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Abstract

Targeted maximum likelihood estimation (TMLE) is a general approach for construct-
ing an efficient double-robust semi-parametric substitution estimator of a causal effect
parameter or statistical association measure. tmle is a recently developed R package that
implements TMLE of the effect of a binary treatment at a single point in time on an
outcome of interest, controlling for user supplied covariates, including an additive treat-
ment effect, relative risk, odds ratio, and the controlled direct effect of a binary treatment
controlling for a binary intermediate variable on the pathway from treatment to the out-
come. Estimation of the parameters of a marginal structural model is also available. The
package allows outcome data with missingness, and experimental units that contribute
repeated records of the point-treatment data structure, thereby allowing the analysis of
longitudinal data structures. Relevant factors of the likelihood may be modeled or fit
data-adaptively according to user specifications, or passed in from an external estimation
procedure. Effect estimates, variances, p values, and 95% confidence intervals are provided
by the software.

Keywords: causal inference, targeted maximum likelihood estimation, controlled direct effect,
TMLE, MSM, R.

1. Introduction

Research in fields such as econometrics, biomedical research, and epidemiology often involves
collecting data on a sample from a population in order to assess the population or group
level effect of a treatment, exposure, or intervention on a measurable outcome of interest.
Obtaining an unbiased and efficient estimate of the statistical parameter of interest neces-
sitates accounting for potential bias introduced through model misspecification, informative
treatment assignment, or missingness in the outcome data. Due to the curse of dimension-
ality, parametric estimation approaches are not feasible for high dimensional data without
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restrictive simplifying modeling assumptions. However, high dimensional data is increasingly
common, for example in datasets used for longitudinal studies, comparative effectiveness re-
search (administrative databases), and genomics. Targeted maximum likelihood estimation
(TMLE) is an efficient, double robust, semi-parametric methodology that has been success-
fully applied in these settings (van der Laan and Rubin 2006; van der Laan, Rose, and Gruber
2009). The development of the tmle package for the R statistical programming environment
(R Development Core Team 2012) was motivated by the growing need for a user-friendly tool
for effective semi-parametric estimation. tmle is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=tmle.

TMLE can be applied across a broad range of problems to estimate statistical association
and causal effect parameters. The methodology readily incorporates domain knowledge, user-
specified parametric models, and optionally allows flexible data-adaptive estimation. The
implementation of TMLE provided in the tmle package is restricted to estimating a variety of
binary point treatment effect parameters. These parameters include marginal additive effects
for binary treatments, relative risk, and odds ratio. The package also allows for estimation
of the parameters of a user-specified marginal structural model (Robins 1997; Rosenblum
and van der Laan 2010, MSM,), and for estimating a controlled direct effect (Pearl 2010b).
Missingness is allowed in the outcome.

1.1. Causal inference

Causal effect estimation provides a useful context for describing TMLE methodology. The
counterfactual framework discussed in Rubin (1974) frames the estimation of causal effects
as a missing data problem. Suppose we are interested in assessing the marginal difference in
an outcome, Y , if everyone received treatment (A = 1) vs. everyone not receiving treatment
(A = 0). If we could actually measure the outcome under both scenarios for all individuals,
the full data would be given as XFull = (Y1, Y0,W ), where Y1 is the counterfactual outcome
corresponding to treatment (A = 1), Y0 is the counterfactual outcome under no treatment
(A = 0), and W is a vector of baseline covariates. A causal quantity of interest such as the
additive causal effect, E(Y1)− E(Y0), could be calculated as the average difference over all n
subjects in XFull , 1/n

∑n
i=1(Y1i − Y0i). Parameters of the full data shed light on questions of

scientific interest, however in reality the full data can never be known. For each subject we can
only observe the outcome corresponding to the actual treatment received. The unobserved
counterfactual outcome is missing. Assume the observed data consists of n i.i.d. copies of
O = (W,A, Y = YA) ∼ P0, where P0 is an unknown underlying probability distribution in a
model spaceM, that gives rise to the data, W is a vector of measured baseline covariates, A is
a treatment variable, and Y is the outcome observed under treatment assignment A. The dis-
tribution of Ya can be identified from the observed data distribution P0 providing the following
assumptions are met. Coarsening at random (CAR) is an assumption of conditional indepen-
dence between treatment assignment and the full data given measured covariates. (Heitjan
and Rubin 1991; Jacobsen and Keiding 1995; Gill, van der Laan, and Robins 1997; van der
Laan and Robins 2003). Also known as conditional exchangeability, this assumes that there
are no unmeasured confounders of the effect of treatment on the outcome. For this parameter,
CAR is equivalent with the randomization assumption, A ⊥ XFull | W . The second require-
ment for a causal interpretation is the positivity assumption that ∀a ∈ A,P(A = a |W ) > 0.
This assumption acknowledges that if no observations within some stratum defined by W re-
ceive treatment at level A = a, then the data do not provide sufficient information to compare
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the effect of treatment at level a with no treatment, or with treatment at some other level.
Finally, there is a consistency assumption stating that the observed outcome value under
the observed treatment is equal to the counterfactual outcome corresponding to the observed
treatment.

Non-parametric structural equation modeling (NPSEM) provides an alternative paradigm for
defining causal effect parameters (Pearl 2010a). The following system of equations expresses
the knowledge about the data generating mechanism:

W = fW (UW ),

A = fA(W,UA),

Y = fY (W,A,UY ),

where UW , UA, and UY are exogenous error terms. This NPSEM allows the definition of
counterfactual outcomes Ya = fY (W,a, UY ), corresponding with the intervention that sets
the treatment node A equal to a, and thereby the causal quantity of interest. This general
formulation allows the functions fW , fA, fY to be entirely unspecified, or to respect exclusion
restriction assumptions that strengthen identifiability by restricting the space of probability
distributions under consideration, and even to assume parametric forms. From the NPSEM
perspective the randomization assumption corresponds with assuming conditional indepen-
dence of UA and UY given W, with respect to the distribution of counterfactual Ya.

The NPSEM approach and the counterfactual framework offer distinct formulations for dis-
cussing causality, yet each provides a foundation for defining causal effects as parameters of
statistical distributions. With these definitions in place we turn our focus to obtaining an
efficient, unbiased estimate of the statistical target parameter. Analysts using traditional
regression models typically focus on estimating parameters of the model. However, defining
the target parameter in a manner that is agnostic to the choice of model specification and
fitting procedure can clarify the scientific question and expose assumptions behind different
modeling choices. Separating the parameter definition from the estimation procedure allows
for flexibility in the choice of estimation approach.

A number of methodologies have been applied to causal effect estimation, including the max-
imum likelihood-based G-computation estimator (Robins 1986), the inverse probability of
treatment weighted (IPTW) estimator (Hernan, Brumback, and Robins 2000; Robins 2000a),
the augmented IPTW estimator (Robins and Rotnitzky 2001; Robins, Rotnitzky, and van der
Laan 2000b; Robins 2000b). Scharfstein, Rotnitzky, and Robins (1999) presented a doubly
robust regression-based estimator for the treatment specific mean, later extended to time-
dependent censoring (Bang and Robins 2005). We refer the interested reader to Porter,
Gruber, van der Laan, and Sekhon (2011) for a discussion of TMLE in relation to these
other estimators, to Moore and van der Laan (2009); Stitelman and van der Laan (2010);
van der Laan and Gruber (2011) for applications of TMLE in longitudinal data analysis, and
to Rosenblum and van der Laan (2010), for estimation of the parameters of an arbitrary
marginal structural model.

1.2. Structure of the article

This article focuses on binary point treatment parameters that can be estimated using soft-
ware provided in the current version of the tmle package (1.2.0-1). Section 2 of the paper
provides background on causal effect estimation and defines several causal effect parameters
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commonly reported in the literature. Section 2 also introduces TMLE methodology, describes
influence curve-based inference, and offers a brief introduction to marginal structural models.
Section 3 discusses the implementation in the tmle package, including a discussion of data-
adaptive estimation using the SuperLearner package (Polley and van der Laan 2012) and
extensions to missing outcome data and controlled direct effect estimation. An application
of the tmle program to the analysis of a publicly available dataset is provided in Section 4.
Section 3.6 describes the application of TMLE to estimating the parameters of a MSM, and
a comparison with the traditional inverse probability weighted approach described in Hernan
et al. (2000). The final section of the paper discusses extensions to the methodology and
the software. Section 6 provides answers to frequently asked questions (FAQs) regarding the
practical application of TMLE using the software provided in the R package. Though the
program is designed to estimate the effect of a dichotomous treatment, a valid method for
estimating categorical treatment effects by separately estimating the marginal mean outcome
under each level of treatment is described in the FAQ.

2. Targeted maximum likelihood estimation

2.1. Causal inference

Consider the additive effect of a binary treatment on a binary outcome with no missingness.
This parameter is defined non-parametrically on full data XFull as ψF0 = E(Y1)− E(Y0), and
identified from the observed data O = (W,A, Y = YA) as Ψ(P0) = E[E(Y | A = 1,W )−E(Y |
A = 0,W )] under the causal assumptions. Here ψF0 denotes the causal quantity of interest,
and ψ0 is the statistical counterpart that can be interpreted as the causal effect ψF0 under the
appropriate causal assumptions. We note that Ψ represents a mapping from a probability
distribution of O into a real number, called the target parameter mapping.

TMLE is a maximum likelihood based G-computation estimator that targets the fit of the
data generating distribution towards reducing bias in the parameter of interest, generally
one particular low-dimensional feature of the true underlying distribution. TMLE is more
generally referred to as targeted minimum loss-based estimation. At its core, in the above ap-
plication, TMLE methodology involves fluctuating an initial estimate of the conditional mean
outcome, and minimizing a loss function to select the magnitude of the fluctuation. The tar-
geting fluctuation is parameter-specific. The loss function is not unique, and must be chosen
with care to ensure that the fluctuated estimate is a parametric sub-model M ∈M, and that
the risk of the loss function is indeed minimized at the truth. Targeted maximum likelihood
estimation corresponds with choosing the negative log-likelihood loss function. Because TM-
LEs solve the efficient influence curve estimating equation, and the efficient influence curves
satisfies a so called double robustness property, TMLEs are guaranteed to be asymptotically
unbiased if either Q0 or g0 is consistently estimated. When both are consistently estimated,
TMLEs achieve the semi-parametric efficiency bound, under appropriate regularity conditions
(van der Laan and Rubin 2006). In practice the use of a double robust estimator provides
insurance against model misspecification. Since the degree to which model misspecification
biases the estimate of the target parameter is never known in practice, using a double robust
estimator is prudent (Neugebauer and van der Laan 2005).
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An orthogonal factorization of the likelihood of the data is given by

L(O) = P(Y | A,W )P(A |W )P(W ).

