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Abstract

A joint optimization plot, shortly JOP, graphically displays the result of a loss function
based robust parameter design for multiple responses. Different importance of reaching
a target value can be assigned to the individual responses by weights. The JOP method
simultaneously runs through a whole range of possible weights. For each weight matrix
a parameter setting is derived which minimizes the estimated expected loss. The joint
optimization plot displays these settings together with corresponding expected values
and standard deviations of the response variable. The R package JOP provides all tools
necessary to apply the JOP approach to a given data set. It also returns parameter
settings for a desirable compromise of achieved expected responses chosen from the plot.

Keywords: multiple responses, simultaneous optimization, Pareto optimality.

1. Introduction

In many technical applications, as in thermal spraying processes, it is desirable to find a
setting of controllable machine parameters that brings the mean of multiple responses on
target while simultaneously minimizing the variance. Usually these responses are inconsistent
with one another and it is not possible to optimize all means and variances at the same
time. Current solutions based on response surface methodology (Khuri and Mukhopadhyay
2010) are extensions of the desirability functions approach (Derringer and Suich 1980; Wu
2009; Köksoy 2005; He, Wang, Oh, and Park 2010) or the squared error loss approach (Shen,
Zhao, and Yang 2010). The R packages desire (Trautmann, Steuer, and Mersmann 2012),
desirability (Kuhn 2012) and qualityTools (Roth 2013) make use of the desirability function
in order to perform multi response optimization. The R package rsm (Lenth 2009) provides
several functions in order to apply response surface methods.

Pignatiello (1993) and Vining (1998) are beyond the first who extended the loss function ap-
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proach to multiple responses. This extension involves a pre-specified and in general unknown
cost matrix which can only be assumed on the basis of the underlying process. Thus it might
be insufficient to only consider one cost matrix. Kuhnt and Erdbrügge (2004) introduce an
alternative methodology where they minimize the estimated expected loss, namely the risk,
for a whole sequence of cost matrices. For each cost matrix an optimal parameter setting
together with corresponding responses is derived and graphically displayed by the so called
joint optimization plot. This methodology is implemented in the R package JOP (Kuhnt and
Rudak 2013; R Core Team 2013).

Our article is organized as follows. First we give a brief introduction to the joint optimization
plot (JOP) methodology. Afterwards we present the implementation of the JOP method in
R. We explain the main function JOP which performs the multi response optimization and
produces the joint optimization plot. We demonstrate its use on the basis of a data set stored
in the R package JOP. Afterwards we shortly explain the generation of the graphical output
by plot.JOP and the usage of the auxiliary function locate. The function locate helps to
find a “good” compromise based on the output of JOP. We close the article with a real data
example.

2. The JOP method

Let us consider a production process with controllable machine parameters x1, . . . , xn and
p independent quality characteristics, represented by variables Y = Y1, . . . , Yp, with target
values τ = τ1, . . . , τp. The aim is a layout of the production process, in terms of choosing
values for x = (x1, . . . , xn), which produces outcomes of the quality characteristics always on
or very close to the target values. In other words, parameter values are searched to ensure
that the means of the quality characteristics are on target with minimal variances. This task
can be achieved by minimizing the risk function (Pignatiello 1993), that is the expected loss,
over x,

R(x) = E
(
loss(Y |x)

)
= E((Y − τ)>C(Y − τ)|x)

= trace
(
CΣ(x)

)
+
(
µ(x)− τ

)>
C
(
µ(x)− τ

)
(1)

where loss(Y ) = (Y − τ)>C(Y − τ) is the loss function, C the positive definite cost matrix,
µ(x) = E(Y | x) the expected value of Y given x, and Σ(x) = COV(Y | x) the covariance
matrix of Y given x. The cost matrix C can be derived from knowledge of occurring losses
for specific outcomes of the quality characteristics. Often such information is not available,
in which case the joint optimization approach provides a solution as will be seen below.

