogous to confirmatory factor analysis in the structural equation modeling framework
(e.g., see Bollen 1989, Chapter 7). As can be seen in (17) the complete-data log-likelihood is
composed of two additive components: the log-likelihood for a multivariate ordinal regression
and the log-likelihood relationship between the factor scores.

The MH-RM algorithm deals with the integration problem in a different way than the tradi-
tional EM approach. For the EM algorithm θ is treated as set of ‘nuance’ parameters with
a known distribution and are then integrated out of the likelihood equation (using numerical
quadrature) so that the marginal frequencies (r̄j and N̄j) can be approximated. The marginal
frequencies are then used to update the item level parameters, and with the newly updated
parameters the process is repeated. The MH-RM and related methods (such as the stochastic
approximated EM) use stochastic methods to temporarily fill in the missing θ instead, and
once filled in the values are treated as if they were ‘known’. Given the newly augmented data
the item parameters can then be updated by using conventional root-finding methods that
use the complete-data log-likelihood function directly. Imputation methods are not exact or
determinate but often allow for easier and more convenient evaluation of higher dimensional
integrals than their numerical quadrature counterparts. The MH-RM is a more recent attempt
to control for the inaccuracies borne out of using stochastic imputations to approximate the
θ parameters.

Cai (2010a) demonstrated that when using a stochastically imputed complete-data model,
and properly accounting for the error in the stochastic imputations, maximum-likelihood es-
timation and observed parameter standard errors can be calculated. The estimation begins
by computing θ(d), given initial start values in Ψ, by using a Metropolis-Hastings sampler
(Metropolis et al. 1953; Hastings 1970). This allows the complete-data gradient vector and
hessian matrix to be calculated and utilized in updating the initial parameters2. The initial
parameters are then updated for the next iteration by using a single Newton-Raphson cor-
rection and these new parameters are then used to sample θ(d+1). This process is repeated
for several cycles and constitutes the so-called ‘burn-in’ period. After sufficient burn-in iter-
ations, a set of parameter estimates are reserved to compute the approximate starting values

2Multiple sets of θ’s can be drawn and averaged over for constructing the gradient and hessian, but for
item factor analysis this is rarely required.
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for the MH-RM algorithm. Finally, the last set of parameter updates are conducted using the
same method as before, but are now controlled by using the Robbins-Monro (Robbins and
Monro 1951) root finding algorithm, which slowly converges as the decreasing gain constant
approaches zero. In this way, the inaccuracies borne from the Metropolis-Hastings sampler are
properly accounted for when attempting to maximize the parameter estimates. The MH-RM
algorithm is useful for estimating both exploratory and confirmatory item response models.
For specifying confirmatory models, several linear restrictions can be imposed on single pa-
rameters (e.g., α1j = 0) or between parameters (e.g., α1j ≡ α2j). This is accomplished by
defining a matrix L, which selects the parameters that are to be estimated, and a vector c,
which contains the fixed values for the parameters. For example,

Ψr = c + L(Ψ(v)) (18)

=



0
0

0.1
...
0
1


+



1 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 0





α1

d1
γ1
...
µ
σ


=



α1

d1
0.1
...
0
1


where Ψ(v) is a vech stacked vector containing all of the possible group and item parameters.
This example shows that the slope and intercept are estimated for item 1, the guessing
parameter is fixed at 0.1, and the latent mean and variance are fixed at 0 and 1, respectively.
The usefulness of this formulation lies in how to manipulate the gradient and hessian given
the user defined restrictions, since the restricted gradient

∂ logL(Ψ|X,θ)

∂Ψ>r
=
∂ logL(Ψ|X,θ)

∂Ψ>
L, (19)

and hessian
∂2 logL(Ψ|X,θ)

∂Ψr∂Ψ>r
= L>

∂2 logL(Ψ|X,θ)

∂Ψ∂Ψ>
L (20)

can be easily expressed. This result implies that one can first estimate the complete-data
gradient and hessian given no restrictions, and simply apply (19) and (20) to update only a
subset of the parameters that are to be estimated.

The MH-RM algorithm offers a flexible way to specify both confirmatory and exploratory item
models but has three main shortcomings: the estimation times will be much larger for lower
dimensional problems when compared to an EM solution, the observed data log-likelihood
is not calculated automatically and must be estimated use Monte Carlo integration, and
parameter estimates will not be identical between different estimations. It is recommended to
use the MH-RM algorithm only when the dimensionality increases to the point where the EM
solution becomes difficult due to the large number of quadratures required (approximately
around four or more factors), or when a multidimensional confirmatory model is required.
However, the user should keep in mind that even the MH-RM method will become slower as
the dimensions increase, so testing parameters in, for example, a bifactor model with eight
specific factors may take an extended amount of time.



Journal of Statistical Software 9

4. Implementation in the mirt package

Four separate datasets are used to demonstrate how each major estimation function typically
behaves. These are: the well known 5-item LSAT7 data (Bock and Lieberman 1970); the
SAT12 data set, which is available as an example from the TESTFACT (Wood et al. 2003)
manual; a simulated data set constructed from the item parameters with orthogonal factors
found in Reckase (2009, p. 153); and a simulated set derived from the parameters shown in
Appendix B. All simulated data were constructed by using simdata() from the mirt package.

There are four main functions for estimating MIRT models: mirt(), bfactor(), polymirt(),
and confmirt(), where the latter two employ the MH-RM algorithm. Individual item plots
can be generated using itemplot(), factor scores (with MAP or EAP estimation) can be
estimated using the fscores() function, and MIRT data with known parameters can be
simulated using simdata(). The subroutines that do not directly relate to model estimation
are demonstrated in the appendices.

The data that are passed to all the estimation functions must be either a matrix or data.frame
consisting of numeric values for the item responses. For example, coding an ‘ability’ test as 0
for incorrect and 1 for correct, or coding a Likert type format with 1 representing the lowest
category and 5 as the highest category are conceptually the preferred layout, although tech-
nically the choice of direction is arbitrary. Responses that are omitted must be coded as NA.
Only complete data-sets can be passed to these functions, so if the data are in a tabulated
format (see below) the use of expand.table() can quickly create the appropriate input.

