
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 9. http://www.jstatsoft.org/

RKWard: A Comprehensive Graphical User

Interface and Integrated Development Environment

for Statistical Analysis with R

Stefan Rödiger
Charité-Universitätsmedizin Berlin

Thomas Friedrichsmeier
Ruhr-University Bochum

Prasenjit Kapat
The Ohio State University

Meik Michalke
Heinrich Heine University Düsseldorf

Abstract

R is a free open-source implementation of the S statistical computing language and
programming environment. The current status of R is a command line driven interface
with no advanced cross-platform graphical user interface (GUI), but it includes tools for
building such. Over the past years, proprietary and non-proprietary GUI solutions have
emerged, based on internal or external tool kits, with different scopes and technological
concepts. For example, Rgui.exe and Rgui.app have become the de facto GUI on the
Microsoft Windows and Mac OS X platforms, respectively, for most users. In this paper
we discuss RKWard which aims to be both a comprehensive GUI and an integrated devel-
opment environment for R. RKWard is based on the KDE software libraries. Statistical
procedures and plots are implemented using an extendable plugin architecture based on
ECMAScript (JavaScript), R, and XML. RKWard provides an excellent tool to manage
different types of data objects; even allowing for seamless editing of certain types. The
objective of RKWard is to provide a portable and extensible R interface for both basic
and advanced statistical and graphical analysis, while not compromising on flexibility and
modularity of the R programming environment itself.

Keywords: GUI, integrated development environment, plugin, R.

1. Background and motivation

In mid 1993 Ihaka and Gentleman published initial efforts on the computing language and
programming environment R on the s-news mailing list. Ambitions for this project were to

http://www.jstatsoft.org/

2 RKWard: A Comprehensive GUI and IDE for R

develop an S-like language without inheriting memory and performance issues. The source
code of R was finally released in 1995, and since 1997 development has evolved under the
umbrella of the R Development Core Team (R Development Core Team 2001, 2012a; Ihaka
1998). R does not include an advanced cross-platform graphical user interface (GUI) as known
from other statistical software packages. However, R includes tools for building GUIs mainly
based on Tcl/Tk (Dalgaard 2001, 2002). Meanwhile a plethora of R GUIs have emerged
(see Grosjean 2010, for a comprehensive list). In 2005 John Fox released version 1.0 of
R Commander (Fox 2005, package Rcmdr), which can be considered a milestone in R GUI
development; it was the first GUI implementation that was able to make statistical tests, plots
and data manipulation easily accessible for R novices. John Fox stated that Rcmdr’s target
was to provide functionality for basic-statistical courses, though the features have increased
over time beyond this (Fox 2005, 2007). In November 2002 Thomas Friedrichsmeier started
the RKWard open-source software project with the goal to create a GUI for R based on KDE
(KDE e.V. 2012) and Qt (Nokia Corporation 2012) technologies 1.

The scope of RKWard is deliberately broad, targeting both R novices and experts. For the first
group, the aim is to allow any person with knowledge on statistical procedures to start using
RKWard for their everyday work without having to learn anything about the R programming
language, at least initially. At the same time, RKWard tries to support users who want
to learn and exploit the full flexibility of the R language for automating or customizing an
analysis. At the other end of the learning curve, RKWard provides advanced integrated
development environment (IDE) features to R experts to assist in writing R scripts. Yet,
the idea is that R experts too will benefit from the availability of task-oriented GUI dialogs,
such as when exploring an unfamiliar type of analysis or by allowing to implement routinely
performed tasks as a GUI element. In addition, many features like the integrated data editor
and the plot preview will be useful to R novices and R experts alike in their everyday work
(see Section 3).

RKWard provides a high level of transparency about the steps that are needed to perform
any supported task in R, in order to make it easy for the user to see complete codes for
all GUI actions2. In doing so, RKWard deliberately generates comparatively verbose code.
It avoids wrapping complex sequences of data manipulation or analysis into custom high-
level R functions. The task of providing high-level functions is logically independent of the
development of the GUI frontend, and should best be addressed in dedicated R packages, where
necessary. This approach allows to make better use of the modular design of R, avoids locking-
in users to a specific GUI application, and provides them with more options for customizing
the generated code patterns.

While RKWard tries to address users wishing to learn R, it is specifically not designed as
a teaching tool – such as Rcmdr (Fox 2005) or TeachingDemos (Snow 2012) – but as a
productive tool. Since its incarnation RKWard has gained acceptance for usage in peer-
reviewed publications (Zou and Tolstikov 2008, 2009; Rugg-Gunn, Cox, Ralston, and Rossant

1 KDE is a desktop environment and software collection based on Qt. In the context of this paper, the term
KDE is primarily used to refer to the programming library and runtime environment of KDE, rather than the
complete software collection. For an introduction to KDE as a programming library, see Faure (2000). Qt is
a C++-based cross-platform programming library with a focus on GUI development. For an introduction to
programming with Qt, see Blanchette and Summerfield (2008).