We refer to P(W ) and P(Y | A,W ) as the Q portion of the likelihood, Q = (QW , QY ), and
P(A |W ) as the g portion of the likelihood. Further define

Q̄0(A,W ) ≡ E(Y | A,W ),

g0(1 |W ) ≡ P0(A = 1 |W ),

where the subscript ‘0’ denotes the truth, and a subscript ‘n’ will denote the corresponding
quantity estimated from data. P0(W ) is estimated by the empirical distribution on W , the
non-parametric MLE. Q̄n(A,W ) can be obtained by regressing Y on A and W . For some
applications g0 may be known, (e.g., treatment assignment in randomized controlled trials),
so that consistent estimation will be guaranteed. It has been shown that estimation of g0

leads to increased efficiency even when the true g0 is known (van der Laan and Robins 2003).

The additive treatment effect, also referred to as the risk difference when the outcome is
binary, is defined non-parametrically as E(Y1)− E(Y0). If we let µ1 = E(Y1) and µ0 = E(Y0),
the additive treatment effect (ATE), risk ratio (RR), and odds ratio (OR) parameters for
binary outcomes are defined as:

ψATE
0 = µ1 − µ0,

ψRR
0 =

µ1

µ0
, (1)

ψOR
0 =

µ1/(1− µ1)

µ0/(1− µ0)
.

Because each of these parameters is a function of (µ0, µ1), understanding TMLE of the pa-
rameters µ1 and µ0 provides a sound basis for understanding the estimation of each point
treatment parameter available in the package. Notice that these parameters are functions of
the Q portion of the likelihood. TMLE of a target parameter Ψ(Q0) for a specified target
parameter mapping Ψ() is a substitution estimator of the form Ψ(Q∗n) obtained by plugging in
an estimator Q∗n of Q0 into the parameter mapping. The g portion of the likelihood is an an-
cillary nuisance parameter. If O = (W,A,∆,∆YA), then the g-factor further factorizes into a
treatment assignment mechanism, g(A |W ) and a missingness mechanism, π(∆ = 1 | A,W ),
where ∆ = 1 indicates the outcome is observed, ∆ = 0 indicates the outcome is missing. We
will first discuss TMLE estimation when there is no missingness, then show how missingness
is incorporated into the estimation procedure, and describe estimation of the population mean
outcome when a subset of outcomes are unmeasured.

2.2. TMLE methodology

TMLE is a two-stage procedure. The purpose of the first stage is to get an initial estimate
of the conditional mean outcome, Q̄0

n(A,W ). If the initial estimator of Q̄0 is consistent,
the TMLE remains consistent, but if the initial estimator is not consistent, the subsequent
targeting step provides an opportunity for TMLE to reduce any residual bias in the estimate
of the parameter of interest. This is accomplished by fluctuating the initial estimate in a
manner that exploits information in the g portion of the likelihood, designed to ensure that
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the TMLE solves the efficient influence curve estimating equation for the target parameter.
Generally this is an iterative procedure, but for the ATE, RR, and OR parameters one-step
convergence is mathematically guaranteed, thus Q̄1

n(A,W ) = Q̄∗n(A,W ), where the numerical
superscript denotes the kth iteration and the asterisk (∗) indicates the final, targeted estimate.
The idea of viewing the efficient influence curve as a path instead of an estimating equation
was presented in the seminal article by van der Laan and Rubin (2006), and allows TMLE to
be applied to estimate parameters where no estimating equation solution exists. This section
presents the specific model for the simple case of targeting EY1 and EY0 parameters.

Given Q̄0
n and gn, fluctuating the initial density estimate is straightforward. The direction of

the fluctuation determined by the efficient influence curve equations for the target parameters
E(Y1),E(Y0) is given by

H∗0 (A,W ) =
I(A = 0)

g(0 |W )
, (2)

H∗1 (A,W ) =
I(A = 1)

g(1 |W )
. (3)

The TMLE targeting step for updating Q̄0
n with respect to (E(Y1),E(Y0)), is as follows:

logit(Q̄1
n(A,W )) = logit(Q̄0

n(A,W )) + ε̂0H
∗
0 (A,W ) + ε̂1H

∗
1 (A,W ),

logit(Q̄1
n(0,W )) = logit(Q̄0

n(1,W )) + ε̂0H
∗
0 (0,W ),

logit(Q̄1
n(1,W )) = logit(Q̄0

n(0,W )) + ε̂1H
∗
1 (1,W ).

The fluctuation parameter ε = (ε0, ε1) that controls the magnitude of the fluctuation is fit by
a call to glm. The MLE for ε is obtained by a logistic regression of Y on H∗0 (A,W ), H∗1 (A,W ),
with offset logit(Q0

n(A,W )). For the E(Y1) and E(Y0) parameters Q̄∗n(A,W ) = Q̄1
n(A,W ).

The magnitude of ε̂ determines the degree of perturbation of the initial estimate, and is a
direct function of the degree of residual confounding. For example, when Q̄0

n is correct, ε̂ is
essentially 0, however even this small fluctuation can reduce variance if the initial estimator of
Q̄0 was not efficient. It is important to avoid overfitting Q̄0

n, as this minimizes the signal in the
residuals needed for bias reduction. Section 2.4 describes how carrying out the fluctuation on
the logit scale even when Y is continuous ensures that the parametric sub-model stays within
the defined model space, M.

As discussed above, estimating two parameters E(Y1) and E(Y0) allows us to calculate any of
the causal effect parameters available for estimation in the tmle package. The TMLE estimate
of E(Y1) is given by the G-computation formula EW,n(Q̄∗n(1,W )) = 1

n

∑n
i=1 Q̄

∗
n(1,Wi), where

the marginal distribution of W is estimated with the empirical distribution of W1, . . . ,Wn.
The estimate of E(Y0) has an analogous definition, EW,n(Q̄∗n(0,W )) = 1

n

∑n
i=1 Q̄

∗
n(0,Wi). The

implementation in the tmle package targets these two parameters simultaneously. It is also
possible to target them separately, or to directly target any specific parameter. However,
simultaneous targeting eliminates duplicate calculations, so is computationally sensible.

2.3. Missing outcomes

One problem that frequently arises when analyzing study data is that the outcome may not
have been recorded for some observations. A naive estimation approach that considers only
complete cases is inefficient, and will be biased when missingness is informative.
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Causal inference parameters

Consider a randomized clinical trial measuring the effect of treatment on subsequent mortality
in which a subset of people in the treatment group become ill, drop out of the study, and
die shortly after being lost to follow-up. Because they are no longer in the study, outcome
data is missing for these subjects. Assume that members of the treatment group who remain
healthy tend to stay in the study. If observations with missing outcomes are discarded before
analyzing the data the estimated effect of treatment on mortality will be overly optimistic.
Thus an unbiased estimator must somehow account for this informative missingness.

TMLE does this by exploiting covariate information to reduce both bias and variance. The
data are represented in a more general data structure given by O = (W,A,∆,∆Y ), where
∆ = 1 indicates the outcome is observed, ∆ = 0 indicates the outcome is missing, and
∆Y = Y when ∆ = 1, 0 otherwise. The g-factor of the likelihood now further factorizes
into gA, the treatment mechanism described above, and g∆, the missingness mechanism:
g0 = P(A |W )P(∆ | A,W ). The identifiability result for E(Ya) is now given by E(Q̄0(a,W )),
where Q̄0(a,W ) = E(Y | A = a,W,∆ = 1). The clever covariate for targeting the initial
estimator of Q̄0(A,W ) = E(Y | A,W,∆ = 1) with respect to E(Ya) is now given by I(A =
a,∆ = 1)/g(A,∆ |W ). Thus the above clever covariates are now multiplied by ∆/P(∆ = 1 |
A,W ). The regression Q̄0 is estimated based on the complete observations only.

Population mean outcome

Another common research question is determining the marginal mean outcome when some
observations are missing the outcome, in the absence of any treatment assignment. The
data structure is given by O = (W,∆,∆Y ), and the only component of g is the missingness
mechanism, g0 = P(∆ | W ). The identifiability result for E(Y1) is now given by E(Q̄0(W )),
where Q̄0(W ) = E(Y | W,∆ = 1). The clever covariate for this parameter is I(∆ = 1)/g(1 |
W ). The mean outcome conditional on observing the outcome is a biased estimate of the
marginal mean outcome (E(Y1) parameter) when missingness is informative. TMLE can
reduce this bias when missingness is a function of measured baseline covariates.

2.4. Logistic loss function for continuous outcomes

One obvious approach to applying TMLE with continuous outcomes is to carry out the pro-
cedures described above on the linear scale instead of the logit scale, and indeed this has been
done successfully in the past. However, particularly when there are positivity violations, this
approach can lead to violations of the requirement that the fluctuation of the initial density
estimate is a parametric sub-model of the observed data model, M. Unlike a ogistic fluctua-
tion, a linear fluctuation provides no assurance that the targeted estimate of the conditional
mean remains within the parameter space. Gruber and van der Laan (2010b) demonstrates
that the negative log likelihood for binary outcomes is a valid loss function for continuous out-
comes bounded between 0 and 1, and provides a procedure for mapping outcome Y , bounded
by (a, b), into Y ∗, a continuous outcome bounded by (0,1): Y ∗ = (Y − a)/(b− a). Estimates
on the Y ∗ scale are easily mapped to their counterparts on the original scale:

EW (Y0) = EW (Y ∗0 (b− a) + a),

EW (Y1) = EW (Y ∗1 (b− a) + a).