4.1. An example with the mirt() function

The LSAT7 data found in Bock and Lieberman (1970) initially were presented in tabulated
form, with the number of individuals with identical response pattern in the rightmost column.
This type of input can be modified easily with the expand.table(), and here we see the
default use of mirt() for a one-factor model

R> library("mirt")

R> data <- expand.table(LSAT7)

R> (mod1 <- mirt(data, 1))

Call:

mirt(data = data, nfact = 1)

Full-information factor analysis with 1 factor

Converged in 18 iterations using 40 quadrature points.

Log-likelihood = -2657.038

AIC = 5334.076

BIC = 5383.153

G^2 = 31.71, df = 21, p = 0.0626, RMSEA = 0.023

which converges quickly. Using coef() extracts the maximum-likelihood parameters and item
facilities (i.e., average number of correct responses), while summary() transforms the slopes
into the traditional factor analysis loadings metric (see Bock et al. 1988).

R> coef(mod1)
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Parameter slopes and intercepts:

a_1 d_1 guess

Item.1 0.584 1.093 0

Item.2 0.634 0.475 0

Item.3 0.993 1.054 0

Item.4 0.452 0.286 0

Item.5 0.436 1.091 0

The values is the first column (a_1) reflect the item slopes for factor one, while the values
is the second column (d_1) correspond to the item intercept. The names of these columns
also reflects their relationship to equation (1), although the γ parameter has been renamed
to guess instead to avoid confusion.

R> summary(mod1)

Unrotated factor loadings:

F_1 h2

Item.1 0.504 0.254

Item.2 0.536 0.287

Item.3 0.705 0.496

Item.4 0.412 0.170

Item.5 0.400 0.160

SS loadings: 1.367

Proportion Var: 0.273

The object returned by mirt() has various diagnostic tools available to determine where the
model may be malfunctioning. By default, residuals() computes the local dependence (LD)
pairwise statistic between each pair of items, which is very similar to a signed χ2 value (Chen
and Thissen 1997). Also, a standardized version of the LD statistic (Cramer’s V) is printed
above the diagonal to aid in interpretation when items contain more than two response options
and hence more degrees of freedom (i.e., objects return by polymirt() and confmirt() ).
The residuals can also be in the form of the marginal expected frequencies for each response
pattern by specifying the input the option restype = "exp".

R> residuals(mod1)

LD matrix:

Item.1 Item.2 Item.3 Item.4 Item.5

Item.1 NA 0.022 0.029 0.050 0.048

Item.2 -0.479 NA 0.034 0.017 0.038

Item.3 -0.855 1.149 NA 0.012 0.002

Item.4 2.474 -0.282 -0.149 NA 0.001

Item.5 2.286 -1.433 -0.004 -0.001 NA
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R> residuals(mod1, restype = "exp")

Item.1 Item.2 Item.3 Item.4 Item.5 Freq exp res

[1,] 0 0 0 0 0 12 10.142 0.584

[2,] 0 0 0 0 1 19 18.462 0.125

[3,] 0 0 0 1 0 1 4.500 -1.650

[4,] 0 0 0 1 1 7 10.608 -1.108

[5,] 0 0 1 0 0 3 4.992 -0.891

[6,] 0 0 1 0 1 19 15.942 0.766

[7,] 0 0 1 1 0 3 3.966 -0.485

[8,] 0 0 1 1 1 17 16.414 0.145

[9,] 0 1 0 0 0 10 3.964 3.031

[10,] 0 1 0 0 1 5 10.355 -1.664

[11,] 0 1 0 1 0 3 2.557 0.277

[12,] 0 1 0 1 1 7 8.609 -0.548

[13,] 0 1 1 0 0 7 4.418 1.228

[14,] 0 1 1 0 1 23 20.381 0.580

[15,] 0 1 1 1 0 8 5.142 1.261

[16,] 0 1 1 1 1 28 31.516 -0.626

[17,] 1 0 0 0 0 7 12.773 -1.615

[18,] 1 0 0 0 1 39 32.440 1.152

[19,] 1 0 0 1 0 11 8.002 1.060

[20,] 1 0 0 1 1 34 26.188 1.527

[21,] 1 0 1 0 0 14 13.346 0.179

[22,] 1 0 1 0 1 51 59.739 -1.131

[23,] 1 0 1 1 0 15 15.053 -0.014

[24,] 1 0 1 1 1 90 89.284 0.076

[25,] 1 1 0 0 0 6 8.088 -0.734

[26,] 1 1 0 0 1 25 29.363 -0.805

[27,] 1 1 0 1 0 7 7.340 -0.126

[28,] 1 1 0 1 1 35 34.756 0.041

[29,] 1 1 1 0 0 18 19.431 -0.325

[30,] 1 1 1 0 1 136 130.132 0.514

[31,] 1 1 1 1 0 32 33.306 -0.226

[32,] 1 1 1 1 1 308 308.790 -0.045

Estimating more than one factor with mirt() is performed simply by changing the second
numeric input value. There are several areas that should be considered when increasing the
number of dimensions to extract. To begin, by default the number of quadrature values used
during estimation decreases so that estimation time is lower, and so that there are not any
memory leaking problems. However, while this means that solutions using mirt() do not
take as long to estimate, it does mean that the accuracy of estimating the parameters will
suffer. For moderate to high-dimensional solutions it may be better to use the polymirt()

and confmirt() functions (see below).

R> (mod2 <- mirt(data, 2))
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Call:

mirt(data = data, nfact = 2)

Full-information factor analysis with 2 factors

Converged in 11 iterations using 15 quadrature points.

Log-likelihood = -2652.096

AIC = 5334.192

BIC = 5407.808

G^2 = 21.82, df = 17, p = 0.1915, RMSEA = 0.017

Again, the coefficients can be extracted as above, but now summary() holds a different pur-
pose. Since the orientation of the factor loadings is arbitrary the initially extracted solution
should be rotated to a simpler structure to better facilitate interpretation. The default rota-
tion method is the varimax criterion, but many other rotations available in the GPArotation
package (Bernaards and Jennrich 2005) are integrated into the function to save the user time
and effort. For example, an oblimin rotated factor solution, suppressing absolute loadings less
than 0.25, is

R> summary(mod2, rotate = "oblimin", suppress = 0.25)

Rotation: oblimin

Rotated factor loadings:

F_1 F_2 h2

Item.1 NA -0.711 0.493

Item.2 0.545 NA 0.305

Item.3 0.759 NA 0.572

Item.4 NA -0.292 0.180

Item.5 NA -0.307 0.173

Factor correlations:

F_1 F_2

F_1 1.000 -0.591

F_2 -0.591 1.000

Rotated SS loadings: 0.929 0.686

Nested model comparison can be performed using the anova() generic, returning a likelihood-
ratio χ2 test as well as returning the difference in AIC and BIC values. As seen below, the
difference between mod1 and mod2 is marginally-significant at the α = 0.05 cut-off, while the
AIC and BIC decrease indicate that the extra parameters estimated likely do not contribute
additional useful information.