For independent quality characteristics Y1, . . . , Yp, the covariance matrix Σ(x) is diagonal and
C might also be chosen diagonal, such that Equation 1 reduces to

R(x) =

p∑
r=1

cr · (σ2r (x) + (µr(x)− τr)2) =

p∑
r=1

cr · gr(x) (2)

where cr is the r-th diagonal entry of the cost matrix C and gr(x) = σ2r (x) + (µr(x) − τr)2.
Equation 2 points out that minimizing the risk function brings the mean on target and
minimizes the variances.
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A point y∗ ∈ f(R) of a vector-valued function f : R ⊂ Rn → f(R) ⊂ Rk is called efficient
with regard to the order relation ≤ defined in Rn, if and only if there exists no other y ∈ f(R),
y 6= y∗, with y ≤ y∗. A point x∗ ∈ Rn with y∗ = f(x∗) is called Pareto optimal, if and only
if y∗ is efficient (Erdbrügge, Kuhnt, and Rudak 2011; Hillermeier 2001). Erdbrügge et al.
(2011) show that the optimal point x∗ that minimizes the risk is also Pareto optimal for the
vector valued optimization problem min

x∈X⊂Rn
(g1(x), . . . , gp(x))>.

The mean vector µ(x) and the covariance matrix Σ(x) are unknown and need to be estimated.
As a general class of models double generalized linear models (Aitkin 1987; McCullagh and
Nelder 1989; Smyth 1989; Engel and Huele 1996; Smyth and Verbyla 1999) allow to derive
estimated mean and variance models for different data situations. Often double generalized
linear models with identity link and normal probability assumption for the mean model need
to be fitted, hence

Ê(Yr|x) = f(x). (3)

The variance model is based on the squared residuals of the mean model as Gamma distributed
responses and the log link resulting in

V̂AR(Yr|x) = exp {g(x)} . (4)

However, this is only an example of the wide range of possible model specifications out of
the class of double generalized linear models. In any case, f and g are both functions in the
unknown parameters. An iterative fitting procedure for both models (3) and (4) alternates
between fitting the mean and variance model, at each step using the actual estimates.

In situations with an unknown matrix C the joint optimization plot approach can be applied,
as it considers a whole sequence of possible cost matrices C simultaneously. By means of
the joint optimization plot (Kuhnt and Erdbrügge 2004; Erdbrügge et al. 2011) the user can
choose a compromise based on the knowledge of the underlying process. The cost matrix C
is decomposed into

C = A>WA, (5)

where A is a so called standardization matrix and W a weight matrix. We take both A and W
to be diagonal matrices. The diagonal entries of the weight matrix W indicate the importance
of the corresponding response; these diagonal entries are further specified by a slope vector
d ∈ Rp and a stretch value log a in the following way

logw = d · log a (6)

where w is the diagonal of the weight matrix W .

The standardization matrix A ensures that the loss function and thereby the minimized
risk is invariant to transformations of the individual responses. Implemented in JOP is the
standardization matrix

AY = diag

[ 1

m

m∑
i=1

V̂AR(Yr|xi)

]−1/2
r=1,...,p

 ,

for which the risk is invariant to affine linear transformations. Thus the risk is the same for
different units, like cm or mm for example.
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Figure 1: Examplary joint optimization plot (JOP).

For diagonal standardization and weight matrices the estimated risk function in Equation 2
reduces to

R̂(x) =

p∑
r=1

wr ·
(V̂AR(Yr|x) + (Ê(Yr|x)− τr)2)

b2r
(7)

where

br = ([A]rr)
−1 =

(
1

m

m∑
i=1

V̂AR(Yr|xi)

) 1
2

denotes the inverse of the [r, r]-entry of the standardization matrix A.

The risk function (7) is not only minimized with respect to x for an individual cost matrix, but
moreover for a whole sequence of cost matrices Ct. A slope vector d ∈ Rp is chosen together
with a vector log a ∈ RT of equidistant stretch values that range between a minimal value
Wstart and a maximal Wend , namely log a = [Wstart , . . . ,Wend ], resulting in Ct = A>WtA
with Wt = exp(d · log at), t = 1 . . . , T . The joint optimization plot displays the optimal
parameters x̂t for every Ct in one plot and the corresponding predicted mean values Ê(Yr|x̂t)

for r = 1, . . . , p together with a band of width twice the standard deviation

√
V̂AR(Yr|x̂t) in

a second plot, as illustrated in Figure 1. The horizontal dashed lines on the right hand plot
stand for the target values to be reached. The calculated optimal parameters on the left hand
plot and corresponding responses on the right hand plot are interpolated to enable a better
understanding of the results. Now the user can choose a compromise on the right hand plot
and find the corresponding design parameter values on the left hand plot.

