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Abstract

The increasing popularity and complexity of random number intensive methods such
as simulation and bootstrapping in econometrics requires researchers to have a good grasp
of random number generation in general, and the specific generators that they employ in
particular. Here, we discuss the random number generation options, their specifications,
and their implementations in gretl. We also assess the performance and the reliability
of gretl in this department by conducting extensive empirical testing using the TestU01
library. Our results show that the available alternatives are soundly implemented and
should be sufficient for most econometric applications.
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1. Introduction

Mathematicians have long known that random number generation is too important to be left
to chance (Coveyou 1969). Many econometric discussions, however, just assume that one
will always get reliable random numbers by using in one way or another the random number
generator (RNG) found in all econometric software packages. This, of course, is far from the
truth since the scientific literature has many examples of invalid simulation results caused
by bad RNGs (Coddington 1994, 1996). Moreover, studies such as McCullough (1999a,b,
2008), Vinod (2000), McCullough and Wilson (1999, 2002, 2005), and Yalta (2007) have per-
formed tests exposing problems in the RNGs of various popular programs offering statistical
and econometric functionality. Furthermore, studies such as Tirler, Dalgaard, Hormann, and
Leydold (2004), Doornik (2005), Panneton, L’Ecuyer, and Matsumoto (2006), and Saito and
Matsumoto (2008) have offered corrections and improvements over well-established methods
for generating random values. These efforts, in many cases, have resulted in the adoption of
better algorithms or implementation improvements in the newer versions of various econo-
metric and statistical programs.

http://www.jstatsoft.org/
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Given the importance of the issue, researchers should always be able to verify that the RNG
they use in a given simulation is of a high quality. This requires evaluation of the available
RNG options, assessment of their limitations, and documentation of details regarding their
delivery in a given software package. This information is crucial not only for the reliability
of computational results, but also for their reproducibility, which is becoming an increasingly
important concern in the field of economics.1

Our objective in this study is to provide a discussion and a detailed empirical testing of the
RNGs in gretl (Cottrell and Lucchetti). Written “by econometricians for econometricians,”
gretl is the flagship free/libre and open source software (FLOSS) in the domain of economet-
rics. It provides a comprehensive set of tools accessible through an intuitive graphical user
interface as well as an integrated scripting language. It also links to R, Octave, and Ox for
further data analysis. Thanks to being FLOSS, the program is by definition more inspectable
and therefore can be more trustworthy in comparison to proprietary black-box alternatives
(Yalta 2010). Its accuracy has been tested, verified, and documented on various fronts and
occasions by Baiocchi and Distaso (2003), Yalta and Jenal (2009) as well as Yalta and Yalta
(2007, 2009). In addition, reviews by Mixon and Smith (2006), and Rosenblad (2008) discuss
the merits of the program in doing research as well as teaching econometrics; while Adkins
(2011) and Lucchetti (2011) respectively focus on performing simulations and state space
estimations using gretl.

The rest of the paper is organized as follows. In the next section, we discuss from the
perspective of applied researchers some of the key concepts in random number generation in
econometric programs. In Section 3, we examine the RNGs and the other methods employed
by gretl to produce random uniform and random normal values. This is followed by the
presentation of detailed empirical results assessing the RNGs implemented in gretl. Section 5
concludes.

2. Random number generators

The fundamental fact that a researcher needs to know about computer generated random
numbers is, of course, that they are not truly random.2 For most research purposes, we rely
on pseudorandom numbers generated deterministically by various mathematical algorithms.3

The independently identically distributed U(0, 1) values that these algorithms are designed
to produce is the source of virtually all random numbers used in increasingly large quantities
for a variety of tasks such as simulation, bootstrapping, and Bayesian econometrics.

The first and the most basic RNG is probably the middle-square method described by von
Neumann (1951). His approach allows creating a series of random numbers by first picking
a 4 digit starting value, taking its square, and using the middle 4 digits of the result as the
input for the next iteration. This technique has a number of desirable features expected
from a computer based RNG such as being fast, being portable, and having a small memory

1Regarding the difficulty of reproducing results in economics and how to overcome this problem, see An-
derson, Greene, McCullough, and Vinod (2008) and Koenker and Zeileis (2009).

2The need for true randomness is rather limited to specific tasks such as lotteries and cryptography, which
first and foremost require unpredictability. Real random numbers required for such purposes are usually
obtained based on physical randomness created by various specialized hardware devices.