R> anova(mod1, mod2)
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Chi-squared difference:

X2 = 9.884, df = 4, p = 0.0424

AIC difference = -0.116

BIC difference = -24.655

Finally, mirt() contains plotting features used for didactic illustration (see Appendix A),
but in general are not as flexible as the plink package (Weeks 2010). The generic functions
demonstrated in this section are applicable for the remaining estimation methods as well, and
essentially perform the same behavior. For more detailed information refer to the documen-
tation found in the mirt package.

4.2. An example with the bfactor() function

Next we examine a bifactor model for the SAT12 data. First, we must change the raw data in
SAT12 into dichotomous (correct-incorrect) form by using the key2binary() function. From
here we declare which specific-factor affects which item in numeric sequence vector, where
each element corresponds to its respective item. Here, for example, item one is a function of
the general factor and of specific factor 2, while item two is influenced by specific factor 3 and
the general factor, etcetera. As an added feature not mentioned before, fixed values for the
lower asymptotes may be specified a priori for all estimation functions.

If number of factors is greater than one then multivariate discrimination and intercepts are
also available. The multivariate discrimination and intercepts are defined as

MVDISC =

(
m∑
s=1

α2
ns

)1/2

(21)

and

MV INTk =
−dk

MVDISC
, (22)

respectively. These indices are potentially useful for determining an item’s overall utility
across factors (Reckase and McKinley 1991), and are printed for all mirt objects when using
coef().

R> data("SAT12")

R> data <- key2binary(SAT12, key = c(1, 4, 5, 2, 3, 1, 2, 1, 3, 1, 2, 4, 2,

+ 1, 5, 3, 4, 4, 1, 4, 3, 3, 4, 1, 3, 5, 1, 3, 1, 5, 4, 5))

R> specific <- c(2, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 3,

+ 3, 1, 1, 3, 1, 3, 3, 1, 3, 2, 3, 1, 2)

R> guess <- rep(0.1, 32)

R> b_mod1 <- bfactor(data, specific, guess)

R> coef(b_mod1)

Parameters with multivariate discrimination and intercept:
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a_G a_1 a_2 a_3 d_1 guess mvdisc mvint_1

Item.1 0.699 NA 0.403 NA -1.081 0.1 0.807 1.340

Item.2 1.003 NA NA 0.546 0.087 0.1 1.142 -0.076

Item.3 1.367 NA -0.243 NA -1.511 0.1 1.388 1.088

Item.4 0.433 NA NA 0.394 -0.586 0.1 0.585 1.000

Item.5 0.613 NA NA 0.328 0.239 0.1 0.695 -0.344

Item.6 1.685 NA 0.327 NA -2.838 0.1 1.716 1.654

Item.7 0.619 0.634 NA NA 0.828 0.1 0.886 -0.934

Item.8 1.113 NA 0.898 NA -2.246 0.1 1.430 1.570

Item.9 0.239 0.582 NA NA 1.346 0.1 0.629 -2.141

Item.10 0.789 0.594 NA NA -0.520 0.1 0.988 0.527

Item.11 0.914 0.512 NA NA 3.142 0.1 1.047 -3.000

Item.12 0.070 NA NA 0.199 -0.380 0.1 0.211 1.803

Item.13 0.668 0.384 NA NA 0.398 0.1 0.771 -0.516

Item.14 0.673 NA NA 0.603 0.680 0.1 0.904 -0.752

Item.15 0.813 0.394 NA NA 1.112 0.1 0.903 -1.232

Item.16 0.554 NA 0.356 NA -0.470 0.1 0.659 0.713

Item.17 0.881 0.212 NA NA 2.412 0.1 0.906 -2.662

Item.18 1.559 0.165 NA NA -1.069 0.1 1.568 0.682

Item.19 0.542 NA NA 0.028 -0.004 0.1 0.543 0.008

Item.20 0.861 NA NA 0.270 1.450 0.1 0.903 -1.606

Item.21 0.306 0.437 NA NA 1.514 0.1 0.534 -2.838

Item.22 0.888 0.049 NA NA 1.985 0.1 0.890 -2.231

Item.23 0.533 NA NA 0.406 -0.871 0.1 0.670 1.301

Item.24 0.767 0.161 NA NA 0.650 0.1 0.784 -0.830

Item.25 0.607 NA NA 0.582 -0.677 0.1 0.841 0.805

Item.26 1.170 NA NA 0.379 -0.404 0.1 1.229 0.329

Item.27 1.079 0.286 NA NA 1.534 0.1 1.116 -1.374

Item.28 0.713 NA NA 0.046 -0.064 0.1 0.715 0.090

Item.29 0.981 NA 1.100 NA -1.145 0.1 1.474 0.777

Item.30 0.274 NA NA -0.108 -0.316 0.1 0.294 1.074

Item.31 1.722 -0.213 NA NA 1.797 0.1 1.735 -1.036

Item.32 0.131 NA 0.016 NA -1.578 0.1 0.132 11.966

In this example all of the item parameters appear to have converged to reasonable values,
however this will not always be the case. When intercept parameters appear to be excessively
large we have a few options to help alleviate the problem: remove the guessing values by
fixing them back to 0, or by placing prior distribution constraints on the intercepts to try to
keep the values from increasing too much. Below is the latter option, where a weak normal
prior (N ∼ (0, 4)) is imposed on the intercept for Item.32 so that the item parameters are
estimated with a Bayesian MAP method instead of by maximum-likelihood (see Bock et al.
1988, for more details). Although not demonstrated below it is also possible to impose β
priors on the slope parameters if there are slope related convergence problems.