For the sake of readability of the joint optimization plot we recommend to deal with at most
five responses. The number of machine parameters might as well be higher. However, a higher
number of machine parameters and responses leads to an increase of computation time.
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3. Implementation in R

The core of the JOP method is the minimization of the risk function (7) for a prespecified
sequence of cost matrices. The JOP package comprises the following components:

� JOP: Automated model building by means of the function dglm out of the R package
dglm (Dunn and Smyth 2012), and optimization of the risk function by solnp out of
the R package Rsolnp (Ghalanos and Theussl 2012).

� plot.JOP: Visualization.

� locate: Selection of a “good” compromise by mouse click.

� datax and datay: Data sets, datax contains the experimental design with two parameter
settings for a sheet metal hydroforming process and datay includes the corresponding
experimental results for two responses (Kuhnt and Erdbrügge 2004).

In this section we present the general call of JOP and explain the input arguments and output
values in more detail. Furthermore, we demonstrate the usage of JOP based on the data sets
datax and datay.

3.1. Structure of JOP

The general call of JOP is as follows.

JOP(datax, datay, tau = "min", Wstart = -5, Wend = 5, numbW = 10,

d = NULL, optreg = "sphere", Domain = NULL, form.mean = NULL,

form.disp = NULL, family.mean = NULL, dlink= "log", mean.model = NULL,

var.model = NULL, joplot = FALSE, solver = "solnp")

In the following we describe the parameters used in the function JOP.

� Wstart, Wend, numbW, d: These parameters assign the sequence of weight matrices W ,
compare (6), in the following way:

Wt = diag

(
exp

(
d · (Wstart + t · Wend −Wstart

numbW
)

))
, for t ∈ 0, . . . ,numbW (8)

� optreg: The optimization region is specified, optreg = "box" for box constraints or
optreg = "sphere" (default) for sphere region.

� Domain: Optional argument for the specification of box constraints for each response,
lower in the first column and upper constraints in the second.

� tau: A list object or a single character value which specifies the target values for
the responses. The target values can be either numerical or characters ("min" for
minimization or "max" for maximization). If a target is specified by "min" or "max"

then JOP derives the possible minimal or maximal values based on the fitted models and
optimization region and takes these values as target values internally.
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On the one hand, the user can plug in a list of numerical values or characters "min" for
minimization or "max" for maximization as targets for the corresponding response.

On the other hand, the user can either set tau = "max" or tau = "min" in order to
maximize or minimize all responses. By default (tau = "min") all responses are mini-
mized.

� solver: The optimization is performed by solnp by default. The user can also choose
solver = "gosolnp". Especially when a function is higly complex and has perhaps
many local minima, it is recommended to use gosolnp.

� form.mean, form.disp: A list of formulas for the mean and dispersion of each response.

� mean.model, var.model: Lists of functions for the mean and variance of each response.

� family.mean: Family object, distribution assumption and link specification for the
mean and dispersion.

� dlink: List of names of link functions for each dispersion model of each response.

� datax: Data frame which contains an experimental design.

� datay: Data frame which contains responses.

The data sets datax and datay are needed for model building. Both datax and datay have
to be data frames where datax contains an experimental design with settings for each param-
eter columnwise and datay contains the experimental results columnwise for every response.
Additionally, the columns of the data sets should be named, as exemplary demonstrated by
the data sets contained in the package JOP.

Based on the lists of formulas and the distribution assumptions JOP builds double generalized
linear models for each response. First, a model for the mean is fitted with constant dispersion
model. Afterwards a combination of forward and backward selection is performed for the
mean model. Then a double generalized linear model is fitted with the mean model consisting
of main effects, interaction effects and quadratic effects and the dispersion model including
all main effects. Thereafter, a backward selection for each dispersion model is performed
dropping the least significant covariate in each step. In a final step JOP checks if for each
higher order effect the corresponding main effect is included in the model. If not, then the
corresponding main effect is added to the model and the double generalized linear model is
fitted again.