Parameter estimates ψATE
n , ψRR

n , ψOR
n are then calculated as in Equation 1.
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2.5. Controlled direct effect estimation

The tmle package also offers controlled direct effect (CDE) estimation. Suppose that in
addition to affecting outcome Y directly, treatment A gives rise to an intermediate random
variable, Z, that itself has an effect on Y . For example, consider the effect of exercise, A,
on weight, Y . Exercise burns calories, directly causing weight loss. Exercise may also affect
caloric intake (Z), which has its own effect on weight. One research question might be, How
does weight change with daily exercise? A second researcher might ask, What is the effect of
daily exercise on weight if caloric intake remains unchanged? The former requires estimation
of the full treatment effect of A on Y , as described above. The latter is an example of a causal
effect mediated by an intermediate variable, and requires a modified estimation procedure.

The data consists of n i.i.d. copies of O = (W,A,Z,∆,∆Y ) ∼ P0, and the likelihood now
factorizes as L(O) = P(Y | ∆ = 1, Z,A,W )P(∆ = 1 | Z,A,W )P(Z | A,W )P(A | W )P(W ).
Each factor can again be estimated from the data. The tmle package restricts controlled
direct effect estimation to mediation by a binary variable, Z. Continuing the weight loss
example, Z = 0 could indicate caloric intake is unaffected by the exercise program, while
Z = 1 indicates increased caloric intake. CDE estimates calculated at each level of Z provide
answers to the second research question posed above.

The first stage of the modified TMLE procedure estimates Q̄0(Z,A,W ). In the second stage
Q0
n(Z,A,W ) is fluctuated separately at each level of Z, using modified covariates:

H∗0 (∆, Z,A,W ) =
I(Z = z)

gZ(z | A,W )

I(A = 1)

gA(1 |W )

1

g∆(1 | Z,A,W )
,

H∗1 (∆, Z,A,W ) =
I(Z = z)

gZ(z | A,W )

I(A = 0)

gA(0 |W )

1

g∆(1 | Z,A,W )
.

Here gZ refers to the conditional distribution of Z given A and W , and ε is fit using observa-
tions where ∆ = 1 and Z = z, by default using a logistic fluctuation model.

2.6. Marginal structural models

Marginal structural models explicitly model the relationship between treatment and the
marginal distribution of a treatment-specific outcome, optionally conditional on a baseline
covariate vector (Robins 1997). MSMs can be applied to estimate parameters in point treat-
ment settings as well as to longitudinal data. This discussion is restricted to point treatment
models as implemented in the package. Consider estimation of a mean outcome corresponding
to treatment A = 1, within strata defined by covariates V, modeled as E[Ya | V ] = m(a, v, ψ).
ψ can be defined as the true causal parameter, or as a statistical parameter of interest that is
a projection of the true causal effect parameter onto this particular marginal structural model
specification. This distinction is subtle, but important. If the MSM is misspecified, then the
true MSM parameter, ψ, is not equivalent to the causal effect of interest, and any consistent
estimator of ψ will necessarily not be consistent for the true causal parameter. The question
of whether ψ itself is equivalent to the causal parameter is interesting and important, however
from a TMLE perspective the statistical goal is to obtain an efficient unbiased estimate of ψ
in the model m(a, v, ψ). We therefore define the statistical target parameter as the projection
onto the user-specified working MSM model, m(a, v, ψ), where the projection can be weighted
by a user-specified projection function of treatment and baseline covariates, h(A, V ).
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TMLE can be applied to estimate the MSM parameter. The procedure is outlined in detail in
Rosenblum and van der Laan (2010), and is described here by stepping through a simplified
point treatment example. When there is no missingness in the outcome the data structure
can be represented as O = (W,A, Y ). Let V be a subset of covariates W . Y is a continuous
outcome, and we specify an MSM for the intervention-specific mean outcome under treatment
set to level a as m(a, v, ψ0) = E[Ya|V ] = β0 + β1a+ β2V + β3V

2, with V univariate.

The TMLE approach to estimating β = (β0, β1, β2, β3) rests on estimating Q̄0 and g0. The first
step is to obtain initial estimates of these quantities. Next the estimate Q̄0

n is fluctuated in a
manner designed to solve the efficient influence curve for the target parameter, β. As described
above, this involves constructing a parametric sub-model that has the same dimension (d)
as the number of parameters in the MSM (in our example d = 4). A multi-dimensional
fluctuation parameter ε = (ε1, ε2, ε3, ε4) is fit by maximum likelihood by regressing Y on
covariate C1(A, V ) (defined below), with the initial estimate Q̄0

n as offset (on the logit scale).
The updated estimate of the conditional mean is given by Q̄∗n = Q̄0

n + εC1. C1 is a function
of the treatment assignment mechanism, the user-specified MSM, and an optional projection
function that is itself a function of treatment and baseline covariates. Continuing the example,
C1(A, V ) = 1/g(A | V )(1, A, V, V 2)>. The general form for C1 is given in Rosenblum and
van der Laan (2010). Predicted counterfactual values at each level of treatment can now
be calculated for each subject. The implementation in the package is restricted to binary
treatments, but this general methodology is applicable to ordinal and continuous treatments.

The final step in the algorithm is estimating β by creating a new dataset containing 2n
observations, O′ = (W,a, Ŷa = Q∗n(a,W )). This new dataset contains one observation for each
subject with Ai set to the value 0, and the original outcome Y replaced by Ŷ0 = Q∗n(0,W ),
the predicted outcome when A = 0, and a second observation for each subject where Ai has
been set to 1, and Y has been replaced by Ŷ1 = Q∗n(1,W ). β is estimated by regressing Ŷa on
the MSM with weights = h(a, V ). In the tmle package only linear or logistic regression has
been implemented, but the procedure as outlined is completely general.

The inverse probability of treatment weighted (IPTW) estimation approach to estimating
the parameter of an MSM is described in (Robins, Hernan, and Brumback 2000a; Hernan
et al. 2000). In brief, this estimator weights each observation’s contribution to the estimation
procedure by the inverse of the conditional probability of receiving treatment given previous
treatment assignment and covariate history. The parameters of the MSM are estimated using
weighted regression. IPTW estimates are consistent when treatment assignment probabilities
are estimated consistently. As was the case for TMLE, when the MSM is correctly specified
and causal assumptions hold these estimates have a causal interpretation. In the example
above, an IPTW estimate can be obtained by a weighted regression of Y on (A, V, V 2), using
unstabilized weights equal to [I(A = a)I(V = v)]/gn(A = a | V ). However, this approach is
asymptotically inefficient, and can be biased for estimating ψ under misspecification of the
propensity score model.

2.7. Inference

TMLE is a regular, asymptotically linear (RAL) estimator. Theory tells us that an efficient
RAL estimator solves the efficient influence curve equation for the target parameter up to
a second order term (Bickel, Klaassen, Ritov, and Wellner 1997). An influence curve is a
function that describes the behavior of an estimator under slight perturbations of the empirical
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distribution (see Hampel 1974). For asymptotically linear estimators, the empirical mean
of the influence curve of the estimator provides the linear approximation of the estimator.
As a consequence, the variance of the influence curve provides the asymptotic variance of
the estimator. Among all influence curves for RAL estimators, the one having the smallest
variance is known as the efficient influence curve.

In practice, TMLE variance is estimated as the variance of the empirical influence curve
divided by the number of i.i.d. units of observation, n. This quantity, σ̂2, is used to calculate
p values and 95% confidence intervals. Ninety-five percent confidence intervals are calculated
as ψn(Q∗n)± 1.96σ̂/

√
n for the ATE and EY1 parameters, and exp(log(ψn(Q∗n))± 1.96σ̂/

√
n)

for the RR and OR parameters, with σ̂ equal to the estimated standard error of the log(RR)
or log(OR) estimate, respectively. For CDE parameters a term reflecting the contribution of
estimating Z is incorporated into each influence curve. Influence curve equations for each of
the parameters estimated by the package are provided in the appendix. Variance estimates
are valid when g0 is estimated consistently.

When TMLE is applied to estimating the parameter of a marginal structural model the
efficient influence curve can be used to calculate the variance-covariance matrix. The general
form in the non-parametric model is given by M−1D(p)(Y,A, V,W ), where M is a normalizing
matrix, M = −E d

dψD(p)(Y,A, V,W ), and D(p) is defined as follows (see Equation 17 in
Rosenblum and van der Laan 2010; Rosenblum 2011),

D(p)(Y,A, V,W ) =
h(A, V )(Y −Q(A, V,W ))

g(A | V,W )
(1, A, V )>

+
∑
a∈A

h(a, V )(Q(a, V,W )−m(a, V, ψ))

d
dψm(a, v, ψ)

m(a, v, ψ)(1−m(a, v, ψ))
.

3. Implementation in the tmle package

The tmle package contains two main functions, tmle for estimating the ATE, RR, OR, EY1,
and CDE parameters, and the tmleMSM function for estimating the parameter of an MSM.
Each of these is discussed in turn. The TMLE algorithm is given by:

1. Obtain Q̄0
n(A,W ), an initial estimate of P(Y | A,W ).

2. Estimate g factors needed to fluctuate Q̄0
n(A,W ) to obtain targeted estimate, Q̄∗n(A,W ).

3. Apply target parameter mapping Ψ to targeted estimate Q∗n using the empirical distri-
bution as estimator of the distribution of W .

The tmle function determines which causal effect parameter(s) to estimate based on the values
of arguments specified by the user. The data arguments – Y, A, W, Z, Delta – are the outcome,
binary treatment, baseline covariates, mediating binary variable, and missingness indicator,
respectively. Only Y and W must be specified (numeric values, but there is limited support for
factors). If A is NULL or has no variation (all A are set to 1, or all A are set to 0), the E(Y1)
parameter estimate is returned. When there is variation in A, the additive treatment effect
is evaluated. If Y is binary, the RR and OR estimates are returned as well. If Z is not NULL,
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the parameter estimates are calculated at each level of Z ∈ (0, 1). Each of these estimation
procedures refers to Delta to take missingness into account, but missingness does not dictate
which parameters are estimated.