R> b_mod2 <- bfactor(data, specific, guess, par.prior = list(int = c(0, 4),

+ int.items = 32))

Intercept prior for item(s): 32
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R> coef(b_mod2)

Parameters with multivariate discrimination and intercept:

a_G a_1 a_2 a_3 d_1 guess mvdisc mvint_1

Item.1 0.703 NA 0.387 NA -1.082 0.1 0.803 1.348

Item.2 1.006 NA NA 0.550 0.091 0.1 1.147 -0.079

Item.3 1.353 NA -0.246 NA -1.502 0.1 1.376 1.092

Item.4 0.433 NA NA 0.385 -0.585 0.1 0.580 1.009

Item.5 0.618 NA NA 0.332 0.241 0.1 0.702 -0.343

Item.6 1.749 NA 0.316 NA -2.914 0.1 1.777 1.639

Item.7 0.614 0.641 NA NA 0.833 0.1 0.887 -0.938

Item.8 1.124 NA 0.885 NA -2.242 0.1 1.431 1.567

Item.9 0.244 0.579 NA NA 1.345 0.1 0.628 -2.142

Item.10 0.785 0.590 NA NA -0.516 0.1 0.982 0.525

Item.11 0.923 0.546 NA NA 3.186 0.1 1.073 -2.971

Item.12 0.069 NA NA 0.199 -0.379 0.1 0.211 1.800

Item.13 0.665 0.386 NA NA 0.401 0.1 0.769 -0.521

Item.14 0.670 NA NA 0.603 0.675 0.1 0.901 -0.749

Item.15 0.805 0.409 NA NA 1.120 0.1 0.903 -1.239

Item.16 0.558 NA 0.355 NA -0.469 0.1 0.662 0.709

Item.17 0.876 0.207 NA NA 2.416 0.1 0.900 -2.684

Item.18 1.542 0.165 NA NA -1.059 0.1 1.551 0.683

Item.19 0.538 NA NA 0.029 -0.008 0.1 0.539 0.015

Item.20 0.858 NA NA 0.298 1.458 0.1 0.908 -1.606

Item.21 0.303 0.423 NA NA 1.509 0.1 0.521 -2.898

Item.22 0.885 0.067 NA NA 1.988 0.1 0.888 -2.239

Item.23 0.535 NA NA 0.404 -0.873 0.1 0.671 1.301

Item.24 0.763 0.170 NA NA 0.650 0.1 0.781 -0.832

Item.25 0.613 NA NA 0.586 -0.683 0.1 0.848 0.805

Item.26 1.174 NA NA 0.363 -0.400 0.1 1.229 0.326

Item.27 1.069 0.287 NA NA 1.530 0.1 1.107 -1.382

Item.28 0.720 NA NA 0.036 -0.062 0.1 0.721 0.086

Item.29 1.003 NA 1.132 NA -1.167 0.1 1.512 0.771

Item.30 0.275 NA NA -0.112 -0.314 0.1 0.297 1.060

Item.31 1.738 -0.212 NA NA 1.816 0.1 1.751 -1.037

Item.32 0.139 NA 0.004 NA -1.575 0.1 0.139 11.351

As we can see the intercept parameter appears to be pulled slightly towards 0 which helps to
add numerical stability to situations where the intercepts appear to be approaching −∞ or∞.

4.3. An example with the polymirt() function

polymirt() and confmirt() both estimate the model parameters with the MH-RM algo-
rithm. polymirt() is applicable for exploratory item analysis for dichotomous and poly-
tomous data, and the object returned has many commonalities with objects returned by
mirt(). There are a few pros and cons to using these stochastic functions, the pros being
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that parameter standard errors are automatically computed as a by-product of estimation,
the models stay accurate even with higher dimensionality, lower asymptotes may be estimated
(with β priors automatically added), and in confmirt() various item constraints can be im-
posed. The cons are that the time to estimate these models will be longer than mirt() or
bfactor() for low-dimensional models since the actual estimation of the parameters takes
more time, computation of such useful statistics as the observed log-likelihood must be esti-
mated by Monte Carlo methods, and the parameters will vary slightly between independent
estimations. However the added estimation time is not a major concern since the overall
execution times often fall well within reasonable limits (see below).

Specification of a three-dimensional exploratory factor analysis model for the first simulated
data-set is

R> p_mod <- polymirt(simdata1, 3)

Stage 1: Cycle = 10, Log-Lik = -37423.2, Max Change = 0.0626

Stage 1: Cycle = 20, Log-Lik = -36982.9, Max Change = 0.0343

Stage 1: Cycle = 30, Log-Lik = -36881.0, Max Change = 0.0446

........

Stage 3: Cycle = 350, Log-Lik = -36912.7, gam = 0.008, Max Change = 0.0009

Stage 3: Cycle = 360, Log-Lik = -37018.3, gam = 0.008, Max Change = 0.0012

Calculating log-likelihood...

R> p_mod

Call:

polymirt(data = simdata1, nfact = 3)

Full-information factor analysis with 3 factors

Converged in 363 iterations.

Log-likelihood = -29503.28, SE = 0.064

AIC = 59240.56

BIC = 59895.86

G^2 = 36238.01, df = 1877, p = 0, RMSEA = 0.096

R> coef(p_mod)

Unrotated parameters, multivariate discrimination and intercept:

a_1 a_2 a_3 d_1 guess mvdisc mvint_1

Item_1 0.513 -0.213 0.486 0.248 0 0.738 -0.336

Item_2 0.370 -0.117 0.323 -0.257 0 0.505 0.509

Item_3 0.868 -0.366 0.498 -0.487 0 1.066 0.457

........

Item_29 0.391 0.311 0.179 0.058 0 0.531 -0.108

Item_30 0.761 0.903 -0.115 0.071 0 1.186 -0.060
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Std. Errors:

a_1 a_2 a_3 d_1 guess

Item_1 0.0596 0.0530 0.0588 0.0526 NA

Item_2 0.0533 0.0494 0.0522 0.0494 NA

Item_3 0.0778 0.0616 0.0648 0.0614 NA

........

Item_29 0.0532 0.0514 0.0497 0.0485 NA

Item_30 0.0739 0.0794 0.0578 0.0577 NA

The behavior of summary(), anova(), residuals(), and plot() function the same as before,
with this addition of logLik() that computes a Monte Carlo estimated integral for the ob-
served log-likelihood. By default, the log-likelihood is approximated with 3000 draws at the
end of both estimation methods, but can be suppressed by specifying calcLL = FALSE in the
function calls.