The arguments are summarized in Table 1. JOP returns an object of class “JOP”. The values
stored in the output list are summarized in Table 2. In addition to the optimal settings of
the parameters for each weight matrix together with the corresponding responses the out-
put contains the estimated standard deviations for each response and minimal risk function
values. Furthermore the double generalized linear models are stored. Moreover JOP returns
the parameters together with the corresponding responses that minimize the sum of single
risk functions among all calculated parameters. In order to reconstruct the calculations the
output also contains the input variables d, Wstart, Wend and numbW.
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Argument Description

General
datax Data set with experimental design
datay Data set with responses
joplot Graphical output if joplot = TRUE

Sequence of weight matrices
Wstart, Wend, numbW, d See (8)

Models for mean and dispersion
form.mean List of formulas for the mean of each response
form.disp List of formulas for the dispersion of each response
family.mean Family object for the mean
dlink List of names of link functions for each dispersion model of

each response
mean.model List of functions for the mean of each response
var.model List of functions for the variance of each response

Optimization
optreg Specifies optimization region ("box" for box optimization

constraints and "sphere" for sphere)
solver "solnp" or "gosolnp"
tau Vector of target values
Domain Box constraints for each response

Table 1: Summary of input arguments for main function JOP.

Output value Description

Parameters Optimal settings of input parameters
Responses Corresponding predicted mean responses
StandardDeviation Corresponding predicted standard deviations
OptimalValue Minimal risk function value
TargetValueJOP Target values used internally by JOP

TargetValueUSER Target values specified by the user
DGLM Stored models for mean and dispersion
RiskminimalParameters Selected parameter settings which minimize the sum of

squared single risk functions among all parameters
RiskminimalResponses Responses associated with RiskminimalParameters

valW Values for Wend and Wstart, see Table 1
d Slope vector, see (6)
numbW Number of weight matrices, see Table 1

Table 2: Summary of output values for main function JOP.
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Figure 2: Joint optimization plot generated by JOP with Wend = -20 and Wstart = 20.

3.2. Exemplary data set

We demonstrate the usage of JOP step by step based on the exemplary data sets datax and
datay (Table 6 and Table 7 in the Appendix A) stored in the R package JOP which are loaded
automatically. The data sets come from an experiment with two input parameters (datax),
X1 and X2, and two output variables (datay), Y1 and Y2, with 36 runs in total. The values
Wend and Wstart can be chosen based on experience, otherwise the user should start with
relatively large values, for example a sequence of 10 weight matrices (numbW = 10, which is
default value and need not to be specified) with a stretch vector ranging between -20 (Wstart
= -20) and 20 (Wend = 20). The slope vector is (1,0) in this example (d = c(1, 0)). We
want JOP to build double generalized linear models for the mean and dispersion for Y1 and
Y2. The target values are given by 0 and 0.05 (tau = list(0 , 0.05)). This leads to the
following call which generates Figure 2.

R> out1 <- JOP(datax = datax, datay = datay, tau = list(0, 0.05),

+ Wstart = -20, Wend = 20, joplot = TRUE)

In Figure 2 it becomes clear that the lines in both plots are mostly constant except the part
in the center of the plot. We therefore reduce the range of the stretch vector by setting Wend

= -5 and Wstart = 5 (default values, thus need not to be specified).

R> out2 <- JOP(datax = datax, datay = datay, tau = list(0, 0.05),

+ joplot = TRUE)

This gives Figure 3. It can be observed that the band width in the right hand plot varies due
to the variance model depending on the parameters. The following double generalized linear
model has been build by JOP for the response Y1.
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Figure 3: Joint optimization plot generated by JOP with Wend = -5 and Wstart = 5.