2 This distinguishes RKWard from R GUIs such as Red-R (Parikh and Covington 2010), which specifi-
cally aims to hide the complexities of the R programming language, following the concept of visual data-flow
programming (Sutherland 1966). In contrast, RKWard limits itself to generate R code from GUI settings.

Journal of Statistical Software 3

Linux / Unix / BSD only
Linux / Unix / BSD

MS Windows / (MacOS X)

August 2004: Alpha Stage
● Development resumed
● R engine running in a thread
● Support for multiple
 data.frames
● Two developers

2009: Porting to KDE4 & Qt4
● Porting to KDE4 and Qt4
● Qt3 branch continues to be
 maintained but no new features
 included
● Qt4 branch stabilized, and
 initial port to MS Windows platform

2010: Qt4 branch and new features
● Move from PHP to JavaScript back-end
● Stable running port on MS Windows
 platforms
● Proof of concept on Mac OS X
● New features (e.g. plot history)
● More options to script complex plugins

End of 2005
● Packages for major distributions (e.g. Debian,
 Fedora)
● Basic statistical tests available as plugins
● Addition of R console emulation and syntax
 highlighting

Years

End of 2002: Project starts
● Conceptual draft
● Low development efforts
● Development stopped
 after 0.1.0 release

2006: Accelerated Development
● Growing productive user base
● Inclusion of many plugins by
 external developers
● First localizations

End of 2009: close Qt3 branch
● No further feature inclusion
● Supported up to R 2.11.1
● Support ended with R 2.12.0

Figure 1: Timeline of important development milestones and changes in RKWard. Time is
presented on an arbitrary scale. Here Qt3 and Qt4 refers to the 3.x and 4.x versions of the
Qt libraries, respectively and KDE4 refers to the 4.x version of the KDE libraries.

2010; Yang, Liu, Liu, Qian, Zhang, and Hu 2011; Rödiger et al. 2011, 2012). Dialogs for
statistical procedures in RKWard do not necessarily show a one-to-one correspondence to the
underlying steps in R, but are rather oriented at statistical tasks. Furthermore, RKWard does
not impose artificial limitations on how users can work with the application. For example,
the user is not limited to using only one data.frame or one model at a time.

RKWard is designed to allow users to create custom GUI dialogs as plugins, requiring rel-
atively little programming knowledge. In essence, RKWard plugins consist of an XML file
describing the dialog layout, and ECMAScript code which generates R code from the settings
made in the GUI. Most of the data handling functionality in RKWard is implemented as
plugins (see Section 3.5), and many of these plugins have originated as user contributions.
Since version 0.5.5, RKWard also provides support for downloading user contributed “plugin
packs”, which are not included in the official RKWard releases. Details on the definition of
plugins, and a commented example can be found in the technical appendix of this article.

RKWard is licensed under the terms of the GNU General Public License Version 2 or higher.
However, due to its dependencies, RKWard binaries are effectively distributable only under
the terms of Version 2 of the license. Parts of the documentation are available under the GNU
Free Documentation License. Full terms and explanations of both licenses are available at
http://www.gnu.org/licenses/gpl.html and http://www.gnu.org/licenses/fdl.html,
respectively. While the project remains in constant development, a growing number of users
employs RKWard in productive scenarios. The source code, selected binaries and documenta-
tion is hosted at SourceForge (http://rkward.sourceforge.net/). Selected key milestones
of the development of RKWard are visualized in Figure 1.

In this paper we will give an overview over the installation process (Section 2), the main GUI
elements and features of RKWard (Section 3), and closing by a short example of a simple
RKWard session (Section 4). For readers interested in the technical design, and reasons for
certain design decisions, a technical appendix of this article is available.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/fdl.html
http://rkward.sourceforge.net/

4 RKWard: A Comprehensive GUI and IDE for R

2. Installation and platform availability

Contrary to some other R GUIs, such as Rcmdr, RKWard cannot be installed and started as
a regular R add-on package. Rather, it is started as a stand-alone application which embeds
the R engine, and needs to be installed in a platform dependent way, as detailed below3.
Besides the KDE runtime environment and R, RKWard utilizes a growing number of R add-
on packages. However, these do not have to be installed before hand. Rather RKWard
will prompt the user to install missing packages interactively, on an as-needed basis (see
Section 3.8).

2.1. Installation on the GNU/Linux platform

Historically, RKWard originated on the GNU/Linux platform, and binary packages are avail-
able for many major GNU/Linux distributions, including Debian, Ubuntu, OpenSuse, Gentoo,
Fedora, but also for other POSIX compliant systems such as FreeBSD (http://standards.
ieee.org/develop/wg/POSIX.html). The exact size of the installation is system dependent.
On Debian x86, the package is currently around 1.5 MB (megabyte) compressed, and 5.5 MB
uncompressed. However, if the KDE runtime environment is not yet installed, an installation
of RKWard may need several hundred MB of disc space.

On systems which provide up-to-date packages of R and KDE, compilation from source is
generally unproblematic. Instructions are provided at http://p.sf.net/rkward/compiling.