4.4. An example with the confmirt() function

For this example we assume that the form of the loadings, and the relationships among the
factors, are known or suspected a priori. Here we will try to recover the parameters used to
simulate the data (which can be found in Appendix B). To begin, we must declare where the
factors load, the relationships among the loadings, the relationships among the factors, as
well as any additional parameter constraints. A model is specified by indicating which latent
factors affect which numerically labeled item and by utilizing a select few keywords (e.g., COV,
MEAN, INT, SLOPE, etc.) for additional parameter relations. For example, the following code
declares a two-factor confirmatory model where the first factor (F1) affects items 1 to 4 while
the second factor (F2) affects items 4 to 8 and the COV option allows the covariance between
F1 and F2 to be freely estimated.

R> model.1 <- confmirt.model()

F1 = 1-4

F2 = 4-8

COV = F1*F2

Read 12 records

R> c_mod <- confmirt(simdata2, model.1, printcycles = FALSE)

Calculating log-likelihood...

R> c_mod

Call:

confmirt(data = simdata2, model = model.1, printcycles = FALSE)

Full-information item factor analysis with 2 factors

Log-likelihood = -10067.6, SE = 0.038
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AIC = 20179.19

BIC = 20302.41

G^2 = 761.02, df = 319, p = 0, RMSEA = 0.026

Converged in 210 iterations.

R> coef(c_mod)

ITEM PARAMETERS:

a_F1 a_F2 d_1 d_2 d_3 guess

Item_1 1.446 NA -0.849 NA NA 0

Item_2 0.701 NA -1.631 NA NA 0

Item_3 1.027 NA 1.499 NA NA 0

Item_4 1.076 0.520 0.138 NA NA 0

Item_5 NA 1.433 2.993 1.9721 -0.409 NA

Item_6 NA 0.550 2.620 1.0829 -0.960 NA

Item_7 NA 1.036 2.026 0.0046 NA NA

Item_8 NA 0.962 1.061 NA NA 0

Std. Errors:

a_F1 a_F2 d_1 d_2 d_3 guess

Item_1 0.1092 NA 0.0787 NA NA NA

Item_2 0.0974 NA 0.1123 NA NA NA

Item_3 0.1021 NA 0.1060 NA NA NA

Item_4 0.0967 0.0744 0.0610 NA NA NA

Item_5 NA 0.0847 0.1618 0.1119 0.0636 NA

Item_6 NA 0.0519 0.1780 0.0668 0.0632 NA

Item_7 NA 0.0711 0.1109 0.0553 NA NA

Item_8 NA 0.0896 0.0804 NA NA NA

GROUP PARAMETERS:

Covariance:

F1 F2

F1 1.000 0.417

F2 0.417 1.000

Std. Errors:

F1 F2

F1 NA 0.0171

F2 0.0171 NA

In this example the MH-RM estimation appears to have recovered the parameters well. Ad-
ditional options may be used to test a more restricted model by setting various parameters
equal or by fixing parameters to constant values. Next, we fix the first item slope to 1.5 with
the SLOPE command, and set slopes 3-4 on F1 and 7-8 on F2 to be equal during estimation.

R> model.2 <- confmirt.model()

F1 = 1-4



Journal of Statistical Software 19

F2 = 4-8

COV = F1*F2

SLOPE = F1@1 eq 1.5, F1@3 eq F1@4, F2@7 eq F2@8

Read 12 records

R> c_mod2 <- confmirt(simdata2, model.2, printcycles = FALSE)

Calculating log-likelihood...

R> coef(c_mod2)

ITEM PARAMETERS:

a_F1 a_F2 d_1 d_2 d_3 guess

Item_1 1.50 NA -0.911 NA NA 0

Item_2 0.70 NA -1.631 NA NA 0

Item_3 1.02 NA 1.494 NA NA 0

Item_4 1.02 0.537 0.134 NA NA 0

Item_5 NA 1.427 2.991 1.97356 -0.405 NA

Item_6 NA 0.547 2.619 1.08363 -0.958 NA

Item_7 NA 0.996 2.008 0.00761 NA NA

Item_8 NA 0.996 1.074 NA NA 0

Std. Errors:

a_F1 a_F2 d_1 d_2 d_3 guess

Item_1 NA NA 0.0834 NA NA NA

Item_2 0.0956 NA 0.1099 NA NA NA

Item_3 0.0974 NA 0.1064 NA NA NA

Item_4 0.0974 0.0742 0.0602 NA NA NA

Item_5 NA 0.0854 0.1623 0.1125 0.0634 NA

Item_6 NA 0.0531 0.1785 0.0673 0.0632 NA

Item_7 NA 0.0937 0.1100 0.0547 NA NA

Item_8 NA 0.0937 0.0815 NA NA NA

GROUP PARAMETERS:

Covariance:

F1 F2

F1 1.00 0.41

F2 0.41 1.00

Std. Errors:

F1 F2

F1 NA 0.0175

F2 0.0175 NA

R> anova(c_mod2, c_mod)
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Subroutine 2-factor time (s) 3-factor time (s) 4-factor time (s)

mirt 4.2 9.2 128.8
ltm 1353.1 — —
TESTFACT 9.6 175.3 946.3
polymirt 117.5 172.9 202.1
MCMCirtKd 2150.7 2368.6 2479.5

Table 1: Average time in seconds for convergence.

Chi-squared difference:

X2 = 5.995 (SE = 0.076), df = 3, p = 0.1119

AIC difference = -0.005 (SE = 0.076)

BIC difference = -16.808 (SE = 0.076)

Comparison of these two models suggests that the added restrictions do not significantly make
the model fit any worse than the less restricted one.

5. Program comparisons

As is useful with all new software, comparing results with previously established programs to
check the accuracy and potential benefits of the new software is beneficial for front-end users.
Here we compare the estimation results of mirt() and polymirt() with those obtained from
TESTFACT, MCMCpack using MCMCirtKd()3, and ltm using ltm() (however, ltm() cannot
estimate more than two factors). Two-, three-, and four-factor models are extracted from
the first simulated data set, with the three-factor solutions rotated with the varimax criterion
that was used for subsequent comparisons. Note that all computations were performed on a
desktop workstation with an AMD Phenom 9600 Quad-Core 2.31 GHz processor with 4-GB
of RAM, and each subroutine was run five times to obtain the average computation time.