R> summary(out2$DGLM$Y1)

Call: dglm(formula = flist[[i]], dformula = dispf[[i]], family =

family.mean[[i]], dlink = dlink, data = dataset, method = "reml")

Mean Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.740494 1.196697 22.345247 1.683592e-21

X1 2.866961 1.178760 2.432183 2.059735e-02

X2 -11.493717 1.231388 -9.333952 8.835328e-11

(Dispersion Parameters for gaussian family estimated as below )

Scaled Null Deviance: 125.5757 on 35 degrees of freedom

Scaled Residual Deviance: 32.8789 on 33 degrees of freedom

Dispersion Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8527027 0.2571879 14.980108 9.905641e-51

X2 0.4805173 0.2752690 1.745628 8.087558e-02

(Dispersion parameter for Gamma family taken to be 2 )

Scaled Null Deviance: 48.10039 on 35 degrees of freedom

Scaled Residual Deviance: 45.07052 on 34 degrees of freedom

Minus Twice the Log-Likelihood: 237.7398

Number of Alternating Iterations: 7
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As it can be seen in Figure 3, either the target of Y1 or Y2 can be nearly reached but not
both at the same time. Hence, a decision is needed which response should be preferred or a
compromise has to be set in the sense that both responses are kept as small as possible. The
calculated parameters and corresponding responses are as follows.

R> out2$Responses

Y1 Y2

W1 34.86805 0.05065696

W2 33.29256 0.05183249

W3 29.73682 0.05462793

W4 23.50584 0.05993138

W5 16.08850 0.06697651

W6 11.19272 0.07255414

W7 10.14573 0.07427949

W8 10.03864 0.07458055

W9 10.01937 0.07465548

W10 10.01432 0.07467799

R> out2$Parameters

X1 X2

W1 -1.0338141 -0.96500174

W2 -1.1290056 -0.85167271

W3 -1.2888263 -0.58217417

W4 -1.4124358 -0.07088651

W5 -1.2766983 0.60831034

W6 -0.8286217 1.14603052

W7 -0.5269680 1.31236607

W8 -0.4479661 1.34138970

W9 -0.4257229 1.34861411

W10 -0.4187866 1.35078414

We can use the function locate in order select a compromise by means of clicking with the
mouse on the right hand plot (see Figure 4). Afterwards the chosen responses are returned
along with the corresponding parameters .

R> locate(out2 , xlu = 4)

$ChosenParameters

X1 X2

-1.41243583 -0.07088651

$ChosenResponses

Y1 Y2

23.50584426 0.05993138
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Figure 4: Compromise found by means of locate.
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Figure 5: Joint optimization plot with targets "min" for Y1 and "min" for Y2.

Alternatively, the user can set the target values to minimum (Default). Figure 5 contains the
plot generated by the following code.

R> out3 <- JOP(datax = datax, datay = datay, joplot = TRUE)

The user can also specify formulas for the mean and dispersion of each response as demon-
strated next. The corresponding joint optimization plot is displayed in Figure 6.
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Figure 6: Joint optimization plot for output out4.

R> form.mean <- list(as.formula(Y1 ~ X1 + X2 + I(X1^2)),

+ as.formula(Y2 ~ (X1 + X2)^2 + I(X1^2)))

R> form.disp <- list(as.formula(d ~ X1 + X2 + I(X2^2)), as.formula(d ~ X1))

R> out4 <- JOP(datax = datax, datay = datay, tau = list(0, 0.05),

+ form.mean = form.mean, form.disp = form.disp, joplot = TRUE)

Another possibility is to plug in lists of functions for the mean and dispersion as shown by
the following code. The graphical output is displayed in Figure 7.

R> mean1 <- function(x) {

+ return(26.917 + 2.797 * x[1] - 11.104 * x[2])

+ }

R> mean2 <- function(x) {

+ return(0.063649 - 0.00179 * x[1] + 0.010198 * x[2] -

+ 0.003346 * x[2]^2 + 0.00401 * x[1] * x[2])

+ }

R> var1 <- function(x) {

+ return(exp(3.7851 - 0.3621 * x[1] + 0.536 * x[2]))

+ }

R> var2 <- function(x) {

+ return(exp(-10.51784 - 0.01324 * x[1] + 0.5147 * x[2] +

+ 0.58101 * x[1]^2 + 0.82336 * x[2]^2))

+ }

R> mean.model <- list(mean1, mean2)

R> var.model <- list(var1, var2)

These functions are then handed over to the JOP procedure.
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Figure 7: Joint optimization plot for output out5.
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Figure 8: Grey scaled.