2.2. Installation on Microsoft Windows

RKWard will run on Windows XP, Windows Server 2003, Vista, and Windows 7. 32-bit
binaries are provided by the project (download links and instructions are provided at http:

//p.sf.net/rkward/windows). Users can choose between a small installer (1.7 MB), which
will add RKWard to pre-existing installations of R and KDE, and an installation bundle,
which provides RKWard, R, and KDE. This bundle just needs to be unpacked to any user-
writable folder, and can be run without any further steps of installation. When using this
bundle, RKWard can also be installed to removable storage devices (e.g., USB sticks) and
shared between systems. Its configuration settings are stored in the user’s home directory,
and will not be shared across systems, unless the user takes further steps. The size of the
current installation bundle is 132 MB compressed, and around 670 MB installed.

Source installation on the Microsoft Windows platform is comparatively difficult, since various
tools need to be installed (see http://sourceforge.net/apps/mediawiki/rkward/?title=

RKWard_on_Windows/Packaging for details).

2.3. Installation on Mac OS X

At the time of writing, the developers lack the resources to support a Mac OS X port,
and especially to provide binaries for Mac OS X. Although RKWard has been successfully
compiled and installed on the Mac, and appeared to be mostly functional, there have also
been unresolved reports of failure to compile or start RKWard on Mac OS X. Since the KDE
project currently does not offer binaries for Mac OS X, installation of RKWard also requires
compilation of the KDE runtime environment and its dependencies from source, which takes

3 See http://p.sf.net/rkward/download for an overview and platform specific download links.

http://standards.ieee.org/develop/wg/POSIX.html
http://standards.ieee.org/develop/wg/POSIX.html
http://p.sf.net/rkward/compiling
http://p.sf.net/rkward/windows
http://p.sf.net/rkward/windows
http://sourceforge.net/apps/mediawiki/rkward/?title=RKWard_on_Windows/Packaging
http://sourceforge.net/apps/mediawiki/rkward/?title=RKWard_on_Windows/Packaging
http://p.sf.net/rkward/download

Journal of Statistical Software 5

many hours to complete on current systems. Further, RKWard’s graphics device window
related features (see Section 3.6) are only available when compiling and using KDE and
RKWard in X11 mode. In conclusion, RKWard on Mac OS X is not suitable for most users
in its current state.

2.4. Starting RKWard

RKWard cannot be loaded from within an R session, but is rather started as a stand-alone
application with an embedded R engine. To facilitate the first steps for new users, a dialog
offers the choice to load an existing workspace, to start with an empty workspace, or to create
a new data.frame and open that for editing. Also, an overview help page is shown in the
document area of the main window. Both these start-up features can be turned off.

3. Main elements of the user interface

This section gives an overview of the main user interface elements and features of RKWard.
For a use case oriented example of an RKWard session, see Section 4.

The default layout4 of the main application window is divided into five parts, as depicted
in Figure 2. The top of the window is occupied by menu bar and toolbar (Figure 2A). The
content of both bars is partially context sensitive, e.g., the Edit menu will offer one set of
actions when the current document window is a data editor, and another set of actions for a
R script editor window. To ease orientation, all top level menus remain persistent, even if no
actions are available for that menu in the current context. The menu bar of the main window
is also the central access point to most data import, manipulation, analysis, and visualization
features (see Section 3.5) for which RKWard provides a GUI interface.

A status bar is shown at the bottom of the window (Figure 2E). It displays (from right to
left) a Stop-button to interrupt the current computations, the status of the R engine (busy
or idle), the current working directory, and a multi purpose region for additional information
on some menu items and other GUI elements, visible when hovering the mouse pointer over
them.

The RKWard GUI generally follows an MDI (multiple document interface) approach. Doc-
ument windows (object summaries, Section 3.1; script editors, Section 3.2; spreadsheet-like
data editors, Section 3.4; results output, Section 3.7; help pages, Section 3.10; and also R
on-screen graphics devices, Section 3.6) are arranged in a TDI (tabbed document interface;
see e.g., Hopkins 2005; Microsoft Developer Network 2010; Kim and Lutteroth 2009) in the
central area (Figure 2C). The order of tabs can be conveniently re-arranged using drag &
drop.

Additionally, several tool windows are available form resizable sub-panes at the four sides5.
By default, the left panel (Figure 2B) contains a file browser (see Section 3.9) and a workspace
browser (see Section 3.1), the bottom panel (Figure 2D) contains a command log (Section 3.9),
an R console (Section 3.3), and a help search (Section 3.10) window. The top and right sub-
panes are not populated by default.

4 Many aspects of the RKWard GUI can be customized by the user. For simplicity we will describe the
default appearance of RKWard, only.

5 This combination of a tabbed-document interface and sub-panes is sometimes referred to as an “IDE-style”
interface, due to its usage in popular IDEs such as Eclipse (Burnette 2005) or KDevelop (KDevelop.Org 2011).