Deterministic methods were set to terminate when all parameters changed less than 0.001 be-
tween consecutive iterations, and the number of quadratures used during estimation were 20,
10, and 7, respectively. polymirt() was set to have 100 burn-ins, 50 cycles to find approxi-
mate starting values, and once the RM stage was implemented, the estimation was terminated
when all parameters changed less than 0.001 between iterations on three consecutive cycles.
For MCMCirtKd(), the burn-in iterations were set at 10000, with 25000 MCMC draws, thinning
every 5 draws, and storing only the item parameters. Finally, for the stochastic algorithms,
the first model estimated was selected for subsequent comparisons.

As can be seen in Table 1, mirt() and polymirt() were much more efficient compared to
the ltm() and MCMCirtKd() functions, and while mirt() was consistently more efficient than
TESTFACT, polymirt() did not become more efficient than TESTFACT until there were
more than 2 factors. Also note that the estimation time for MCMCirtKd() was quite long,
spanning between 35–41 minutes on average per model.

3TESTFACT and MCMCirtKd() use the traditional normal ogive item response model, so slight deviations
in numerical solutions should be expected.
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Parameters TESTFACT MCMCirtKd() mirt() polymirt()

1 .59 .11 .01 .46 .00 .14 .44 .05 .15 .53 .01 .06 .58 .00 .18
2 .41 .06 .00 .39 .02 .06 .31 .06 .06 .38 .01 .01 .42 .01 .07
3 .62 .29 .00 .46 .17 .02 .48 .28 .05 .62 .20 .02 .62 .23 .04
4 .71 .03 .00 .49 -.03 .04 .52 .02 .07 .69 -.07 .10 .70 -.05 .06
5 .47 .12 .01 .41 .07 .12 .34 .11 .11 .47 .05 .08 .47 .08 .14
6 .76 .30 .00 .44 .13 .03 .64 .31 .07 .76 .19 .03 .80 .22 .07
7 .77 .26 .04 .46 .10 .07 .54 .22 .11 .75 .16 .08 .77 .17 .12
8 .63 .19 .02 .47 .10 .07 .43 .18 .08 .69 .04 .10 .62 .13 .10
9 .70 .14 .00 .49 .03 .03 .58 .13 .06 .65 .00 .08 .72 .04 .05
10 .66 .21 .00 .49 .08 .03 .55 .19 .06 .67 .13 .04 .69 .10 .04
11 .00 .62 .00 .04 .48 .03 .10 .51 .00 .07 .56 -.05 .05 .62 .03
12 .00 .76 .12 .05 .49 .01 .16 .70 .03 .06 .73 .05 .09 .74 .02
13 .04 .57 .06 .11 .46 .01 .17 .51 .02 .09 .51 .03 .14 .56 .02
14 .00 .89 .13 .04 .38 .02 .16 .64 .04 .10 .85 .10 .11 .89 .04
15 .01 .64 .03 .08 .49 .02 .16 .61 .03 .09 .60 -.04 .11 .67 .03
16 .01 .67 .10 .07 .48 .07 .16 .63 .09 .10 .63 .03 .11 .68 .11
17 .01 .79 .16 .06 .45 .05 .19 .78 .09 .10 .77 .07 .12 .81 .09
18 .00 .65 .16 .03 .49 .04 .11 .57 .05 .07 .64 .07 .04 .65 .06
19 .00 .55 .35 .06 .43 .21 .11 .40 .16 .01 .52 .32 .08 .56 .29
20 .00 .53 .07 .05 .46 .02 .11 .53 .03 .08 .48 -.00 .06 .55 .03
21 .21 .00 .68 .08 .02 .49 .10 .03 .51 .12 .00 .67 .12 .02 .72
22 .16 .00 .43 .08 .02 .41 .07 .02 .34 .14 -.03 .45 .09 .02 .45
23 .26 .12 .71 .16 .10 .45 .22 .17 .54 .21 .17 .66 .24 .15 .68
24 .07 .01 .86 .00 .04 .44 .03 .04 .45 .03 .09 .85 -.00 .06 .86
25 .12 .00 .55 .03 .04 .46 .04 .04 .41 .05 .01 .55 .04 .04 .56
26 .17 .01 .76 .07 .04 .47 .11 .06 .60 .12 .03 .76 .12 .05 .78
27 .07 .00 .82 .02 .02 .47 .05 .02 .66 .01 .04 .79 .03 .02 .80
28 .04 .00 .42 -.01 .00 .41 .00 .00 .32 -.00 .05 .44 -.02 .00 .45
29 .19 .00 .41 .14 .00 .37 .12 .00 .31 .15 .04 .38 .16 .00 .41
30 .11 .05 .73 .06 .07 .48 .10 .12 .62 .05 .04 .71 .08 .11 .74

Table 2: Simulated parameters compared to varimax rotated solutions for TESTFACT,
MCMCirtKd(), mirt(), polymirt().

Estimation accuracy was assessed by computing the root mean-squared deviation statistic
(RMSD), where lower values indicate better precision in parameter recovery, as well as by
comparing the observed log-likelihood values. Table 2 compares the varimax rotated solutions
for the four procedures that converged on a solution for the three-factor model. Of these four
procedures, polymirt() had the highest log-likelihood (−30542.5), with mirt() (−30663.3),
MCMCirtKd() (−31084.0), and TESTFACT (−33434.1) following. Additionally, polymirt()
was the most accurate at recovering the simulated parameters (RMSD = 0.047), while mirt()
closely followed (RMSD = 0.060). TESTFACT (RMSD = 0.107) and MCMCirtKd() (RMSD
= 0.085) appeared to have suffered due to utilizing fewer quadratures per dimension, and
perhaps from drawing too few MCMC values since there were convergence warnings noted for
all of the estimated models.
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6. Discussion

Several useful applications of the mirt package are possible that were not demonstrated in
this article. For instance, confmirt() can estimate Rasch-type models stochastically by
simply constraining all of the slope parameters to be equal (or exactly to 1/1.702, for the
traditional Rasch model). This may be a useful strategy if the number of participants is
large or the number of test items is large, since the MH-RM is well equipped to handle
both of these situations. Non-linear factor combination and noncompensetory item response
relationships may also be included when specifying confmirt() models. Finally, factor scores
and information plots (and surfaces) for individual items or the whole test are available, and
simulation functions are also readily at the user’s disposal (see Appendix A).