R> out5 <- JOP(datax = datax, datay = datay, mean.model = mean.model,

+ var.model = var.model, joplot = TRUE)

Furthermore we can generate a grey scaled joint optimization plot (see Figure 8).

R> plot(out2, no.col = TRUE)
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Figure 9: Without band.
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Figure 10: Optional col and lty.

Sometimes it is helpful to leave out the bands in the right hand plot to get the general idea
(see Figure 9). This can be done by the following call.

R> plot(out2, standard = FALSE)

Additionally, several graphical parameters can be passed to plot.JOP. The arguments col or
lty should have the same length as the number of parameters plus the number of responses.
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Otherwise plot.JOP takes the default colors defined by the argument no.col. Figure 10 can
be generated by the following code.

R> plot(out2, col = 5:8, lty = 4:7)

4. Real data example

In this example we analyze a thermal spraying process. The thermal spraying technology can
be used to apply a particle coating on a surface, e.g., for wear protection or durable medical
instruments. Thermal spraying processes are lacking in reproducibility due to uncontrollable
day-effects. Furthermore, the analysis of the quality of the coating is very time-consuming.
Therefore, a recent project studies in-flight particle properties which can be measured online.
The uncontrollable day effects are expected to be observed through the particle properties
which have a high impact on the coating. We aim to control the process through online-
diagnosis of the in-flight particles. Hence, we model the relationship between the controllable
machine parameters and in-flight particle properties. The design consists of 30 runs in total.
There are four different controllable machine parameters with five different chosen settings,
summarized in Table 3, and two different in-flight particle properties, namely the velocity and
the temperature. The experimental set up is visualized in Figure 11. In order to model the
relationship between the controllable machine parameters and the in-flight particles, a central
composite design was performed.

The data set can be found in Table 8 in the Appendix A. In the following sprayX contains
the experimental design and sprayY contains the experimental results for velocity and tem-
perature. Now we can call JOP in order to build models with main effects, interactions and
quadratic effects and to get the joint optimization plot. The following code

R> out <- JOP(datax = sprayX, datay = sprayY, tau = list(1550, 750),

+ optreg = "box", joplot = TRUE)

calls the main function JOP. We use the slope vector d = c(1, 0) and take a stretch vector
with numbW = 10 equidistant values between Wstart = -5 and Wend = 5 (default values).

Figure 11: Experimental setup.



16 JOP: Joint Optimization of Multiple Responses in R

Level
Factor −2 −1 0 1 2

Lambda (L) 1.0 1.075 1.15 1.225 1.3

Kerosene level (K) in l
h 15 17.5 20 22.5 25

Stand-off distance (D) in mm 200 225 250 275 300
Feeder Disc Velocity (FDV) in % 5 10 15 20 25

Table 3: Parameter values.

Furthermore we set the target value tau = list(750, 1550) for the velocity and the tem-
perature. The distribution assumption is gaussian(link = "identity") for the mean and
Gamma(link = "log") for the dispersion.

Now we take a look at the fitted selected models. The mean model for velocity includes all
main effects and a quadratic term for kerosene level and an interaction between distance and
feeder disc velocity. Temperature depends on the same parameters but with different signs
for the coefficients of lambda and feeder disc velocity. Both dispersion models depend on
distance.

R> summary(out$DGLM$Ve)

Call: dglm(formula = flist[[i]], dformula = dispf[[i]], family =

family.mean[[i]], dlink = dlink, data = dataset, method = "reml")

Mean Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 720.965261 1.756216 410.521949 5.872676e-46

L 9.169296 1.324358 6.923577 4.659843e-07

K 38.479212 1.324358 29.054989 1.239551e-19

D -8.835360 1.372279 -6.438456 1.433925e-06

FDV -5.600081 1.552577 -3.606960 1.484517e-03

I(K^2) -4.107965 1.284199 -3.198855 3.989576e-03

D:FDV -4.691714 1.832970 -2.559624 1.751975e-02

(Dispersion Parameters for gaussian family estimated as below )

Scaled Null Deviance: 896.3855 on 29 degrees of freedom

Scaled Residual Deviance: 20.91231 on 23 degrees of freedom

Dispersion Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.0003764 0.3384877 11.818379 3.136804e-32

D 0.7187822 0.3943383 1.822755 6.834046e-02

(Dispersion parameter for Gamma family taken to be 2 )

Scaled Null Deviance: 61.66351 on 29 degrees of freedom

Scaled Residual Deviance: 54.86265 on 28 degrees of freedom
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Minus Twice the Log-Likelihood: 196.0599

Number of Alternating Iterations: 6

Here is the fitted selected model for the temperature.