6 RKWard: A Comprehensive GUI and IDE for R

Figure 2: Default RKWard main window after start up. (A) Menu bar and toolbar, (B)
tool panel showing workspace browser, (C) document view area, showing different documents
(welcome message, data.frame“my.data”, “mean” help page, R script demo.R), (D) tool panel
showing embedded R console, and (E) status bar with an option to stop running processes.
Panels B and D can be resized or collapsed. The red border around B indicates that the
workspace browser is the active interface element.

Users can also detach all types of document windows and tool windows from the main ap-
plication window, which will then appear as independent windows, managed by the window
manager, or re-attach them to the main window. This is to allow users to take advantage of an
SDI (single-document interface), where useful, such as the ability to view any two documents
side-by-side, or to make better use of multiple displays. On-screen graphics device windows
are created detached by default, but can be attached to the document view area of the main
window.

Windows can be selected (or shown / hidden) using a mouse device with point & click, as
well as using a series of keyboard shortcuts (defined by default) for activating specific tool
windows, or for cycling through all windows in the order of most recent usage6.

All key bindings can be configured from the GUI via Settings→Configure Shortcuts.
However, for technical reasons only the shortcuts of currently active components will be listed.
Thus, for example, to configure data editor shortcuts, one has to open a data editor first
and then to select Settings→Configure Shortcuts. Since RKWard relies on the RKWard

6 This uses the shortcut Ctrl+Tab by default, and behaves similar to the Alt+Tab feature of common window
managers. The difference is that this cycles through RKWard windows, only, including both detached windows,
and windows which are attached inside the main application window.

Journal of Statistical Software 7

editor component, shortcuts for the script editor (Section 3.2) are managed separately via
Settings→Configure Editor→Shortcuts. On most systems, it is also possible to configure
shortcuts by right-clicking on the respective menu item.

The choice of available actions on the toolbar can be configured via Settings→Configure

Toolbars. Further, it is possible to add and remove sets of data manipulation and analysis
features from the GUI, using Settings→Configure RKWard→Plugins.

3.1. Workspace browser and object viewer

The workspace browser (Figure 2B) allows to view and manipulate R objects, similar to a
regular file-system browser. This includes both, user objects (data, functions, environments)
in .GlobalEnv and non-user objects in other environments in the R search path (typically, R
package environments). Objects are shown in a hierarchical tree structure. For instance, an
object of class list can be expanded to show all contained objects by clicking on the + symbol
left of the object name. The basic type of each object is indicated by specific icons7. Further
information on each object can be seen by hovering the mouse pointer over the respective
icon. A tooltip window will appear, including information such as dimensionality or function
arguments, depending on the type of object. Further, objects inside .GlobalEnv can be
removed, renamed, and edited from the context menu.

Several actions are available from a context menu (after right-clicking on the object names),
depending on the type of object. These allow to search the R help for information on that
object, to open a window with detailed information on the object, to delete, rename or
copy the object to a new symbol name, or to copy it to .GlobalEnv. Further, the context
menu allows to open supported types of objects for editing (see Section 3.4; currently, only
data.frames can be edited, and only while they exist in .GlobalEnv). Selecting View from
the context menu opens a new window in the document area, containing basic information
on the object as well as tabs which show the output of print() and summary() calls.

Literally hundreds or even thousands of objects are present in a typical R session. This can
be overwhelming at first, therefore, the workspace browser has options to show only a certain
subset of objects, e.g., only functions or only data objects, including or excluding hidden
objects (object names starting with a “.”), or showing only the contents of .GlobalEnv as
opposed to all environments in the search path.

An object list similar to the workspace browser (but showing only .GlobalEnv by default) is
also used in several places for the selection of objects to work with, e.g., in an analysis plugin
(see Section 3.5).

3.2. Code editor

RKWard comes with an advanced R script editor, based on the KDE advanced text editor
component (Kate; http://kate-editor.org/). Features of this editor include syntax high-
lighting (both on screen and in printouts; for R and many other script types), code folding,
block-wise indentation adjustments or commenting, automatic brackets, search and replace
with plain text or regular expressions, and many more. Further, Kate can be extended by
customized actions implemented in ECMAScript (Haumann 2010). The editor automatically

7The workspace browser indicates the types “Number”, “Factor”, “String”, and “Logical” for the data.frame

“my.data” (Figure 2B).

http://kate-editor.org/

8 RKWard: A Comprehensive GUI and IDE for R

Figure 3: Code hinting features of the script editor. The script editor is able to hint (A) R
object names and (B) function arguments.

Figure 4: Paste special dialog. This tool allows to paste data (e.g., tabular, text) from the
clipboard, directly to an R script and therefore accelerates the work process with data from
different sources like spreadsheet applications.

saves snapshots of the currently edited files at configurable intervals.