3Because the scope of the paper is limited to pseudorandom numbers, here we will simply refer to them as
random numbers.
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footprint. Among its important limitations, however, are repeating short series as well as
series declining to zero, which have later resulted in the development of more sophisticated
RNGs thanks to increased computational capacity.

Ripley (1990) describes the four quality criteria for a good RNG as

1. repeatability based on a simply specified starting point (seed),

2. a very long period,

3. output approximates the uniform distribution very well,

4. output is independent in a moderate number of dimensions.

These characteristics are perhaps best discussed by using as an example a well-known class
of simple RNGs known as linear congruential generators (LCGs)

xi+1 = (axi + b) mod m, (1)

which has the integer constants 0 < m as the “modulus”, 0 < a < m as the “multiplier”, and
0 < b < m as the “increment”.

Obviously, an LCG satisfies the first requirement by allowing series that are easily reproduced
based on x0, the seed. For deterministic RNGs, this is the most vital feature required for the
verification and repeatability of a given simulation experiment without having to store a huge
set of data.

The period of an RNG, mentioned as a second important criterion, measures the maximum
number of random variates that can be generated before the series starts repeating itself.
Having a huge period length is crucial due to the ever increasing size and complexity of
random number intensive applications. Depending on the choice of a and b, an LCG is known
to have a maximum period of m − 1. For many modern applications, this will be too short
even for the typical case where m = 231 − 1, the largest signed integer representable in a
32-bit integer type.4

The third condition regarding whether a finite set of values produced by an RNG satisfies
uniformity in (0, 1) is, in general, assessed empirically by using various statistical tests for
randomness. Because what represents a random series is a relative concept, a high entropy
output, one that shows a significant level of disorder and chaos, is an important concern in
these tests. The LCG class of generators also fail in this department because their successive
output values can show strong correlation, especially when the choice of the parameters a, b,
and m is poor (L’Ecuyer and Simard 2007).

The fourth element requires that, starting with a random seed s0, the first n output values are
uniformly distributed over the n-dimensional unit hypercube [0, 1]n. In other words, drawing,
say, three random numbers at a time should give individual sets that are independent. LCGs
disappoint here as well since performing the aforementioned test with an LCG actually results
in points lying orderly on a relatively small number of parallel planes inside the unit cube.
This phenomenon is known as the Marsaglia (1968) effect.

4231 roughly equals 109, which is rather limited given that today simulations can require billions of random
numbers. In addition, as the calls to a LCG approaches the period length, the generated series diverge from
the uniform distribution, which in turn requires using only a fraction of the RNG’s output (Knuth 1997).
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Over the years, better understanding of the structural weaknesses of LCGs, along with the
need for bigger and better random series, has resulted in an explosion of RNGs proposed by
different authors. Today, we have classes of RNGs such as multiple recursive generators, lagged
Fibonacci generators, subtract with borrow generators, feedback shift register generators,
inversive generators, and so on. Within each group, there are also individual RNGs with
different specifications and behavior based on the choice of parameters. As RNGs become
more and more complex, their structures become increasingly difficult to analyze theoretically.
This in turn requires that their performance and quality be appraised empirically.

One simple way to assess randomness is a chi-square test comparing the observed frequencies
of a series of numbers to those expected from the U(0, 1) distribution. Other tests, in addition
to the various tests measuring global uniformity, include clustering tests, run and gap tests,
serial tests, power divergence tests, linear complexity tests, and so on. A large number of tests
are needed and available because there are many many ways in which a set of numbers may
be related systematically, especially when these numbers are in fact produced systematically.
Regarding this fact, von Neuman is famously quoted by Knuth (1997) “Anyone who considers
arithmetical methods of producing random digits is, of course, in a state of sin.” On the other
hand, because such systematically generated numbers are important for practical purposes,
Marsaglia, a prominent guru of random number generation, replies “Who among us has not
sinned?”5 Indeed, in many cases, all a researcher needs is a good RNG whose structure is so
well hidden that the null hypothesis of orderly pattern is rejected by a sufficiently large set
of statistical tests.