When the logistic fluctuation is specified for continuous outcomes, an internal pre-processing
step maps Y ∈ [a, b] to Y ∗ ∈ [0, 1] prior to calling the estimateQ function to carry out Step 1.
estimateQ returns an estimate of Q̄0

n(A,W ) on the scale of the linear predictors needed for
Step 2: the logit scale for a logistic fluctuation, linear scale for a linear fluctuation. In Step 2,
the estimateG function is called to estimate each factor of the nuisance parameter required
for calculating H∗0 (A,W ) and H∗1 (A,W ), ε is fit using maximum likelihood, and Q̄∗n(A,W ) is
calculated. The calcParameters function estimates each parameter value, variance, p value,
and constructs a 95% confidence interval. The function returns these estimates, along with
values for Q̄0

n(A,W ), Q̄∗n(A,W ), and each factor of g. The package provides flexible options
for estimating each relevant factor of the likelihood, allowing the procedure to be tailored to
the needs of the analysis. These options and their effects are described next.

3.1. Stage 1: Estimating Q̄

The goal of the first stage of the TMLE procedure is to fit Q̄0 well. A good initial fit minimizes
the reliance on the targeted bias reduction step, and a target parameter estimate based on an
initial fit that explains a large portion of the variance in Y generally has smaller variance than
a target parameter based on a poor initial fit. TMLE achieves the semi-parametric efficiency
when Q̄ and g are both correctly specified. Several optional arguments to the tmle function
provide flexibility in how the initial fitted values are obtained:

� Q n× 2 matrix of fitted values for Q̄0
n(A,W ), (E(Y | A = 0,W ), E(Y | A = 1,W )).

� Qform regression formula of the form Y ∼ A + W, suitable for call to glm.

� Qbounds truncation levels for Y and Q̄0
n(A,W ) for continuous outcomes.

� Q.SL.library vector of prediction algorithms for data-adaptive estimation.

Note: Estimates of E(Y | Z,A,W ) are needed for CDE parameters. These can (optionally) be
supplied by passing in an n×2 matrix of predicted values Q̄0

n(Z = 0, A,W ) via the Q argument
and using the Q.Z1 argument for another n× 2 matrix of predicted values Q̄0

n(Z = 1, A,W )
(for both arguments the first column should contain predicted values when A = 0, the second
column when A = 1). Qform can be used to specify a regression formula that includes A, W,
and Z.

If values are provided for more than one of these arguments, user-specified values, (Q, Q.Z1),
take precedence. Data-adaptive estimation only occurs if both Q and Qform are NULL. The Q

argument allows the user to incorporate any estimation procedure into tmle by running that
procedure externally, obtaining fitted (predicted) values for each counterfactual outcome,
Q̄0
n(0,W ) and Q̄0

n(1,W ) and supplying these to the tmle procedure. In essence, this option
provides unlimited flexibility in obtaining the required stage one estimate of the conditional
mean of Y .

The code snippet below shows a simple application of the tmle function using user-specified
parametric models to estimate Q̄ and g. First a sample of size n = 250 is drawn from a data
generating distribution with true parameter values ψATE

0 = 0.216, ψRR
0 = 1.395, ψOR

0 = 2.659.
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Baseline covariates W = (W1,W2,W3) ∼i.i.d. N(0, 1) are simulated for each subject. These
values are used to selectively assign treatment, A, and then a binary outcome that is a function
of treatment and all baseline covariates is simulated.

R> n <- 250

R> W <- matrix(rnorm(n * 3), ncol = 3)

R> colnames(W) <- paste("W", 1:3, sep = "")

R> A <- rbinom(n, 1, plogis(0.6 * W[,1] + 0.4 * W[,2] + 0.5 * W[,3]))

R> Y <- rbinom(n, 1, plogis(A + 0.2 * W[,1] + 0.1 * W[,2] + 0.2 * W[,3]^2))

Next, parameters are estimated based on correctly specified models for the Q and g factors
of the likelihood. The models are passed as arguments to the function, along with data
arguments (Y,A,W ). Default settings imply there is no missing outcome data and that
observations are i.i.d.

R> result.Qcgc <- tmle(Y, A, W, family = "binomial",

+ Qform = Y ~ A + W1 + W2 + W3, gform = A ~ W1 + W2 + W3)

R> result.Qcgc

Additive Effect

Parameter Estimate: 0.21157

Estimated Variance: 0.0044941

p-value: 0.0015995

95% Conf Interval: (0.080178, 0.34297)

Relative Risk

Parameter Estimate: 1.3966

p-value: 0.0025233

95% Conf Interval: (1.1244, 1.7347)

log(RR): 0.33406

variance(log(RR)): 0.012232

Odds Ratio

Parameter Estimate: 2.5554

p-value: 0.0025418

95% Conf Interval: (1.3895, 4.6995)

log(OR): 0.93822

variance(log(OR)): 0.096621

tmle relies on the SuperLearner package to provide data-adaptive estimation (Polley and
van der Laan 2012). Super learning is an ensemble method that relies on proven oracle
properties of V-fold cross validation to ascertain an optimal convex combination of estimates
obtained from application of each algorithm in a user-specified library of prediction algorithms
(van der Laan, Polley, and Hubbard 2007). Because one cannot know in advance which class of
procedures will be most successful for a given problem, an important aspect of super learning is
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ensuring that the library of prediction algorithms includes a variety of approaches that search
over a large space of possible models. For example, one might include a collection of pre-
specified regression models (main terms, main terms plus key interaction terms) along with
other flexible modeling approaches, such as non-linear models, cubic splines, and classifiers.
(Note that tmle version ≥ 1.2-0 is compatible with all versions of SuperLearner through
2.0-6.)

The following example applies super learning to the data generated in the first example above
in order to estimate Q̄0. The user-specified library contains three prediction algorithms: 1)
SL.glm is a main terms regression of Y on A and W , 2) SL.step calls the step function
distributed with the base R installation (R Development Core Team 2012) with forward and
backward moves incorporating quadratic terms, and 3) SL.DSA.2 calls the DSA function in
the suggested DSA package that uses deletion and addition moves to search over a space of
polynomial models that is in this case constrained to order two (Neugebauer and Bullard
2010). In contrast to the AIC criterion used by the step procedure, DSA model selection is
based on cross-validation (Sinisi and van der Laan 2004).

R> result.QSLgc <- tmle(Y, A, W, family = "binomial",

+ Q.SL.library = c("SL.glm", "SL.step", "SL.DSA.2"),

+ gform = A ~ W1 + W2 + W3)

R> summary(result.QSLgc)

Initial estimation of Q

Procedure: SuperLearner

Model:

Y ~ SL.glm_All + SL.step_All + SL.DSA.2_All

Coefficients:

SL.glm_All 0

SL.step_All 0

SL.DSA.2_All 1

Estimation of g (treatment mechanism)

Procedure: user-supplied regression formula

Model:

A ~ (Intercept) + W1 + W2 + W3

Coefficients:

(Intercept) -0.01499195

W1 0.7587852

W2 0.2719946

W3 0.3438723

Estimation of g.Z (intermediate variable assignment mechanism)

Procedure: No intermediate variable

Estimation of g.Delta (missingness mechanism)

Procedure: No missingness
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Bounds on g: ( 0.025 0.975 )

Additive Effect

Parameter Estimate: 0.20889

Estimated Variance: 0.0045076

p-value: 0.0018622

95% Conf Interval: (0.077302, 0.34049)

Relative Risk

Parameter Estimate: 1.3884

p-value: 0.0027473

95% Conf Interval: (1.1201, 1.721)

log(RR): 0.32814

variance(log(RR)): 0.012006

Odds Ratio

Parameter Estimate: 2.5336

p-value: 0.0030238

95% Conf Interval: (1.3705, 4.6839)

log(OR): 0.92965

variance(log(OR)): 0.098287

These parameter estimates and variances using super learning are very similar to those ob-
tained using the correctly specified regression model for Q̄, signaling that data-adaptive esti-
mation was successful at closely approximating the true regression of Y on A and W . tmle’s
default library for estimating Q̄0 contains three algorithms available with the base installa-
tion of R, SL.glm, SL.step and GL.glm.interaction, a glm variant that includes second
order terms. However, a larger library that incorporates additional estimation procedures is
recommended. If the SuperLearner package is not available, in the absence of a user-specified
regression formula the function will fail. (In earlier versions of the package (< 1.2-0) under
these circumstances Q̄0 was estimated using a main terms regression of Y on A and W .)

The summary method for tmle objects lists the procedures used to estimate the relevant Q
and g factors of the likelihood. The super learner is a convex combination of predicted values.
When super learning is used, coefficients reported in the summary reflect each prediction
algorithm’s contribution. A coefficient of 0 signifies that incorporating predictions from that
algorithm does not substantially improve the overall fit given the predictions from algorithms
with non-zero coefficients, however, this should not be interpreted as a goodness-of-fit measure.
For example, if two model selection algorithms arrive at the exact same model, at most one
will have a non-zero coefficient.

It is important to avoid overfitting Q̄0
n, as this minimizes the signal in the residuals needed

for bias reduction. The tmle function provides an option for guarding against overfits by
cross-validating the initial super learner estimate of Q̄0. Independent units of observation
are evenly divided among V folds. Observational units are identified by the id variable, an
optional argument to the function that if not specified implies observations are i.i.d. A super
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learner fit is obtained for each omit-one-fold subset of the data yields predicted values for
observations in the omitted fold. This procedure is invoked by setting cvQinit = TRUE.

The next example demonstrates the use of the id argument to identify observational units
corresponding to subjects that contribute repeated measures. Baseline covariates are gener-
ated for 250 subjects exactly as in the previous example. These values are duplicated, and
used to create a dataset of 500 observations O = (W,A, Y, id), with two observations per
subject.

R> set.seed(1960)

R> n <- 250

R> id <- rep(1:n,2)

R> W <- matrix(rnorm(n * 3), ncol = 3)

R> colnames(W) <- paste("W", 1:3, sep = "")

R> W <- rbind(W, W)

R> A <- rbinom(2 * n, 1, plogis(0.6 * W[,1] + 0.4 * W[,2] + 0.5 * W[,3]))

R> Y <- rbinom(2 * n, 1,

plogis(A + 0.2 * W[,1] + 0.1 * W[,2] + 0.2 * W[,3]^2))

The data are passed to the function along with correctly specified logistic regression models
as above. The only difference is that the id values generated above are supplied via the id

argument.