For interaction with R, the editor has predefined shortcuts (and toolbar icons) for submitting
the current line, the current selection, predefined blocks, or the entire document to the R
engine for evaluation. It also offers object name completion and function argument hinting
(Figure 3A and B) based on the objects present in the R workspace8. A further feature specific
to the R language is the Paste Special action, which allows to paste the clipboard content
(e.g., from a separate spreadsheet application) as a single string, vector, or matrix, suitable
for inclusion in an R script, optionally transforming it in advance (Figure 4).

Script editor windows can be created by opening an existing R script file from the file browser
or the File menu. It can also be invoked from R, e.g., using the file.edit(), file.show(),
or fix() commands.

3.3. Using the R console

For users with knowledge of R, RKWard provides direct access to the embedded R engine in
the R console tool window. It is important to understand that technically this is an emulation

8The object name completion and function argument hinting features in RKWard predate the inclusion of
similar features into the core R distribution. For this reason, they are technically based on different mechanisms.

Journal of Statistical Software 9

Figure 5: RKWard with several data.frames in use at the same time. (A) One data.frame

(CO2 data of the datasets package) is opened for editing in the main window. Two further
data.frames are opened in the background in tabs. (B) Another data.frame (ChickWeight)
is opened in a detached window. (C) R’s standard data editing features (e.g., fix(), edit())
are also usable in RKWard. In this example fix(DNase) was invoked from the console
(arrow).

of R running in a console session, not a real R session. This leads to a few subtle differences,
e.g., with respect to the command history feature in R.

However, for most purposes RKWard’s R console can be used exactly like R running in a
terminal. Adding to that, it provides many of the features which are also available in the
code editor (see Section 3.2). Most prominently, it supports syntax highlighting, code folding,
function argument hinting, object name completion, and pasting vector or matrix data directly
from the clipboard. By default, any code that is submitted to the R engine from the code
editor or from help pages, is sent through the R console. However, it can be configured to be
submitted in the background, instead.

3.4. Spreadsheet-like data editor

Historically, one of the earliest features of RKWard is a built-in spreadsheet-like data editor.
Currently, editing R objects of type data.frame is possible. In contrast to the data.frame

editing shipped with the R core distribution, this editor gives the illusion of “in-place” editing
of data. New data.frames can be created and opened from the GUI, and existing objects
can be opened for editing from the workspace browser. For opening objects from R code, the
function rk.edit() can be used. Figure 5 shows multiple data.frames open for editing.

10 RKWard: A Comprehensive GUI and IDE for R

Metadata on each column of a data.frame (i.e., name of the column, data type, and poten-
tially data labels) is shown in the upper portion of the data editor, and can be manipulated
there, while the data itself is shown in the lower portion. The upper portion can be hidden
using a slider, to save space for the display and editing of actual data. Similarly, an editable
column showing the row names of the data.frame can be shown or hidden separately from
the data.

For columns of type factor, factor levels can be edited by double-clicking on the Levels row
of the meta information. Levels can also be assigned to other types of variables, but only for
consecutive integer values. These levels will be displayed instead of the underlying value, if
applicable. Each column can also be assigned an arbitrary descriptive “Label”, which is stored
in R as an attribute of the column.

Contrary to many other editors, the data editor in RKWard does not automatically convert
data types of columns. For instance, if a non-numeric string is entered into a cell of a numeric
column, the data type of the column remains numeric, and the entered value is highlighted
in red. Internally, the invalid cell is set to NA. The entered value is stored separately, in an
attribute of the column. The rationale for this approach is that it offers protection against
accidental, and probably undetected, conversion of data types. The user can manually convert
the storage mode of a column by simply selecting a different data type in the “Type” row of
the meta information.

The data editor supports insertion and deletion of rows or columns at arbitrary positions.
Rows (columns) can also be added at the bottom (right) by simply entering data into the
trailing row (column) shown in gray. Copy & paste is supported, where the area affected by
paste operations can optionally be constrained to the selected region, or to the dimensions of
the table. The data editor can also be set to read-only mode to examine data objects.

In the context of data editing, it is noteworthy that RKWard supports working with multiple
objects simultaneously, rather than limiting actions to a single active data.frame, as with
e.g., Rcmdr or Deducer (Fellows 2012). Given this non-modal interface design, multiple data
editor windows can be opened at once (Figure 5).

3.5. Handling, manipulating, and analyzing data

Dealing with data – i.e., importing, transforming, filtering, analyzing, and visualizing – is the
core strength of R, and one central goal of RKWard is to make the most of this functionality
available to a broader audience by providing it in the form of easy to use GUI dialogs. Since
the data handling functionality itself is provided by R and its numerous add-on packages,
this can basically be accomplished by defining GUI dialogs, generating R code according to
the settings made in the GUI, and having the generated code evaluated by the R engine.
This general pattern, implemented as plugins, is the basic recipe for most of the functionality
provided by RKWard (see the technical appendix of this article for details on the definition of
plugins). For the purpose of this article we will look at the standard elements of data handling
functions by an example of importing comma-separated values (CSV) data9. Further examples
are given in Section 4.