The first standard battery of randomness tests was proposed in the first edition of Knuth
(1997) in 1969. This test suite included 11 relatively basic tests, some of which had been
proposed much earlier during the days of using tables of random digits. Over time, these
needed to be supplanted by 17 “stringent” tests compiled by Marsaglia (1996) in the test
suite “Diehard: A Battery of Tests of Randomness.” The Diehard program, which is based
on analyzing a user provided file containing by default 3 million random digits, has a few
drawbacks particularly in the departments of extensibility, customizability, and documenta-
tion. Inevitably, with the need for increasingly bigger random series, Diehard became not so
stringent, which resulted in a successor entitled TestU01 proposed by L’Ecuyer and Simard
(2007). Today, when it comes to testing of RNGs, TestU01 can be said to be the method of
choice, at least until the ever increasing scale of computations requires an even more stringent
suite of tests.6

Without doubt, one can always design new tests and test suites that will reject randomness
for any finite series considered random previously. This is due to the fact that suites such as
TestU01 are not really tests of “randomness” in the modern mathematical definition of Kol-
mogorov/Chaitin algorithmic information theory.7 Rather, they are tests of equidistribution
and independence in specific dimensions, which are open ended criteria. Consequently, for

5Quoted in Dembski (1991).
6There exists other software for testing RNGs such as the Dieharder program by Brown (2006) as well

as the Scalable Parallel Pseudo Random Number Generators Library (SPRNG) by Mascagni and Srinivasan
(2000), which includes a suite of the parallel versions of some of the classical tests. Also the National Institute
of Standards and Technology (2010) offers the Statistical Test Suite (STS) comprised of 15 tests intended for
testing of RNGs for use in cryptographic applications.

7The algorithmic information theory postulates that a sequence is more and more random as the shortest
program that can produce it becomes longer and longer (Kolmogorov 1965). In these terms, software based
RNGs are not random because they produce vast sequences from a small computer program.
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assessing the quality of an RNG, the generally accepted approach is to have it undergo a large
number of tests and see if it passes most of the complicated trials and does not fail any of
the basic ones. Such attempts have revealed, and continue to reveal, serious deficiencies in
random number generation in many widely-used programs. As L’Ecuyer (2010) notes

The bad news is that a majority of the RNGs available in popular commercial
software fail (randomness) tests unequivocally, with p values smaller than 10−15.
These generators should be discarded, unless we have very good reasons to believe
that for our specific simulation models, the problems detected by these failed tests
will not affect the results. The good news is that some freely-available high-quality
generators pass all the tests in these batteries. Of course, passing all these tests is
not a proof that the RNG is reliable for all possible simulations; but it certainly
improves our confidence in the generator.

For a detailed account of RNGs and their testing, the reader is referred to L’Ecuyer (2006,
2010) and L’Ecuyer and Simard (2009).

3. Random number generation in gretl

Up until version 1.0.5, the uniform RNG in gretl was the relatively basic rand() function in
the system C library. With version 1.0.6 (March 2003), the existing generator was replaced by
the much superior Mersenne Twister (MT) algorithm by Matsumoto and Nishimura (1998).
MT has a number of desirable properties including a super astronomical period of 219937 − 1
as well as a 623-dimensional equidistribution up to 32-bit accuracy. It is particularly well
suited for Monte Carlo analysis thanks to being about as fast as a simple LCG, and also
because the quality of its output can be studied in detail analytically. The version of the
algorithm used by gretl is MT19937, with 32-bit word length, as implemented with some
modifications in the seeding algorithm by the GLib software utility library.8 The RNG can
be scrutinized from the glib/grand.c file under the glib/2.26.1 source directory at http:
//ftp.gnome.org/pub/gnome/sources/glib/2.26/.

Various custom implementations of the popular MT generator are used in many software
packages including R, Maple, SPSS, EViews, and MATLAB among others. However, the MT
is also known to have a subtle equidistribution problem. When the state space of the RNG
contains decidedly more 0’s than 1’s, which can be caused by bad initialization, then it can
have a negative bias for the generation of up to around 700000 random numbers (Panneton
et al. 2006). Because it is possible that such “0-excess” states lead to wrong simulation
results, various authors have recently proposed MT-based alternatives which are superior
from a theoretical perspective.