As it stands, the mirt package appears to be a useful tool for researchers interested in ex-
ploratory and confirmatory item response models, and improves upon the overall estimation
time and parameter recovery efficacy compared to various previously published software. The
package is actively being developed, and some of the future developments may include:

� adding limited-information model fit statistics

� providing standard errors for EM solutions

� performing multiple-group estimation, and

� utilizing nominal and rating scale intercept methods for polytomous data

These are only a few of the potential development areas, and user interest will largely guide
which features will be developed. Popular options that will be available in the IRTPRO
software (Cai, du Toit, and Thissen 2011) also may be given precedence depending on user
feedback and interests in using open-source software along with proprietary software in their
item analysis work.

Acknowledgments

Special thanks to David Flora, Matthew Sigal, and two anonymous reviewers for offering
helpful comments that improved the quality of this manuscript.

References

Baker FB, Kim SH (2004). Item Response Theory: Parameter Estimation Techniques. 2nd
edition. Dekker, New York.

Bernaards CA, Jennrich RI (2005). “Gradient Projection Algorithms and Software for Arbi-
trary Rotation Criteria in Factor Analysis.” Educational and Psychological Measurement,
65, 676–696.

Birnbaum A (1968). “Some Latent Trait Models and Their Use in Inferring an Examinee’s
Ability.” In FM Lord, MR Novick (eds.), Statistical Theories of Mental Test Scores, pp.
395–479. Addison-Wesley, Reading.



Journal of Statistical Software 23

Bock RD, Aitkin M (1981). “Marginal Maximum Likelihood Estimation of Item Parameters:
Application of an EM Algorithm.” Psychometrika, 46(4), 443–459.

Bock RD, Gibbons R, Muraki E (1988). “Full-Information Item Factor Analysis.” Applied
Psychological Measurement, 12(3), 261–280.

Bock RD, Lieberman M (1970). “Fitting a Response Model for n Dichotomously Scored
Items.” Psychometrika, 35(2), 179–197.

Bollen KA (1989). Structural Equations with Latent Variables. John Wiley & Sons, New
York.

Bolt D (2005). “Limited and Full Information Estimation of Item Response Theory Models.” In
A Maydeu-Olivares, JJ McArdle (eds.), Contemperary Psychometrics, pp. 27–71. Lawrence
Erlbaum Associates, Mahwah.

Cai L (2010a). “High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings
Robbins-Monro Algorithm.” Psychometrika, 75(1), 33–57.

Cai L (2010b). “Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor
Analysis.” Journal of Educational and Behavioral Statistics, 35(3), 307–335.

Cai L (2010c). “A Two-Tier Full-Information Item Factor Analysis Model with Applications.”
Psychometrika, 75(4), 581–612.

Cai L, du Toit SHC, Thissen D (2011). IRTPRO: Flexible, Multidimensional, Multiple
Categorical IRT Modeling. Scientific Software International.

Casella G, George EI (1992). “Explaining the Gibbs Sampler.” The American Statistician,
46, 167–174.

Chen WH, Thissen D (1997). “Local Dependence Indices for Item Pairs Using Item Response
Theory.” Journal of Educational and Behavioral Statistics, 22, 265–289.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood From Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38.

Edwards MC (2010). “A Markov Chain Monte Carlo Approach to Confirmatory Item Factor
Analysis.” Psychometrika, 75(3), 474–497.

Fraser C (1998). NOHARM: A Fortran Program for Fitting Unidimensional and Multidimen-
sional Normal Ogive Models in Latent Trait Theory. Armidale, Australia. The University
of New England, Center for Behavioral Studies.

Gibbons RD, Darrell RB, Hedeker D, Weiss DJ, Segawa E, Bhaumik DK, Kupfer DJ, Frank
E, Grochocinski VJ, Stover A (2007). “Full-Information Item Bifactor Analysis of Graded
Response Data.” Applied Psychological Measurement, 31(1), 4–19.

Gibbons RD, Hedeker DR (1992). “Full-Information Item Bi-Factor Analysis.” Psychometrika,
57, 423–436.

Hastings WK (1970). “Monte Carlo Simulation Methods Using Markov Chains and Their
Applications.” Biometrika, 57, 97–109.



24 mirt: Multidimensional Item Response Theory in R

Holzinger KJ, Swineford F (1937). “The Bi-Factor Method.” Psychometrika, 2(1), 41–54.

Mair P, Hatzinger R (2007). “Extended Rasch Modeling: The eRm Package for the Ap-
plication of IRT Models in R.” Journal of Statistical Software, 20(9), 1–20. URL
http://www.jstatsoft.org/v20/i09/.

Martin AD, Quinn KM, Park JH (2011). “MCMCpack: Markov Chain Monte Carlo in R.”
Journal of Statistical Software, 42(9), 1–21. URL http://www.jstatsoft.org/v42/i09/.

McDonald RP (1999). Test Theory: A Unified Treatment. Lawrence Erlbaum Associates,
Mahawah.

Metropolis N, Rosenbluth AW, Teller AH, Teller E (1953). “Equations of State Space Calcu-
lations by Fast Computing Machines.” Journal of Chemical Physics, 21, 1087–1091.

Muraki E, Carlson EB (1995). “Full-Information Factor Analysis for Polytomous Item Re-
sponses.” Applied Psychological Measurement, 19, 73–90.

Muthén LK, Muthén BO (2008). Mplus (Version 5.0). Muthén & Muthén, Los Angeles.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Reckase MD (2009). Multidimensional Item Response Theory. Springer-Verlag, New York.

Reckase MD, McKinley R (1991). “The Discrimination Power of Items that Measure More
than One Dimension.” Applied Psychological Measurement, 15, 361–373.

Rizopoulos D (2006). “ltm: An R Package for Latent Variable Modeling and Item Re-
sponse Theory Analysis.” Journal of Statistical Software, 17(5), 1–25. URL http:

//www.jstatsoft.org/v17/i05.