9 Note that on purpose, RKWard does not have its own file format for data import and export, but rather
uses R workspaces as default data format. Additionally, it is possible to import data from several sources as
described in this section. Of course, further formats can also be imported using copy & paste (see Sections 3.2
and 3.4), or by manually entering appropriate R commands in the R console (Section 3.3).

Journal of Statistical Software 11

Figure 6: General data import dialog. Useful defaults for a variety of formats can be set using
the Quick Mode selector on the left. Further customizations can be done from the Rows and

Columns and Further Options tabs. The code in the bottom area can be copied and used
for other purposes.

At the time of writing, RKWard provides support for importing SPSS, Stata, and “delim-
ited text” data. Internally, RKWard relies on standard R functions and the package foreign
(Murdoch 2002) for reading these data files. To import CSV data, select File→Import

format→Import Text→CSV data from the menu. This will open the dialog shown in Fig-
ure 6. The central area of this dialog provides options to control the import. The File

name field is highlighted, to indicate that it is required to specify a file before the dialog can
proceed. Further options are available from the tabbed pages of the central area.

The right-side area is common to all data handling dialogs. Here the Submit button is used
to start the import action. It is enabled once all required settings have been made, i.e., in
this case, once a file name has been selected. The Close button will close the dialog without
taking any action.

The bottom area optionally shows the R code corresponding to the current settings which will
be run upon pressing the Submit button (see Section 4.1 for generated R code). The code
display is hidden by default and can be revealed using the Code button. This generated code
display is updated dynamically as the user changes settings, allowing to see the effect of each
change instantly.

Most data handling functions will produce some output, which is sent to the output win-
dow. From there it is possible to repeat the action by clicking on the Run again-link (see
Section 3.7).

12 RKWard: A Comprehensive GUI and IDE for R

3.6. Graphics window and plot previews

For plotting, RKWard relies on the graphics capabilities provided by R. All R devices, includ-
ing on-screen devices, can be used in the regular way. However, for the X11() and windows()

devices, RKWard adds a menu bar and a toolbar to the device windows (on the Microsoft
Windows platform, replacing the default menu bar provided by the device). The menu bar
and toolbar give access to a number of different functions, including GUI dialogs for exporting
the current plot, and adding a grid to an existing plot (works on only certain types of plots).

Further, a history mechanism is provided, which stores created plots automatically and allows
to navigate back to earlier plots (Figure 7). The history is available as a drop-down list of the
plot calls as well as using typical back and forward buttons on the toolbar. The maximum
number of plots to record, as well as the maximum size of each individual plot, is configurable
from the settings menu. This plot history is shared between all open on-screen device windows,
yet they behave independently. For example, if multiple devices display the same plot, any
modification (including deletion) of the plot on one device renders its instances on other
devices as “new” and hence can be added back to the plot history. In addition, duplicating or
closing a device window records any unsaved plots to the history.

Figure 7: On-screen graphics device window in RKWard. The plot history is available as a
drop-down list, allowing to jump directly to a previous plot. In this example, five different
plots were performed on the same data set of a random sample (rnorm()). The plot can be
exported via Device→Export as described in Section 4.3.

Journal of Statistical Software 13

Further, RKWard provides access to different plotting functions using GUI dialogs, available
from the Plots menu. Wherever appropriate, RKWard supports a “plot preview” feature.
When the Preview box of the respective dialog is checked, a device window is opened, which
shows the plot as it would be created with the current settings (see Section 4.3 for an exam-
ple). The preview is updated automatically as the user makes changes, allowing to see the
effect of each setting instantly10. For example, the central limit theorem plugins under the
Distributions menu can be very helpful to dynamically “show” the convergence in distri-
bution while teaching. For the sake of simplicity, such preview plots are not added to the
history.

3.7. Results output

While all basic mechanisms of capturing and documenting R output can also be used, RKWard
provides a dedicated output file and a output window for documenting the results. All GUI-
driven data handling functions (see Section 3.5) write their output to this file. The same
applies to error messages, in case a plugin fails to perform its task. The output is presented
in a journal format11. All results are presented sequentially with the last performed task at the
bottom. It is also possible to write to the output directly from R scripts by using a number of
dedicated R functions included in the rkward package (part of RKWard). For the GUI-driven
data handling functions, the output is standardized to include the name of the feature, the
date and time of its execution, and other basic parameters, wherever applicable. Further, a
clickable Run again link is rendered below the output of each data handling feature, which
allows to invoke the same feature again with identical parameters12 (see Figure 8). Thus,
the Run again feature combines the documentation of the result with an automated way to
conduct the same analysis again on new data, providing benefits similar to, for example, the
automated report generation available from RReportGenerator (Raffelsberger et al. 2008).