In order to offer an improved alternative to MT19937, gretl 1.9.4 (February 2011) included
a new RNG as the default method for generating random uniforms. The SIMD-oriented
Fast Mersenne Twister (SFMT, Saito and Matsumoto 2008) is a new variant of MT based on
using 128-bit single instruction multiple data (SIMD) operations, which represent an advanced
technique for achieving data level parallel computing. In comparison to MT, SFMT is not

8gretl 1.0.6 also included the original MT code (mt19937ar.c) as an alternative to the GLib implementation
because, previously, use of GLib was optional at compile time. This code was later removed in 2007, by which
time GLib had become a required dependency for libgretl.

http://ftp.gnome.org/pub/gnome/sources/glib/2.26/
http://ftp.gnome.org/pub/gnome/sources/glib/2.26/
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only significantly faster, but also has improved dimensions of equidistribution as well as
better recovery from a 0-excess state space. The RNG supports various periods from 2607 −
1 to 2216091 − 1. gretl’s SFMT19937 implementation, which has a period of 219937 − 1, is
based on version 1.3.3 of the original C code by Saito and Matsumoto (2007). It can be
examined using SourceForge viewvc interface located at http://gretl.cvs.sourceforge.

net/viewvc/gretl/gretl/rng/.

In addition to having a good uniform RNG, econometric programs also need a reliable and
efficient method for generating a random variable from a given decreasing density. In par-
ticular, the generation of random normals is of interest due to the crucial importance of the
normal distribution in statistical applications. From the first introduction of a normal RNG
until late 2009, the generation of random normals in gretl was based on the Box and Muller
(1958) method. This approach, which uses two independent uniform (0, 1) variates to produce
a pair of standard normal variates, is commonly expressed in two forms namely the basic form
and the polar form. For a single random value, gretl employs the polar form, however, the
basic form is also used when filling an array.9

Although Box-Muller is faster than its predecessors (Golder and Settle 1976), it is also slow
in comparison to some newer alternatives. In addition, the method is known to cause poor
sampling distributions leading to wrong simulation results when it is used in conjunction with
the multiplicative congruential class of RNGs (Neave 1973). Since version 1.8.7 (January
2010), gretl uses “ziggurat” as the default method for generating normal variates on the basis
of uniform input.10 Introduced by Marsaglia and Tsang (1984) and refined by Marsaglia
and Tsang (2000), the ziggurat approach is based on partitioning a unimodal density into
horizontal blocks of equal area and then using a single uniform random number to choose a
point by the method of rejection. It is an attractive choice thanks to its speed and efficiency.
However, as noted by Doornik (2005), ziggurat also has a potential dependency problem,
which was recognized during its adoption by gretl. The innovation in the gretl RNG code
was to solve the problem by sacrificing speed to the least possible extent. The programming
code for ziggurat as well as Box-Muller, which is still available as an option, is accessible from
http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/lib/src/random.c.

Although designed to be extensible in terms of RNGs, currently, gretl only offers the SFMT
and MT RNGs as well as the ziggurat and the Box-Muller methods discussed above. By
comparison, R provides by default 6 uniform RNGs and 4 different methods for the genera-
tion of decreasing densities from uniform random values.11 Consequently, in order to provide
better support for replicating simulation results, it can be useful to include more RNG op-
tions, especially those relatively more popular ones such as the lagged-Fibonacci generator
proposed in the 2002 reprint of Knuth (1997). Two other worthwhile additions would be
the well-equidistributed long-period linear (WELL) proposed by Panneton et al. (2006) as
well as George Marsaglia’s SUPER KISS generator discussed by Jones (2010). Despite being
noticeably slower in comparison to SFMT, the WELL currently has the highest quality out-
put theoretically (Saito and Matsumoto 2008). SUPER KISS, on the other hand, provides a

9The respective functions are ran_normal_box_muller() and gretl_two_snormals(), which depend on
gretl’s custom implementation of the method.

10The implementation is based on the gauss.c code by Voss (2005), which was written for use with the
GNU Scientific Library.

11R also has a number of contributed packages which provide further RNG options. For more information, the
reader is referred to the Comprehensive R Archive Network task view on “Probability Distributions” (Dutang
2012).

http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/rng/
http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/rng/
http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/lib/src/random.c
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SmallCrush Crush BigCrush

RNG 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

SFMT19937 0 0 0 0 2 2
MT19937 0 0 2 2 (2) 2 2

Table 1: TestU01 failures for random uniform generation in gretl.

period of 54767 × 21337279, which is over 10396564 times as long as Mersenne Twister.

A second feature currently lacking in gretl in the department of random number generation
is the support for RNG “streams”. This important functionality enables defining and saving
the state of user-named generators, which are useful for complicated simulation experiments.
At present, this can only be achieved by using in conjunction with libgretl the GLib software
library which offers named RNG streams. Doing this, however, requires programming in C.