R> result.Qcgc.repeated <- tmle(Y, A, W, family = "binomial",

+ Qform = Y ~ A + W1 + W2 + W3, gform = A ~ W1 + W2 + W3, id = id)

R> result.Qcgc.repeated

Additive Effect

Parameter Estimate: 0.27511

Estimated Variance: 0.0019754

p-value: 6.026e-10

95% Conf Interval: (0.18799, 0.36222)

Relative Risk

Parameter Estimate: 1.5343

p-value: 1.0785e-08

95% Conf Interval: (1.3249, 1.7767)

log(RR): 0.42805

variance(log(RR)): 0.0056042

Odds Ratio

Parameter Estimate: 3.5446

p-value: 1.0977e-08

95% Conf Interval: (2.2966, 5.4707)

log(OR): 1.2654

variance(log(OR)): 0.049029
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3.2. Stage 2: Targeting the initial estimate

The estimate of the parameter of interest can be biased when Q̄0
n does not consistently estimate

Q̄0. van der Laan and Rubin (2006) provides a theoretical foundation for constructing a
parametric sub-model with fluctuation parameter ε that reduces residual bias that is a function
of measured covariates. As mentioned above, this fluctuation involves estimating nuisance
parameter g0. Several arguments to the tmle function give the user control over the estimation
procedure. For estimating the treatment mechanism, gA:

� g1W: The conditional probability of receiving treatment given baseline covariates W .

� gform: A logistic regression model specification.

� g.SL.library: A super learner library of prediction algorithms.

� gbound: A value indicating symmetrical upper and lower bounds on predicted condi-
tional treatment assignment probabilities (gbound, 1 - gbound).

The first three of these are similar to the options available for estimating Q̄0. The gbound

argument is a tuning parameter, conforming with the theoretical guideline that gn(A,W )
must be bounded away from 0 and 1 (van der Laan and Robins 2003). Bounding will
have no effect when no treatment assignments are rare within strata defined by W , e.g.,
gbound < gn < (1 − gbound). However, when there is sparsity in the data causing a prac-
tical positivity violation, some treatment assignment probabilities will be quite small. As a
consequence, some values of H∗(A,W ) will be very large for a subset of observations. This
lack of identifiability leads to estimates with high variability. Bounding gn away from (0,1)
tends to have a beneficial effect on the variance of the resulting estimate. However, truncation
introduces bias, necessitating a trade-off. These effects are most pronounced when the linear
fluctuation is used for continuous outcomes, and largely mitigated by fluctuating on the logit
scale (the default). Though the logistic fluctuation is strongly recommended, the package
also provides a linear fluctuation option for continuous outcomes by setting the argument
fluctuation = "linear". Bounding gn very close to (0,1) typically has little effect on TM-
LEs obtained using the logistic fluctuation. In contrast, estimates obtained using the linear
fluctuation are particularly sensitive to the level of bounding of gn.

Recall that the logistic fluctuation for continuous Y requires that Y be bounded by (a, b).
When these upper and lower bounds on Y are not provided by the user via the Qbounds

argument, the default is to use the range of the observed outcomes. This may be problematic
when there is missingness in the outcome if the distribution of observed outcomes is truncated
with respect to the true distribution of the outcome, thus using domain knowledge to specify
bounds on Q̄n is encouraged.

3.3. Examples with missing outcomes

The Delta argument to the tmle function indicates which observations have missing outcomes,
with Delta = 1 indicating that the outcome is observed. The tmle function ignores the Y
value for observations having ∆ = 0, so in practice no special value is reserved to signify
missing. When not explicitly specified, Delta = 1 is assigned to all observations, signifying
that no observations have missing outcomes.
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When Delta = 0 for one or more observations, the missingness mechanism is estimated from
the data, or can be user-supplied. When the target parameter is E(Y1) (i.e., no treatment
arms, but there is missingness in the outcome), the upper bound on g is set to 1, since
P (∆ = 1 | W ) = 1, indicating no missingness within some strata of W , does not signal a
positivity violation. When there are two treatment arms and some outcomes are missing,
bounds on gn apply to the product gn(∆, A,W ) = gA(A |W ) ∗ g∆(∆ | A,W ), and the upper
bound should be strictly less than 1.

The same options are available for estimating g∆ as for estimating gA. The relevant arguments
to the tmle function are:

� pDelta1: The conditional probability of being observed given treatment assignment A
and baseline covariates.

� g.Deltaform: Used to specify a regression formula for the regression of ∆ on A and W .

� g.SL.library: Specifies a super learner library of prediction algorithms. The same
library is used for all factors of g.

When there is no mediating variable, Z, optional argument pDelta1, if specified, should be
an n × 2 matrix, P(∆ = 1 | A = 0,W ),P(∆ = 1 | A = 1,W ). When there is a medi-
ating variable, an nx4 matrix is required: P(∆ = 1|Z = z,A = a,W ), with (z, a) set to
(0, 0), (0, 1), (1, 0), (1, 1), respectively.

Covariates H∗0 (A,W ) and H∗1 (A,W ) for this more general data structure are given by:

H∗0 (∆, A,W ) =
I(A = 0)

gA(0 |W )

1

g∆(1 | A,W )
,

H∗1 (∆, A,W ) =
I(A = 1)

gA(1 |W )

1

g∆(1 | A,W )
,

and reduce to Equations 2 and 3, respectively, when there is no missingness. The fluctuation
parameter ε is fit on observations where ∆ = 1. Counterfactual outcomes are obtained for
all observations. Accounting for missingness increases efficiency, thus this is beneficial even
when missingness is non-informative.

Population mean outcome example

The population mean outcome parameter, E(Y1), is estimated when there is no variation in
A for all observations, or when A = NULL and for some observations ∆ = 0. In the next
example Q̄0

n is based on a deliberately misspecified regression model fit on observations where
∆ = 1. Because a correctly specified regression model is used to estimate P(∆ = 1 |W ), bias
is expected to be on the order of 1/

√
n. At the sample size used in this example (n = 250),

this is approximately 0.06. The true parameter value is 0.

R> set.seed(1960)

R> n <- 250

R> W <- matrix(rnorm(n * 3), ncol = 3)

R> colnames(W) <- paste("W",1:3, sep = "")

R> Delta <- rbinom(n, 1, plogis(0.8 + 0.3 * W[,1]))
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R> Y <- 2 * W[,1] + 4 * W[,2] + 3 * W[,3] + rnorm(n)

R> Y[Delta == 0] <- NA

R> result.EY1 <- tmle(Y, A = rep(1, n), W, Qform = Y ~ W3,

+ g.Deltaform = Delta ~ W1, Delta = Delta)

R> result.EY1

Population Mean

Parameter Estimate: -0.043213

Estimated Variance: 0.15326

p-value: 0.9121

95% Conf Interval: (-0.81052, 0.72409)

3.4. Practical violations of the positivity assumption

When assignment to a particular treatment group is quite rare within some strata defined by
W , the positivity assumption is technically met, however in practice this lack of information in
the data (i.e., sparsity) may pose a challenging estimation problem. The next coding example
illustrates typical effects of different choices of bounds on gn(A |W ) on estimation when there
is sparsity in the data. The true value for the additive treatment effect for the simulated data
is ψ0 = 1. Conditional treatment assignment probabilities gA(1 | W ) range from 0.02 to
0.99. The user-supplied regression model for estimating Q̄0 is deliberately misspecified so
that estimation is forced to rely on g. The regression formula for g(1 | W ) is correctly
specified, but even so, if bounds on gn are less than (0.05, 0.95), practical postivity violations
lead to estimates with increased bias and variance when the linear fluctuation is employed,
as compared to the logistic fluctuation. Parameter estimates are obtained for 250 samples of
size 250.

R> n <- 250

R> niterations <- 250

R> gbd <- c(0, 0.01, 0.025, 0.05, 0.1)

R> ngbd <- length(gbd)

R> result.Qmgc <- matrix(NA, nrow = niterations, ncol = 2 * ngbd)

R> for(i in 1:niterations) {

+ W <- matrix(rnorm(n * 3), ncol = 3)

+ colnames(W) <- paste("W", 1:3, sep = "")

+ logitA <- 0.5 + 0.9 * W[,1] + 0.5 * W[,2] + 0.7 * W[,3]

+ A <- rbinom(n, 1, plogis(logitA))

+ Y <- A + 4 * W[,1] + 4 * W[,2] + 3 * W[,3] + rnorm(n)

+ result.Qmgc[i,] <- c(

+ unlist(sapply(gbd, function(x) {

+ tmle(Y, A, W, Qform = Y ~ A, gform = A ~ W1 + W2 + W3,

+ fluctuation = "linear", gbound = x)$estimates$ATE[1]})),

+ unlist(sapply(gbd, function(x) {

+ tmle(Y, A, W, Qform = Y ~ A, gform = A ~ W1 + W2 + W3,

+ fluctuation = "logistic", gbound = x)$estimates$ATE[1]})))

+ }
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Linear Logistic
gn bounds Bias Var MSE Bias Var MSE

(0, 1) −0.52 0.96 1.24 −0.03 0.11 0.11
(0.01, 0.99) −0.40 0.56 0.72 −0.03 0.11 0.11

(0.025, 0.975) −0.21 0.23 0.28 −0.03 0.09 0.09
(0.05, 0.95) 0.03 0.07 0.07 0.07 0.05 0.06
(0.1, 0.9) 0.41 0.07 0.24 0.41 0.07 0.24

Table 1: A comparison of the effect of bounding gn using a logistic or linear fluctuation in a
sparse data setting.

Results in Table 1 indicate that the bias of estimates arising from the logistic fluctuation
is robust with respect to the choice of bound on gn, until the bias introduced by bounding
at (0.1, 0.9) begins to make a sizable contribution to the MSE. For this reason, respecting
bounds by fluctuation the estimate on the logit scale is strongly recommended. The default
bound for g is set to (0.025, 0.975), but that guideline is flexible, and the effect on the bias
and variance of the estimate depends on the data, e.g., if all values fall between (0.025, 0.975),
then setting bounds closer to (0, 1) will have no effect at all.

3.5. Controlled direct effect estimation example

The first stage of the modified TMLE procedure for CDE estimates Q̄0(Z,A,W ). All esti-
mation options remain available to the user: user-specified values, user-specified parametric
model, super learning, cross-validated super learning. Optional user supplied values must be
specified at each level of Z for each subject: the Q argument is used to pass in an n×2 matrix
of user-determined values for Q̄0

n(Z = 0, A,W ). The Q.Z1 argument is used to pass in an
n× 2 matrix of user-determined values for Q̄0

n(Z = 1, A,W ).