The formatting of output is kept to a minimum. In particular, RKWard is very reluctant
to round numerical results for the sake of a pretty output. Rather, the focus is on making
the results easily accessible for further processing, typically in a dedicated word processor.
Output is based on HTML, and the raw HTML file and any images therein can be directly
retrieved from a dedicated folder (by default, this is a folder named .rkward inside the user’s
home folder). It is also possible to select and copy sections of the output directly from the
output window, and to paste them into office applications as richly formatted text; even
images and tables can be easily copied by drag & drop to many office applications. In future
releases, it is planned to integrate RKWard with existing office suites. This will possibly also
mean addition of different file formats such as Open Document Format and technologies such
as Sweave and odfWeave (Leisch 2002; Kuhn 2006).

Images contained in the output are stored as portable network graphics (PNG; http://www.
libpng.org/pub/png/) by default, but JPEG (http://www.jpeg.org/jpeg/index.html)
and scalable vector graphics (SVG; http://www.w3.org/Graphics/SVG/) can also be used.
Similarly, the size of images can be configured by the user. It is expected that SVG will
become the default output format eventually, but currently some SVG files produced by R

10The preview is updated asynchronously to keep the GUI responsive; see also the technical appendix of this
article.

11Note: The font size of the output can be adjusted from the menu.
12In case not all parameters could be reused, e.g., because some of the objects in question are no longer

available, the user will be notified.

http://www.libpng.org/pub/png/
http://www.libpng.org/pub/png/
http://www.jpeg.org/jpeg/index.html
http://www.w3.org/Graphics/SVG/

http://www.omegahat.org/

rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net
http://kate-editor.org/about-katepart/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://standards.freedesktop.org/xembed-spec/xembed-spec-latest.html
http://standards.freedesktop.org/xembed-spec/xembed-spec-latest.html
http://www.jstatsoft.org/v49/i08/
http://www.jstatsoft.org/v14/i09/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://rkward.sourceforge.net/documents/devel/plugins/index.html

http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80
http://www.R-project.org/GUI
http://kate-editor.org/2010/07/09/kate-scripted-actions/
http://kate-editor.org/2010/07/09/kate-scripted-actions/
http://CRAN.R-project.org/package=JGR
http://www.donhopkins.com/drupal/node/101
http://CRAN.R-project.org/doc/html/interface98-paper/paper.html
http://www.kde.org/community/whatiskde/
http://www.kdevelop.org/
http://crpit.com/confpapers/CRPITV93Kim.pdf
http://crpit.com/confpapers/CRPITV93Kim.pdf
http://www.koffice.org/kword/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://msdn2.microsoft.com/en-us/library/ms997505.aspx
http://msdn2.microsoft.com/en-us/library/ms997505.aspx
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

http://qt.nokia.com/
http://www.Red-R.org/
http://CRAN.R-project.org/package=trackObjs
http://CRAN.R-project.org/package=trackObjs
http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf
http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

http://lmdvr.R-Forge.R-project.org/
http://CRAN.R-project.org/package=TeachingDemos
http://hdl.handle.net/1721.1/13474
http://CRAN.R-project.org/doc/Rnews/

http://www.w3.org/XML/
http://www.ecmascript.org/
http://www.ecmascript.org/

http://ghns.freedesktop.org

32 RKWard: A Comprehensive GUI and IDE for R

G.1. Defining the menu hierarchy

A so called .pluginmap file declares each plugin, and, if appropriate, defines where it should
be placed in the menu hierarchy. Usually each .pluginmap file declares many plugins. In
this example we only show one, namely, a two variable Student’s t test (see Figure 16).
The pluginmap (<!DOCTYPE rkpluginmap>) gives a unique identifier (“id”), the location of
the GUI description (“file”), and the window title (“label”). The menu layout is defined in
a hierarchical structure by nesting <menu> elements to form toplevel menus and submenus.
Menus with the same “id” are merged across .pluginmap files. Moreover, the position within
the menu can be explicitly defined (attribute “index”). This might be required if the menu
entries are to be ordered non-alphabetically.

<!DOCTYPE rkpluginmap>

<document base_prefix="" namespace="rkward">

<components>

<component type="standard" id="t_test_two_vars"

file="demo_t_test_two_vars.xml" label="Two Variable t-test" />

</components>

<hierarchy>

<menu id="analysis" label="Analysis" index="4">

<menu id="means" label="Means" index="4">

<menu id="ttests" label="t-Tests">

<entry component="t_test_two_vars" />

</menu>

</menu>

</menu>

</hierarchy>

</document>

G.2. Defining the dialog GUI

The main XML file of each plugin defines the layout and behavior of the GUI, and references
the ECMAScript file that is used for generating R code from GUI settings and the help file
(not included in this paper). GUI logic can be defined directly in the XML file (the <logic>

element). In this example, the Assume equal variances checkbox is only enabled for paired
sample tests. Optionally, GUI behavior can also be scripted in ECMAScript.

The XML file defines the Student’s t test plugin (<!DOCTYPE rkplugin>) to be organized in
two tabs24. On the first tab, two variables can be selected (<varslot .../>). These are set
to be required, i. e., the Submit button will remain disabled until the user has made a valid
selection for both. The second tab includes some additional settings like the confidence level
(default 0.95).