4. Randomness tests results

Written as a C library, TestU01 by L’Ecuyer and Simard (2009) is widely used for empirical
testing of RNGs (see McCullough 2006, for a review). It constitutes four modules containing
respectively a large selection of RNG algorithms, dozens of randomness tests, a number of
predefined batteries of tests, and various tools for testing entire families of generators. The
program allows assessing variants as well as combinations of different RNGs without requir-
ing a limited file based input. Among the included test suites are SmallCrush, Crush, and
BigCrush in order of increasing difficulty. SmallCrush and Crush are less time consuming and
are useful for detecting gross defects or wrong implementations. Very few RNGs can pass
all of the 106 very stringent tests included in BigCrush, which takes hours on commodity
hardware and uses about 238 random numbers.

For our empirical testing of random number generation in gretl 1.9.3cvs, we employed the
three Crush suites included in TestU01 version 1.2.3. The online supplements accompanying
the paper include the computational details and the TestU01 output for all tests as separate
text files as well as the C programs necessary to run these tests.

Table 1 presents the test results for uniform random number generation in gretl. Both RNGs
pass the SmallCrush tests without failures. MT19937 fails the two linear complexity tests
included in Crush and BigCrush with p values larger than 1 − 10−10. This is expected
since all linear feedback shift register (LFSR) class generators, including MT and SFMT, fail
these tests (L’Ecuyer and Simard 2007), which are designed to measure the linear complexity
of binary sequences. The SFMT19937 performs significantly better by failing only at the
BigCrush level. Also, as shown in parentheses, MT19937 has 2 additional “suspect” failures
in the 64-bit Crush tests, with p values inside the interval [10−10, 1 − 10−10] but outside of
[10−3, 1 − 10−3].12 The failed tests are collision over and weightdistrib. The former is an
overlapping pairs sparse occupancy (OPSO) test discussed by Marsaglia and Zaman (1993).
The latter is one of the 8 uniformity tests included in the TestU01 svaria module.

12When RNGs fail randomness tests, they usually do so with an extreme p value. L’Ecuyer and Simard
(2007) consider test results with p values outside the interval [10−10, 1 − 10−10] as “clear” failures, while they
also discuss “suspect” failures where the p values are outside a smaller interval such as [10−3, 1 − 10−3].
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SmallCrush Crush BigCrush

RNG 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

Ziggurat (SFMT) 0 0 0 0 0 0
Ziggurat (MT) 0 0 0 0 (1) 0
Box-Muller (SFMT) 0 0 1 1 1 1 (1)
Box-Muller (MT) 0 0 1 (1) 1 (1) 1 1 (1)

Table 2: TestU01 failures for random normal generation in gretl.

Because random normals are essential for most statistical simulations, testing the genera-
tion of normal variates is at least as important as testing the underlying uniform RNG.
For this purpose, Doornik (2005) suggests transforming the normal random numbers back
to uniformity using the normal cdf and then testing the resulting values using TestU01.
Consequently, in order to test gretl’s random normal implementation, we reconverted the
normal output to U(0, 1) via the libgretl function normal_cdf(), which is accessible at
http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/lib/src/pvalues.c.

As can be seen in Table 2, the ziggurat method passes all of the three crush tests in both 32-
bit and 64-bit computations using either SFMT19937 or MT19937 as the underlying uniform
generator, except only one suspect failure in a matrix rank test. Box-Muller, however, has one
clear failure in the Crush and BigCrush tests, which is sometimes accompanied by a suspect
failure depending on the test suite or the uniform source. The reason that the F2-linear RNGs
SFMT19937 and MT19937 pass the linear complexity tests after a transformation via either
Box-Muller or ziggurat is straightforward: Both methods are nonlinear transformations which
destroy the linearity, so the TestU01 Crush tests no longer detect linearity. Also, the Box-
Muller method transforms lines into spirals while the ziggurat performs a more complicated
nonlinear transformation. This could be the explanation for the additional failures when Box-
Muller is used, however, it should not be taken to mean that ziggurat is a better method. In
all of the cases, the clear failures are once again in the linear complexity tests. The suspect
failures, on the other hand, are seen in a birthday spacings test and a maximum-of-t test for
the 32-bit and 64-bit Crush suite, and a maximum-of-t test and a collision over test for the
64-bit BigCrush suite with uniforms from SFMT and MT respectively.13