In the second stage Q0
n(Z,A,W ) is fluctuated separately for Z = 0 and Z = 1. This requires

estimation of an additional nuisance parameter, g∆ = P(∆ = 1 | Z = z,A = a,W )). The pZ1

argument allows the user to pass in an n × 2 matrix of conditional probabilities P(Z = 1 |
A = 0,W ),P(Z = 1 | A = 1,W ). Alternatively, a valid regression formula can be supplied
via the g.Zform argument.

The following example illustrates CDE estimation in conjunction with missingness in the
outcome. A sample of size 1000 is generated, with approximately 25% of outcomes missing.

R> n <- 1000

R> W <- matrix(rnorm(n * 3), ncol = 3)

R> colnames(W) <- paste("W", 1:3, sep = "")

R> A <- rbinom(n,1, plogis(0.6 * W[,1] + 0.4 * W[,2] + 0.5 * W[,3]))

R> Z <- rbinom(n,1, plogis(0.5 + A))

R> Y <- A + A * Z+ 0.2 * W[,1] + 0.1 * W[,2] + 0.2 * W[,3]^2 + rnorm(n)

R> Delta <- rbinom(n, 1, plogis(Z + A))

R> pDelta1 <- cbind(rep(plogis(0), n), rep(plogis(1), n),

+ rep(plogis(1), n), rep(plogis(2), n))

R> colnames(pDelta1) <- c("Z0A0", "Z0A1", "Z1A0", "Z1A1")

R> Y[Delta == 0] <- NA
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The regression formula for estimation of Q̄0 is deliberately misspecified in the next call to tmle.
Super learning is used to estimate the gA factor of the likelihood, but the specified library
contains only one algorithm, SL.glm, which performs a main terms regression of the outcome
on all available covariates. Estimates of gZ and g∆ are passed in to the function. Parameter
estimates are reported at each level of Z. The true parameter values are ψATE

0Z0
= 1, ψATE

0Z1
= 2.

R> result.Z.missing <- tmle(Y, A, W, Z, Delta = Delta, pDelta1 = pDelta1,

+ Qform = Y ~ 1, g.SL.library = "SL.glm")

R> result.Z.missing

Controlled Direct Effect

----- Z = 0 -----

Additive Effect

Parameter Estimate: 1.1094

Estimated Variance: 0.034713

p-value: 2.6122e-09

95% Conf Interval: (0.74419, 1.4745)

----- Z = 1 -----

Additive Effect

Parameter Estimate: 1.9056

Estimated Variance: 0.011937

p-value: <2e-16

95% Conf Interval: (1.6914, 2.1197)

3.6. Marginal structural model example

All of the parameters discussed thus far have been estimated by calling the tmle function.
tmleMSM is a second function included in the package that can be used to estimate the parame-
ter of a user-specified MSM for binary treatment effects. This function has many arguments in
common with the tmle function, including Y, A, W, Delta, Q, Qform, Qbounds, Q.SL.library,
cvQinit, gform, pDelta1, g.Deltaform, g.SL.library, family, fluctuation, alpha, id,
verbose. The user must also specify the marginal structural model via the MSM argument.
The same flexibility for estimating each factor of the likelihood discussed above is available:
user-supplied values, user-supplied regression models, and user-specified prediction algorithm
libraries for data-adaptive super learning. Additional optional arguments are available:

� V: Covariates that can be used used to define strata within which to carry out the
analysis.

� T: Time stamp for repeated measures data.

� v: Optional value defining the stratum of interest (V = v).

� hAV: Optional numerator for constructing stabilized weights.

� hAVform: Optional regression formula for estimating h(A, V ) as a regression of A on
(V, T ).
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� ub: An upper bound on the weight one observation may contribute to the estimation
procedure (default value is 40).

� inference: A flag controlling whether the variance-covariance matrix is constructed.
The default value is TRUE, but setting inference = FALSE speeds up the execution
time, and is recommended when bootstrapping.

The function calculates and returns the parameter estimates, the variance-covariance matrix,
standard errors, pvalues, and 95% confidence intervals. The predicted values for the initial
and targeted estimated counterfactual outcomes Qinit and Qstar are returned, along with
estimated treatment assignment and missingness probabilities, g, g_Delta, and estimated
values of h(A, V ), along with details of the estimation procedure. These values may be used
as input to subsequent calls to the tmle or tmleMSM functions. The estimated fluctuation
parameter ε and parameter estimates based on the untargeted initial Q are also returned, to
give the user some insight into how much initial estimates differ from targeted estimates, and
thus the impact of applying TMLE.

Comparison of estimators

Marginal structural models are typically fitted using inverse probability weighting (Robins
2000a; Hernan et al. 2000; Xiao, Abrahamowicz, and Moodie 2010). We carried out a simu-
lation study designed to demonstrate an application of TMLE and IPTW to estimating the
parameter of an MSM under two different data generating distributions. The data generation
scheme is taken from a paper titled Why Prefer Double Robust Estimators? (Neugebauer
and van der Laan 2005), that discusses the use of inverse probability of treatment weighting
(IPTW) and double robust augmented IPTW (AIPTW) estimators. One of the instructive
lessons from that paper is that under near-positivity violations leading to large inverse prob-
ability weights, a double robust estimator can out-perform IPTW even when the propensity
score model and the MSM are correctly specified. Since that paper pre-dates the introduction
of TMLE, TMLE was not included in the comparison.

The observed data structure is given by O = (W,A, Y ). W and Y are continuous random
variables that are functions of an unobserved covariate, U , that does not confound the effect
of treatment on the outcome. Treatment assignment is a function of W . We are interested
in estimating the two-dimensional parameter β of an MSM given by Y = β0 + β1A, where
the true value of β = (β0, β1) = (2,−5). Three estimators were applied to this problem, the
tmleMSM function, the IPTW estimator using unstabilized weights, wti = 1/gn(Ai |Wi and a
second IPTW estimator using stabilized weights, wti,stab =

[
1
n

∑n
i=1(A = Ai)

]
/gn(Ai |Wi).

Two treatment assignment mechanisms were defined that differ in the strength of the associ-
ation between A and W .

g1 = P (A = 1 |W ) = expit(0.1 + 0.25W )

g2 = P (A = 1 |W ) = expit(1 + 1.5W )

The empirical probability of receiving treatment according to mechanism g1 ranges between
approximately 0.16 and 0.88, corresponding to inverse weights of 1.14 and 6.25. These val-
ues indicate that except possibly at extremely small sample size, no observation would re-
ceive enough weight to completely dominate the analysis. In contrast, treatment assignment
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probabilities based on mechanism g2 range between 6 × 10−5 and 0.999995. We call this a
near-positivity violation, and it poses a challenging estimation scenario.

Notice that under this specification of the MSM, the coefficient β1 is equivalent to the ATE
parameter estimated by the tmle function. We would expect the estimate of β1 obtained
using the tmleMSM function to be equal to the estimate of the ATE parameter returned
by the tmle function (allowing for a certain imprecision due to the differences in the way
the calculations are carried out). The simulation results bear this out. We also estimate the
ATE parameter using an alternative double-robust estimator, the augmented IPTW estimator
(AIPTW) introduced in Robins and Rotnitzky (1992). The AIPTW estimator is defined as,

ψAIPTW
n =

1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

gn(Ai |Wi)
(Yi − Q̄0

n(Ai,Wi)) +
1

n

n∑
i=1

(Q̄0
n(1,Wi)− Q̄0

n(0,Wi)).

R code that defines a function to calculate AIPTW estimates of the ATE parameter given
dataset d, outcome regression model Qform, and estimated treatment assignment probabilities,
g1W is shown next.

R> calc_aipw <- function(d, Qform, g1W) {

+ Q <- glm(Qform, data = d)

+ QAW.pred <- predict(Q)

+ Q1W.pred <- predict(Q, newdata = data.frame(d[,-2], A = 1))

+ Q0W.pred <- predict(Q, newdata = data.frame(d[,-2], A = 0))

+ h <- d$A/g1W - (1- d$A)/(1 - g1W)

+ return(psi = mean(h*(d$Y - QAW.pred) + Q1W.pred - Q0W.pred))

+ }

The next code chunk runs the Monte Carlo simulation study. The outside loop corresponds
to the two treatment assignment mechanisms. Within the inner loop a dataset is generated at
each iteration and subsequently analyzed. Models for the MSM and the conditional distribu-
tion of the treatment assignment are correctly specified, and the same (unbounded) predicted
treatment assignment probabilities are used by each estimator. The specification of the model
for Q is slightly misspecified for TMLE and AIPTW estimators, by omitting the unobserved
covariate, U , but this omission does not bias the estimate of the ATE parameter.

R> set.seed(10)

R> n <- 500

R> niter <- 500

R> a <- c(.1, 1)

R> b <- c(.25,1.5)

R> est.beta0 <- array(NA, dim = c(2, niter, 3),

+ dimnames = list(c("g1", "g2"), NULL,

+ c("IPW", "IPW stabilized", "TMLE.MSM")))

R> est.ATE <- array(NA, dim = c(2, niter, 5),

+ dimnames = list(c("g1", "g2"), NULL,

+ c("IPW", "IPW stabilized", "TMLE.MSM", "TMLE", "AIPW")))

R> for (i in 1:2) {

+ for (j in 1:niter) {
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+ U <- runif(n, -10, 10)

+ W <- U/3 + rnorm(n)

+ logitA <- a[i] + b[i]*W

+ A <- rbinom(n, 1, plogis(logitA))

+ Y <- 2 + 4 * U - 5 * A + rnorm(n)

+ g <- glm(A ~ W, family = "binomial")

+ g1W <- predict(g, type = "response")

+ wt <- A/g1W + (1 - A)/(1 - g1W)

+ wt.stab <- (A * mean(A) + (1 - A) * (1 - mean(A))) * wt

+ ipw.msm <- coef(glm(Y ~ A, weights = wt))

+ ipw.stab.msm <- coef(glm(Y ~ A, weights = wt.stab))

+ res.tmleMSM <- tmleMSM(Y, A, as.matrix(W), V = rep(1, n), MSM = "A",

+ Qform = "Y ~ A", g1W = g1W, ub = Inf)

+ res.tmle <- tmle(Y, A, as.matrix(W), Qform ="Y ~ A", g1W = g1W,

+ gbound = c(0,1))

+ aipw <- calc_aipw(data.frame(Y, A, W), Qform = "Y ~ A", g1W = g1W)

+ est.beta0[i,j,] <- c(ipw.msm[1], ipw.stab.msm[1], res.tmleMSM$psi[1])

+ est.ATE[i,j,] <- c(ipw.msm[2], ipw.stab.msm[2], res.tmleMSM$psi[2],

+ res.tmle$estimates$ATE$psi, aipw)

+ }}

Results displayed in Table 2 and Figure 1 indicate that all estimators perform well under treat-
ment assignment mechanism g1. When the more extreme treatment assignment mechanism
is used to generate the data (g2), performance of the IPTW estimators and AIPTW degrades
significantly, while both TMLEs exhibit more moderate increases in bias and variance.