<!DOCTYPE rkplugin>

<document>

<code file="demo_t_test_two_vars.js"/>

<help file="demo_t_test_two_vars.rkh"/>

<logic>

<connect client="varequal.enabled" governor="paired.not"/>

</logic>

24A screenshot of the resulting dialog can be found in Figure 10.

Journal of Statistical Software 33

<dialog label="Two Variable t-Test">

<tabbook>

<tab label="Basic settings" id="tab_variables">

<row id="basic_settings_row">

<varselector id="vars"/>

<column>

<varslot type="numeric" id="x" source="vars" required="true"

label="compare"/>

<varslot type="numeric" id="y" source="vars" required="true"

label="against"/>

<radio id="hypothesis" label="using test hypothesis">

<option value="two.sided" label="Two-sided"/>

<option value="greater" label="First is greater"/>

<option value="less" label="Second is greater"/>

</radio>

<checkbox id="paired" label="Paired sample" value="1" value_unchecked="0" />

</column>

</row>

</tab>

<tab label="Options" id="tab_options">

<checkbox id="varequal" label="assume equal variances" value="1"

value_unchecked="0"/>

<frame label="Confidence Interval" id="confint_frame">

<spinbox type="real" id="conflevel" label="confidence level" min="0" max="1"

initial="0.95"/>

<checkbox id="confint" label="print confidence interval" value="1"

checked="true"/>

</frame>

<stretch/>

</tab>

</tabbook>

</dialog>

</document>

G.3. Generating R code from GUI settings

A simple ECMAScript script is used to generate R code from GUI settings (using echo()

commands). Generated code for each plugin is divided into three sections: “Preprocess”,
“Calculate”, and “Printout”, although each may be empty.

var x;

var y;

var varequal;

var paired;

function preprocess () {

x = getValue ("x");

y = getValue ("y");

echo ('names <- rk.get.description (' + x + ", " + y + ')\n');

}

function calculate () {

varequal = getValue ("varequal");

paired = getValue ("paired");

34 RKWard: A Comprehensive GUI and IDE for R

var conflevel = getValue ("conflevel");

var hypothesis = getValue ("hypothesis");

var options = ", alternative=\"" + hypothesis + "\"";

if (paired) options += ", paired=TRUE";

if ((!paired) && varequal) options += ", var.equal=TRUE";

if (conflevel != "0.95") options += ", conf.level=" + conflevel;

echo ('result <- t.test (' + x + ", " + y + options + ')\n');

}

function printout () {

echo ('rk.header (result\$method, \n');

echo (' parameters=list ("Comparing", paste (names[1], "against", names[2]),\n');

echo (' "H1", rk.describe.alternative (result)');

if (!paired) {

echo (',\n');

echo (' "Equal variances", "');

if (!varequal) echo ("not");

echo (' assumed"');

}

echo ('))\n');

echo ('\n');

echo ('rk.results (list (\n');

echo (' \'Variable Name\'=names,\n');

echo (' \'estimated mean\'=result\$estimate,\n');

echo (' \'degrees of freedom\'=result\$parameter,\n');

echo (' t=result\$statistic,\n');

echo (' p=result\$p.value');

if (getValue ("confint")) {

echo (',\n');

echo (' \'confidence interval percent\'=(100 * attr(result\$conf.int, "conf.level")),\n');

echo (' \'confidence interval of difference\'=result\$conf.int ');

}

echo ('))\n');

}

Affiliation:

Stefan Rödiger
Lausitz University of Applied Sciences
Department of Bio-, Chemistry and Process Engineering
and
Kardiologie-CCM, Charité-Universitätsmedizin Berlin
Germany
E-mail: stefan_roediger@gmx.de, rkward-devel@lists.sourceforge.net

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 9 Submitted: 2010-12-28
June 2012 Accepted: 2011-05-06

mailto:stefan_roediger@gmx.de
mailto:rkward-devel@lists.sourceforge.net
http://www.jstatsoft.org/
http://www.amstat.org/

	Background and motivation
	Installation and platform availability
	Installation on the GNU/Linux platform
	Installation on Microsoft Windows
	Installation on Mac OS X
	Starting RKWard

	Main elements of the user interface
	Workspace browser and object viewer
	Code editor
	Using the R console
	Spreadsheet-like data editor
	Handling, manipulating, and analyzing data
	Graphics window and plot previews
	Results output
	Package management
	Further tool windows
	Help system

	Using RKWard: An example session
	Importing data
	Conducting a Student's t-test
	Creating a plot

	Conclusion and outlook
	Appendix overview
	Asynchronous command execution
	Object modification detection
	Choice of toolkit and implementation languages
	On-screen graphics windows
	Plugin infrastructure
	Defining a plugin
	Embedding and reuse of plugins
	Enforcing a consistent interface
	Handling of R package dependencies
	Development process
	RKWard core and external plugins
	Automated testing

	Extending RKWard: An example for creating a plugin
	Defining the menu hierarchy
	Defining the dialog GUI
	Generating R code from GUI settings