Table 3 shows our speed comparisons for the generation of random uniform and random
normal values in gretl. For each RNG option, we generated 108 random 32-bit integers using
two different methods, namely block generation and sequential generation. The first method
is based on running 103 iterations of 105 variates in a single call. In the second method, the
108 random values are generated one per a call. The tests were performed using a 2.1 GHz
Core 2 Duo computer set up for dual booting with the Windows Vista and Ubuntu Linux
10.10 operating systems. The results, which are based on reporting the best performance out
of three separete runs, show that SFMT19937 is indeed significantly faster in comparison to
MT19937. Also, Windows performance seems to be slightly better except for block generation
using the Box-Muller method. It is interesting to see that, when the Ziggurat method is used,
uniform generation can take longer than the normal RNG in some cases. The explanation
is that, Ziggurat may sometimes require less calculation than for a random uniform when

13For detailed information regarding these tests, see L’Ecuyer and Simard (2009).

http://gretl.cvs.sourceforge.net/viewvc/gretl/gretl/lib/src/pvalues.c
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Windows Linux

RNG Block Sequential Block Sequantial

SFMT 2.152 234.875 2.410 308.270
MT 6.489 241.841 7.120 312.710
Ziggurat (SFMT) 5.023 238.572 5.430 305.070
Ziggurat (MT) 5.881 242.448 6.410 309.410
Box-Muller (SFMT) 12.465 264.303 10.610 329.540
Box-Muller (MT) 18.813 276.054 16.350 344.200

Table 3: CPU times for generating 108 random numbers in gretl.

some of the work is done by simple look-up driven by a random integer instead of converting
the integer to a double in (0, 1). This can be verified from the programming code for gretl’s
ran_normal_ziggurat() command.

5. Conclusion

The ever increasing computational capacity, along with the introduction of newer and more
advanced simulation techniques in econometrics, requires the use of RNGs with excellent
statistical properties. There are many good and bad alternatives to choose from and the
output of an RNG can vary depending on its implementation in a given program as well
as the set of parameters chosen. Consequently, it is important that researchers have a level
of proficiency in computer based RNGs, the specific RNG algorithm that they use, and its
delivery in a given software package.

We provided a discussion of random number generation from the perspective of applied re-
searchers. In addition, we offered detailed information regarding the RNG options in gretl,
and also performed comprehensive empirical testing of the uniform generators as well as the
methods used to obtain random normals. Our results show that the RNG related procedures
in gretl are implemented soundly and perform well in the three crush test suites of the TestU01
library. In particular, normal random values generated by the default ziggurat method pass
all crush tests even though the underlying uniform values generated by the SFMT and MT
RNGs fail only 2 tests in the BigCrush suite. For the reliability and replicability of simu-
lation based research in economics and related fields, it is important that similar studies be
performed and the results are published for other widely used programs.

Acknowledgments

We are grateful to Pierre L’Ecuyer and the three anonymous reviewers for extremely useful
comments. We also wish to thank Allin Cottrell for his comments, and for providing prompt
and useful answers to our reports and inquiries regarding gretl’s inner workings.



10 Random Number Generation in gretl

References

Adkins LC (2011). “Using gretl for Monte Carlo Experiments.” Journal of Applied Econo-
metrics, 26, 880–885.

Anderson RG, Greene WH, McCullough BD, Vinod HD (2008). “The Role of Data-Code
Archives in the Future of Economic Research.” Journal of Economic Methodology, 15,
99–119.

Baiocchi G, Distaso W (2003). “gretl: Econometric Software for the GNU Generation.” Journal
of Applied Econometrics, 18, 105–110.

Box GEP, Muller ME (1958). “A Note on the Generation of Random Normal Deviates.” The
Annals of Mathematical Statistics, 29, 610–611.

Brown RG (2006). Dieharder: A GNU Public Licensed Random Number Tester. Included
as file manual/dieharder.tex in the Dieharder sources, URL http://www.phy.duke.edu/

~rgb/General/dieharder.php.

Coddington PD (1994). “Analysis of Random Number Generators Using Monte Carlo Simu-
lation.” International Journal of Modern Physics C, 3, 547–560.

Coddington PD (1996). “Tests of Random Number Generators Using Ising Model Simula-
tions.” International Journal of Modern Physics, 7, 295–303.

Cottrell A, Lucchetti R (2010). gretl User’s Guide – GNU Regression, Econometrics and
Time-Series Library. Version 1.9.3, URL http://gretl.sourceforge.net/.

Coveyou RR (1969). “Random Number Generation Is too Important to Be Left to Chance.”
Studies in Applied Mathematics, 3, 70–111.

Dembski WA (1991). “Randomness by Design.” Noûs, 25, 75–106.
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