R> summary(out$DGLM$Te)

Call: dglm(formula = flist[[i]], dformula = dispf[[i]], family =

family.mean[[i]], dlink = dlink, data = dataset, method = "reml")

Mean Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1622.811760 2.706422 599.615162 9.657184e-50

L -7.172888 2.034521 -3.525591 1.811393e-03

K 29.477723 2.034521 14.488780 4.719962e-13

D -17.294695 2.109905 -8.196905 2.819053e-08

I(K^2) -5.908166 1.975646 -2.990498 6.534414e-03

FDV 2.695564 2.393905 1.126011 2.717733e-01

D:FDV -5.459576 2.824036 -1.933253 6.560727e-02

(Dispersion Parameters for gaussian family estimated as below )

Scaled Null Deviance: 314.0419 on 29 degrees of freedom

Scaled Residual Deviance: 21.34625 on 23 degrees of freedom

Dispersion Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.8424770 0.3386096 14.301063 2.154916e-46

D 0.7277245 0.3945376 1.844499 6.511038e-02

(Dispersion parameter for Gamma family taken to be 2 )

Scaled Null Deviance: 40.18143 on 29 degrees of freedom

Scaled Residual Deviance: 33.87384 on 28 degrees of freedom

Minus Twice the Log-Likelihood: 221.7569

Number of Alternating Iterations: 14

In Figure 12 it can be observed that the predicted mean values for velocity nearly reach the
desired target value on the left side of the plot. The temperature is maximal here. The
opposite is true for the right side of the plot. Furthermore, the variances on left and right
side of the plot are lower than in the middle. Thus we choose three different compromises,
one in the middle, one on the left side and one on the right side, as exemplary illustrated in
Figure 13. This can be done by

R> loc <- locate(out, ncom = 3)

and the chosen predicted response values and corresponding parameters are stored in Table 4
and Table 5. It can be seen from Table 4 that the solutions 2 and 3 are not as close to the
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Figure 12: Joint optimization plot for thermal spraying process.
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Figure 13: Three possibly chosen compromises for the thermal spraying process.

mean as solution 1 but show lower variance. Additionally, we calculated a desirability based
solution (DES) in order to compare the results. We used two sided linear desirabilities as
follows.
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Temperature Velocity
Mean Variance Mean Variance

JOP Solution 1 1578.94 18.64 732.10 12.16
Solution 2 1553.37 7.90 684.72 5.21
Solution 3 1615.94 5.44 749.56 3.60

DES 1574.03 23.31 731.24 15.16

Table 4: Summarized solutions based on JOP method and on desirabilities.

L K D FDV

JOP Solution 1 2.00 −0.47 1.39 −2.00
Solution 2 2.00 0.004 −2.00 −2.00
Solution 3 2.00 −1.47 −0.98 −2.00

DES 2.00 −0.50 2.00 −2.00

Table 5: Summarized parameters based on JOP method and on desirabilities.

Temperature: dte(x) =


0, f̂Te(x) < 1500 or f̂Te(x) > 1600
f̂Te(x)−1500

50 , f̂Te(x) ≥ 1500 and f̂Te(x) < 1550
f̂Te(x)−1550

50 , f̂Te(x) ≥ 1550 and f̂Te(x) < 1600

Velocity: dve(x) =


0, f̂V e(x) < 700 or f̂V e(x) > 800
f̂V e(x)−700

50 , f̂V e(x) ≥ 700 and f̂V e(x) < 750
f̂V e(x)−750

50 , f̂V e(x) ≥ 750 and f̂V e(x) < 800

,

where f̂Te(x) and f̂V e(x) denote the fitted mean models for temperature and velocity. Then
the overall desirability index d(x) = dTe(x) · dV e(x) is maximized inside the experimental
region. The predicted mean values are similar to solution 1. However, it can be observed that
the desirability based solution does not regard the variance. It returns a solution where the
value for distance is at the border of the experimental region. This is reflected in the predicted
variance which is greater than the solution based on the JOP method for both temperature
and velocity.