TMLE is a substitution estimator that ensures global bounds of the statistical model are
respected, thereby constraining the bias and variance. Both AIPTW and TMLE solve the
same estimating equation and are asymptotically equivalent estimators of the ATE parameter.
However, as illustrated by the plots in the figure and the results reported in Table 2, depending
on the characteristics of the underlying data distribution the difference in their finite sample

g1 (no pos. violation) g2 (near pos. violation)

Bias Var MSE Bias Var MSE

β0 = 2
IPW −0.006 1.31 1.31 −2.25 48.40 53.39
IPW stabilized −0.006 1.31 1.31 −2.25 48.40 53.39
TMLE.MSM −0.006 1.28 1.28 0.16 11.29 11.30

β1 = −5
IPW 0.005 0.93 0.93 3.00 48.28 57.20
IPW stabilized 0.005 0.93 0.93 3.00 48.28 57.20
TMLE.MSM 0.006 0.93 0.93 −0.18 12.00 12.01

ATE = −5
TMLE 0.006 0.93 0.93 −0.18 12.00 12.01
AIPW 0.004 0.93 0.93 0.56 322.33 322.00

Table 2: Estimator comparison, n = 500.
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Figure 1: Distribution of parameter estimates minus the true parameter value under two
different treatment assignment mechanisms, no positivity violations (g1, left), and practical
positivity violations (g2, right).

performance can be striking. An in-depth discussion of the relative performance of TMLE in
comparison with other double robust estimators discussed in the literature can be found in
Porter et al. (2011).

4. FEV data analysis

TMLE was applied to assess the marginal effect of smoking on forced expiratory volume
(FEV) using data originally introduced in Rosner (1999b) and discussed in Kahn (2005). The
data consists of 654 observations with five variables recorded for each subject: age (years),
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fev (liters), ht (height in inches), sex (0 = female, 1 = male), smoke (0 = non smoker,
1 = smoker) (Rosner 1999a). FEV is a measure of pulmonary function that is related to
body size and lung capacity. Thus, the relationship between smoking and FEV is likely to be
confounded by age and sex, both of which influence FEV and are associated with smoking
status. Though height does not have an obvious link to smoking behavior accounting for
covariates predictive of the outcome can improve efficiency, so we include it in the analysis.
The data are from an observational study of children 3–19 years old. No children younger
than nine years old smoked cigarettes. Therefore, any attempt to estimate a marginal effect of
smoking on FEV adjusted for age incurs a theoretical positivity violation due to a complete
lack of support in the data. For this reason we restrict the analysis to the subset of data
containing n = 439 observations on subjects ages 9–19.

The observed data consists of n i.i.d. copies of O = (W,A, Y ) ∼ P0, where W = (age,
ht, sex), A is an indicator of smoking status, and Y is a continuous measure of FEV. The
outcome of interest is the marginal additive effect of smoking on FEV, defined as EW [E(Y |
A = 1,W ) − E(Y | A = 0,W )]. If the true regression of Y on A and W were a main terms
linear regression, this parameter would correspond to the coefficient in front of the treatment
term. However, there is no reason to believe that is the case, and an estimate of the treatment
effect based on this misspecified model for Q̄ is likely to be biased. The double-robustness
property of TMLE tells us that even given a misspecified Q̄0

n, the targeting step can reduce
this bias, given a consistent estimate of the treatment mechanism. In the next example we
deliberately supply a main terms model for Q̄ that we assume is misspecified, and use super
learning to estimate gA(1 |W ). The algorithms included in the super learner library are:

� SL.glm: Main terms logistic regression of A on W (R Development Core Team 2012).

� SL.step: Stepwise forward and backward model selection using AIC criterion, restricted
to second order polynomials (R Development Core Team 2012).

� SL.DSA.2: DSA algorithm searching over second order polynomials, substitution and
addition moves enabled (Neugebauer and Bullard 2010).

� SL.loess: Local fitting of a polynomial response surface (span = 0.75) (R Develop-
ment Core Team 2012).

� SL.caret: Random forest, with data-adaptively selected value for mtry parameter
(Kuhn 2008).

� SL.bart: A classifier based on a Bayesian sum-of-trees model with ntree = 300 (Chip-
man and McCulloch 2010).

� SL.knn, SL.knn20, SL.knn40, SL.knn60: k-nearest neighbor algorithm, with neighbor-
hood size, k, set to 10, 20, 40, 60 (Venables and Ripley 2002).

R> data("fev")

R> fev <- fev[fev$age >= 9, ]

R> g.SL.library <- c("SL.glm", "SL.step", "SL.DSA.2","SL.loess", "SL.caret",

+ "SL.bart", "SL.knn", "SL.knn20", "SL.knn40", "SL.knn60")

R> smoke.Qmis <- tmle(Y = fev$fev, A = fev$smoke, W = fev[, c(1, 3, 4)],

+ Qform = Y ~ ., g.SL.library = g.SL.library)

R> smoke.Qmis
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Additive Effect

Parameter Estimate: -0.099653

Estimated Variance: 0.0045071

p-value: 0.13771

95% Conf Interval: (-0.23124, 0.031932)

The parameter estimate after targeting is 1/n
∑n

i=1 Q̄
∗
n(1,Wi) − Q̄∗n(0,Wi) = −0.10. Users

are often curious about how targeting affects the parameter estimate. The function returns
initial (untargeted) predicted values, Q̄0

n(0,W ), Q̄0
n(1,W ). This allows the user to calculate a

parameter estimate of −0.16 based on the initial estimate of Q̄0 as follows:

R> EY0 <- mean(smoke.Qmis$Qinit$Q[,"Q0W"])

R> EY1 <- mean(smoke.Qmis$Qinit$Q[,"Q1W"])

R> EY1 - EY0

[1] -0.1574331

Recall that TMLE is asymptotically efficient when both Q̄0 and g0 are estimated consistently.
In the next example, super learning is used to estimate Q̄0 data-adaptviely. The prediction
algorithm library includes all the algorithms specified for the estimation of g that do not
require a binary outcome (everything except the k-nearest neighbor algorithms), and also a
linear regression of Y on A and W that includes main terms and all interactions of A and W .
We begin by defining a new super learner wrapper function, SL.glm.int:

R> SL.glm.int <- function(Y.temp, X.temp, newX.temp, family, ...) {

+ Aint <- paste("A", colnames(X.temp)[-c(1, 2)], sep = "*")

+ form <- paste("Y.temp ~ Z + ", paste(Aint, collapse = "+"))

+ fit.glm <- glm(form, data = data.frame(Y.temp, X.temp), family = family)

+ out <- predict(fit.glm, newdata = newX.temp, type = "response")

+ fit <- list(object = fit.glm)

+ foo <- list(out = out, fit = fit)

+ class(foo$fit) <- c("SL.glm.int")

+ return(foo)

+ }

R> Q.SL.library <- c("SL.glm", "SL.glm.int", "SL.DSA.2", "SL.loess",

+ "SL.caret", "SL.bart")

The library for estimating Q̄0 is passed into the tmle function. Because the predicted values
for gA(1 | W ) are not affected by altering the method used to estimate Q̄0, this next ex-
ample illustrates a way to reduce computation time by passing in the treatment assignment
probabilities obtained from the previous invocation of the function.

R> smoke.QSL <- tmle(Y = fev$fev, A = fev$smoke, W = fev[, c(1, 3, 4)],

+ Q.SL.library = Q.SL.library, g1W = smoke.Qmis$g$g1W)

R> smoke.QSL

Additive Effect

Parameter Estimate: -0.082194
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Estimated Variance: 0.0037794

p-value: 0.18122

95% Conf Interval: (-0.20269, 0.0383)

When a data-adaptive approach to estimating Q̄0 is used, the parameter estimate of -0.08
is quite close to -0.10, the estimate obtained when TMLE was forced to incorporate the
(presumably) misspecified model for Q̄0

n. Super learning also improved efficiency.

Stage one of the TMLE procedure is concerned with explaining variance in the outcome.
Because ψ0 is a function of the Q portion of the likelihood, improving the estimate of Q̄0

tends to improve the estimate of ψ0. However, estimation procedures for Q̄0 have a different
goal with respect to the bias/variance tradeoff than do estimators of ψ0. TMLE’s goal is to
optimize the tradeoff with respect to ψ0.

5. Discussion

The tmle package was designed to provide a flexible, easily customizable implementation of
TMLE for binary point treatment effects. A novice user has only to supply the data, while ad-
vanced users can control the estimation procedure by overriding default specifications and/or
supplying values for Q̄0

n and gn from any external estimation procedure. The function can
internally estimate any factor of the likelihood with user-supplied linear or logistic regres-
sion models, or can use super learning to obtain data-adaptive fits. Covariate information is
exploited to reduce bias and increase efficiency in estimates when outcome data is missing.
Influence curve-based inference readily accounts for repeated measures. The ability to incor-
porate data-adaptive machine learning techniques while still providing valid inference is an
additional desirable feature of TMLE.