Robbins H, Monro S (1951). “A Stochastic Approximation Method.” The Annals of Mathe-
matical Statistics, 22, 400–407.

Samejima F (1969). “Estimation of Latent Ability Using a Response Pattern of Graded
Scores.” Psychometrika Monographs, 34(4).

Schilling S, Bock RD (2005). “High-Dimensional Maximum Marginal Likelihood Item Factor
Analysis by Adaptive Quadrature.” Psychometrika, 70, 533–555.

Sheng Y (2010). “Bayesian Estimation of MIRT Models with General and Specifc Latent Traits
in MATLAB.” Journal of Statistical Software, 34(3), 1–27. URL http://www.jstatsoft.

org/v34/i03/.

Thissen D, Wainer H (eds.) (2001). Test Scoring. Lawrence Erlbaum Associates, Mahwah.

Thurstone LL (1947). Multiple Factor Analysis. University of Chicago Press, Chicago.

Wainer H, Bradlow ET, Wang X (2007). Testlet Response Theory and Its Applications.
Cambridge University Press, New York.

http://www.jstatsoft.org/v20/i09/
http://www.jstatsoft.org/v42/i09/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v17/i05
http://www.jstatsoft.org/v17/i05
http://www.jstatsoft.org/v34/i03/
http://www.jstatsoft.org/v34/i03/


Journal of Statistical Software 25

Weeks JP (2010). “plink: An R Package for Linking Mixed-Format Tests Using IRT-Based
Methods.” Journal of Statistical Software, 35(12), 1–33. URL http://www.jstatsoft.

org/v35/i12/.

Wirth RJ, Edwards MC (2007). “Item Factor Analysis: Current Approaches and Future
Directions.” Psychological Methods, 12(1), 58–79.

Wood R, Wilson DT, Gibbons RD, Schilling SG, Muraki E, Bock RD (2003). TESTFACT 4
for Windows: Test Scoring, Item Statistics, and Full-Information Item Factor Analysis.
Scientific Software International.

Yao L (2008). BMIRT: Bayesian Multivariate Item Response Theory (Version 1.0).
CTB/McGraw-Hill, Monterey.

http://www.jstatsoft.org/v35/i12/
http://www.jstatsoft.org/v35/i12/


26 mirt: Multidimensional Item Response Theory in R

A. Additional features

Additional features in plot(), itemplot() and fscores() are illustrated in the following.

Unidimensional and two-factor test information plots for the LSAT7 data can be produced
with the plot() method (see Figure 1).

R> plot(mod1)

R> plot(mod2)

Probability plots for each LSAT7 item are generated with the itemplot() function (see
Figure 2).

itemplot(mod1, combine = 5, auto.key = list(space = 'right'))

The following code returns either a table of EAP or MAP factor scores of each unique response
pattern, or appends the factor scores to the last column of the input data matrix for each
response pattern.

R> fscores(mod1)

Method: EAP

Item.1 Item.2 Item.3 Item.4 Item.5 Freq F_1 SE_F_1

[1,] 0 0 0 0 0 12 -1.87028659 0.6900538

[2,] 0 0 0 0 1 19 -1.52611274 0.6734105

[3,] 0 0 0 1 0 1 -1.51372763 0.6729447

[4,] 0 0 0 1 1 7 -1.18234637 0.6656759

[5,] 0 0 1 0 0 3 -1.10291088 0.6655960

[6,] 0 0 1 0 1 19 -0.77181736 0.6726494

[7,] 0 0 1 1 0 3 -0.75944267 0.6731393

[8,] 0 0 1 1 1 17 -0.41453481 0.6926378

[9,] 0 1 0 0 0 10 -1.37398604 0.6685939

[10,] 0 1 0 0 1 5 -1.04466802 0.6659735

[11,] 0 1 0 1 0 3 -1.03254430 0.6660987

[12,] 0 1 0 1 1 7 -0.69967712 0.6757235

[13,] 0 1 1 0 0 7 -0.61731385 0.6798590

[14,] 0 1 1 0 1 23 -0.26302205 0.7042673

[15,] 0 1 1 1 0 8 -0.24944505 0.7053837

[16,] 0 1 1 1 1 28 0.13766313 0.7409730

[17,] 1 0 0 0 0 7 -1.41222110 0.6696109

[18,] 1 0 0 0 1 39 -1.08252979 0.6656860

[19,] 1 0 0 1 0 11 -1.07041745 0.6657609

[20,] 1 0 0 1 1 34 -0.73857313 0.6740009

[21,] 1 0 1 0 0 14 -0.65666864 0.6778019

[22,] 1 0 1 0 1 51 -0.30517792 0.7008748

[23,] 1 0 1 1 0 15 -0.29173219 0.7019445

[24,] 1 0 1 1 1 90 0.09106181 0.7363931

[25,] 1 1 0 0 0 6 -0.93235512 0.6677492
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Figure 1: Unidimensional and two-factor test information plots for the LSAT7 data.
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Figure 2: Combined probability plot for each LSAT7 item.

[26,] 1 1 0 0 1 25 -0.59601605 0.6810327

[27,] 1 1 0 1 0 7 -0.58332684 0.6817517

[28,] 1 1 0 1 1 35 -0.22649542 0.7072960

[29,] 1 1 1 0 0 18 -0.13580459 0.7151417

[30,] 1 1 1 0 1 136 0.26346482 0.7535721

[31,] 1 1 1 1 0 32 0.27901726 0.7551477

[32,] 1 1 1 1 1 308 0.72759057 0.8007276

R> dataWithFS <- fscores(mod1, full.scores = TRUE)

B. Simulation parameters

Simulation parameters for confmirt() .

R> a <- matrix(c(1.5, NA, 0.5, NA, 1, NA, 1, 0.5, NA, 1.5, NA, 0.5,

+ NA, 1, NA, 1), ncol = 2, byrow = TRUE)

R> d <- matrix(c(-1, NA, NA, -1.5, NA, NA, 1.5, NA, NA, 0, NA, NA,

+ 3, 2, -0.5, 2.5, 1, -1, 2, 0, NA, 1, NA, NA), ncol = 3, byrow = TRUE)

R> sigma <- diag(2)

R> sigma[1, 2] <- sigma[2, 1] <- 0.4

R> simdata2 <- simdata(a, d, 2000, sigma)
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