5. Conclusion

In this article we presented the R package JOP and demonstrated its usage based on a real
data example coming from a thermal spraying process. In its current version, JOP can build
double generalized linear models for continuous responses and it finds parameter settings for
which desired target values of the responses are reached with only small variance.

In future we plan to extend the JOP method in order to deal with correlated responses.
This will be also included in the JOP package. Furthermore, we want to combine the joint
optimization plot with desirabilities.
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A. Data sets

Run X1 X2 Run X1 X2 Run X1 X2

1 1.00 1.00 13 −1.00 −1.00 25 0.00 1.41
2 1.00 1.00 14 −1.00 −1.00 26 0.00 1.41
3 1.00 1.00 15 −1.00 −1.00 27 0.00 1.41
4 1.00 1.00 16 −1.00 −1.00 28 0.00 1.41
5 1.00 −1.00 17 −1.41 0.00 29 0.00 0.00
6 1.00 −1.00 18 −1.41 0.00 30 0.00 0.00
7 1.00 −1.00 19 −1.41 0.00 31 0.00 0.00
8 1.00 −1.00 20 −1.41 0.00 32 0.00 0.00
9 −1.00 1.00 21 1.41 0.00 33 0.00 −1.41

10 −1.00 1.00 22 1.41 0.00 34 0.00 −1.41
11 −1.00 1.00 23 1.41 0.00 35 0.00 −1.41
12 −1.00 1.00 24 1.41 0.00 36 0.00 −1.41

Table 6: Exemplary data set datax.

Run Y1 Y2 Run Y1 Y2 Run Y1 Y2

1 7.997 0.067 13 33.657 0.063 25 1.341 0.065
2 20.360 0.083 14 37.679 0.064 26 10.775 0.092
3 19.129 0.067 15 35.112 0.047 27 9.073 0.058
4 31.045 0.081 16 43.949 0.043 28 21.835 0.080
5 38.636 0.061 17 7.279 0.054 29 15.446 0.066
6 38.603 0.057 18 21.799 0.074 30 30.339 0.070
7 36.780 0.039 19 19.130 0.050 31 29.767 0.057
8 44.506 0.038 20 36.341 0.063 32 35.113 0.062
9 0.975 0.061 21 23.834 0.066 33 35.027 0.052

10 9.125 0.078 22 31.616 0.080 34 45.159 0.046
11 8.507 0.054 23 35.014 0.065 35 46.927 0.030
12 21.357 0.063 24 36.550 0.055 36 42.352 0.033

Table 7: Exemplary data set datay.
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Run L K D FDV Te Ve

1 1 −1 1 −1 1575 697
2 1 1 1 1 1648 763
3 −1 −1 1 −1 1588 671
4 −1 −1 −1 1 1629 682
5 0 0 0 0 1646 737
6 0 0 0 0 1637 732
7 −1 1 1 −1 1646 752
8 −1 1 −1 1 1681 757
9 1 1 −1 1 1667 773

10 1 −1 −1 −1 1593 703
11 0 0 0 0 1621 718
12 −1 1 −1 −1 1664 756
13 1 1 −1 −1 1645 771
14 −1 1 1 1 1630 724
15 1 −1 1 1 1572 669
16 −1 −1 1 1 1572 641
17 −1 −1 −1 −1 1607 676
18 1 1 1 −1 1619 754
19 0 0 0 0 1622 716
20 1 −1 −1 1 1601 688
21 0 0 0 0 1619 715
22 0 0 −2 0 1656 738
23 −2 0 0 0 1621 698
24 2 0 0 0 1602 739
25 0 0 0 0 1608 719
26 0 0 0 −2 1610 732
27 0 0 2 0 1567 687
28 0 2 0 0 1656 780
29 0 0 0 2 1613 707
30 0 −2 0 0 1529 628

Table 8: Central composite design together with responses for thermal spraying process.
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