Planned extensions to the package include incorporating external weights on observations,
estimating additional parameters, such as the average treatment effect among the treated
(ATT). Additional loss functions and fluctuation models that increase robustness with re-
spect to outliers and sparsity are under development. TMLE applications to estimating
causal effects of multiple time-point interventions while controlling for time-dependent co-
variates are also under development. Beta versions of the code are often made available
at http://www.stat.berkeley.edu/~laan/Software/ before they are incorporated into the
tmle package. Another open area of research is finding an optimal strategy for nuisance pa-
rameter estimation. van der Laan and Gruber (2010) presents a theorem on collaborative
double robustness of the efficient influence curve that sheds light on this problem. The theo-
rem indicates that depending on the difference (Qn−Q0), in addition to g0 there may exist one
or more conditional nuisance parameter distributions that together with the initial estimate
solve the estimating equation at the true parameter value, ψ0. The paper describes a collab-
orative targeted forward selection algorithm for fitting g that is guided by the goodness-of-fit
for the corresponding TMLE of Q0, and thus on its utility for estimating ψ0 (see also Gruber
and van der Laan 2010a). A beta version of R software for collaborative TMLE (C-TMLE) is
available (Gruber 2010). TMLE has been successfully applied to the analysis of time-to-event
data (Moore and van der Laan 2009; Stitelman and van der Laan 2010), data from sequen-
tially randomized trials (Chambaz 2011), and other application areas, however this capability
is not yet available in the tmle package.

http://www.stat.berkeley.edu/~laan/Software/
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6. Answers to some frequently asked questions (FAQ)

Can the treatment variable be categorical or continuous?

The package only handles treatment encoded by a binary treatment indicator, A. However, if
treatment is categorical or can be discretized, causal contrasts can still be evaluated by viewing
the analysis as a missing data problem. From this perspective we can estimate the marginal
mean outcome E(Ya) when treatment is set to a particular level, a for the entire population.
By the consistency assumption, the outcome recorded in the dataset for observations where
A = a is understood to be observed, while the outcome for observations where a 6= a is defined
as missing. TMLE is applied to estimate the E(Ya) parameter in this dataset, with a taking on
each value in A, the set of all treatments, in turn. This procedure yields estimated marginal
mean outcomes under each treatment level. With these in hand, the analyst can compute
two-way causal contrasts and estimate a dose-response relationship. The next coding example
illustrates how this is done. First observations O = (W,A, Y ) are generated such that A takes
on the value 1, 2, or 3 with uniform probability. Next binary missingness indicator variables
are defined such that ∆a = 1 ifA = a and 0 otherwise.

R> set.seed(10)

R> n <- 10^5

R> A <- sample(1:3, n, replace = TRUE)

R> W1 <- rnorm(n)

R> W2 <- rbinom(n, 1, 0.3)

R> Y <- 2 * A + 10 * W1 - A * W2 + rnorm(n)

R> Delta1 <- as.integer(A == 1)

R> Delta2 <- as.integer(A == 2)

R> Delta3 <- as.integer(A == 3)

Next we obtain three estimates of the marginal mean outcome had the whole population been
assigned to treatment at a particular level. We deliberately misspecify the regression formula
for Q̄0

n in each case, while correctly specifying the missingness mechanism, P (∆a = 1|W ).
The true marginal treatment effects are (1.7, 3.4, 5.1) at levels a = (1, 2, 3), respectively.

R> result1 <- tmle(Y, NULL, cbind(W1, W2), Delta = Delta1,

+ Qform = "Y ~ A", g.Deltaform = "Delta ~ 1")

R> result2 <- tmle(Y, NULL, cbind(W1, W2), Delta = Delta2,

+ Qform = "Y ~ A", g.Deltaform = "Delta ~ 1")

R> result3 <- tmle(Y, NULL, cbind(W1, W2), Delta = Delta3,

+ Qform = "Y ~ A", g.Deltaform = "Delta ~ 1")

R> print(c(result1$estimates$EY1$psi, result2$estimates$EY1$psi,

+ result3$estimates$EY1$psi))

[1] 1.636907 3.402428 5.112978

Any causal contrast of these three parameters, EY1, EY2, EY3 can be computed. Calculation
of the additive effect corresponding to receiving treatment at level 1 vs. level 3 is shown
next. We also show how a dose response measure can be estimated by regressing the targeted
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predicted outcomes on the corresponding treatment assignment. The true linear dose-response
is 1.7.

R> print(result1$estimates$EY1$psi - result3$estimates$EY1$psi)

[1] -3.476071

R> Qstar <- c(result1$Qstar[,1], result2$Qstar[,1], result3$Qstar[,1])

R> A.intervened <- rep(1:3, each = n)

R> doseResponse <- coef(lm(Qstar ~ A.intervened))[2]

R> print(doseResponse)

A.intervened

1.738036

Observations where the predicted outcomes arise from setting A to a level corresponding to
no treatment should be omitted from the data used to fit the dose-response regression.

Is there a way to see the parameter estimates based on the initial (untargeted) estimate
Q̄0
n?

The tmle function returns the initial estimates for Q̄(0,W ), Q̄(1,W ), as a matrix,
result$Qinit$Q. E(Y0) can be estimated as mean(Qinit$Q[, "Q0W"]), E(Y1) can be esti-
mated as mean(Qinit$Q[, "Q1W"]), From there any desired parameter estimate can be cal-
culated. For CDE estimation, result[[1]]$Qinit$Q corresponds to values obtained when
Z = 0, and result[[2]]$Qinit$Q corresponds to values obtained by setting Z = 1.

Can I use the package for count data (poisson regression)?

Data-adaptive estimation of Q̄0 is not available for count data, but the package can estimate
the additive effect of point treatment on a poisson-distributed outcome variable by supply-
ing a formula for poisson regression (log link only), and setting family = "poisson". The
fluctuation will be carried out on the logit scale, unless fluctuation = "linear" is speci-
fied. In this case, despite the name, poisson regression will be used to fit ε. If data-adaptive
estimation of Q̄0 is desired, specify family = "gaussian", and externally enforce the con-
straint that predicted values cannot be less than 0 by specifying Qbounds = c(0, ub), with
an appropriate value filled in for the upper bound. Although this will ensure that the initial
estimate of the conditional mean outcome is non-negative, unless the logistic fluctuation is
used there is no guarantee that the targeted estimate will respect this constraint.

Can I call the tmle function a second time without having to re-do the initial estimation
of Q̄0?

Yes. Predicted values based on the initial estimate Q̄0 are returned as result$Qinit$Q

(assuming the result of the first call to tmle was assigned to the variable named result).
These values can be passed into a second call to tmle by specifying a value for the Q argument:
Q = result$Qinit$Q. For CDE estimation, values for two arguments must be supplied, Q =

result[[1]]$Qinit$Q, Q.Z1 = result[[2]]$Qinit$Q.
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Values for the conditional probabilities for treatment assignment, intermediate variable, and
missingness are also available to be examined or passed into a second invocation of tmle: g1W
= result$g$g1W, pZ1 = result$g.Z$g1W, pDelta1 = result$g.Delta$g1W. These are un-
truncated values, regardless of the value of the gbound argument.

Can the tmle package handle time-to-event data, (e.g., Cox or AFT models)?

TMLE has been applied to the analysis of time-to-event data (Moore and van der Laan 2009;
Stitelman and van der Laan 2010), however the package currently does not offer survival
analysis.

How does TMLE compare to other methods in the causal inference literature?

Comparisons of TMLE performance with other estimators, including inverse probability of
treatment weighting (IPTW), propensity score based methods, and other double robust es-
timators can be found in papers in many statistical journals. A book on targeted minimum
loss-based learning is available (van der Laan and Rose 2011), a collection of papers on TMLE
through 2009 can be downloaded from http://www.bepress.com/ucbbiostat/sgruber/6

(van der Laan et al. 2009). Additional references are listed in Section 1.1.
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A. Influence curve-based inference

Theory tells us that the difference between a parameter estimate obtained from an RAL esti-
mator and the true parameter value converges at a root-n rate to a Normal limit distribution,
√
n(ψn−ψ0)

D→ N(0,Σ), where Σ is the covariance matrix of the (possibly multi-dimensional)
parameter (Bickel et al. 1997). In practice, this provides a means for estimating the variance
of the estimator as the variance of the empirical influence curve divided by the number of
i.i.d. units of observation, n. Parameter-specific influence curves that the software uses as
the basis for calculating p values and 95% confidence intervals are given below. Asymmetric
confidence intervals for the RR and OR parameters are constructed on the log scale, based
on the influence curves for the log(RR) and log(OR), respectively.

ICEY1(O) =
∆

g0∆(1 |W )
(Y − Q̄0(W )) + Q̄0(W )− ψEY1

0

ICATE (O) =

(
A

g0A(1 |W )
− 1−A
g0A(0 |W )

)
∆

g0∆(1 | A,W )
(Y − Q̄0(A,W ))

+ Q̄0(1,W )− Q̄0(A,W )− ψATE
0

IC logRR(O) =
1

µ1

(
A

g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(1,W )− µ1

)
− 1

µ0

(
1−A

1− g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(0,W )− µ0)

)

IC logOR(O) =
1

µ1(1− µ1)

(
A

g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(1,W )
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− 1

µ0(1− µ0)

(
1−A

1− g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(0,W )

)

Each IC is evaluated by substituting estimates of the true unknown quantities in the above
formulas, µ̂0, µ̂1, gnA , gn∆ , and in particular, the targeted estimate Q̄∗n(A,W ) in place of
Q̄0(A,W ). A conservative estimate of the variance of the parameter estimate is given by

σ̂2 = VAR(ÎC (O))/n, where n is the number of i.i.d. units of observation. If the dataset
contains repeated measures on independent subjects, the subject is considered the unit of ob-
servation, and the unit’s contribution to the influence curve is equal to the mean contribution
for that subject. Ninety-five percent confidence intervals are calculated as ψn(Q∗n)±1.96σ̂/

√
n

for the ATE and EY1 parameters, and exp(log(ψn(Q∗n))± 1.96σ̂/
√
n) for the RR and OR pa-

rameters, with σ̂ equal to the estimated standard error of the log(RR) or log(OR) estimates,
respectively.

For CDE parameters a term reflecting the contribution of estimating the conditional distribu-
tion of Z given A and W is incorporated into each influence curve, along with any dependence



Journal of Statistical Software 35

of missingness on Z:
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