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Abstract

This paper presents the R package berm for conducting and assessing Bayesian contin-
ual reassessment method (CRM) designs in Phase I dose-escalation trials. CRM designs
are a class of adaptive design that select the dose to be given to the next recruited patient
based on accumulating toxicity data from patients already recruited into the trial, often
using Bayesian methodology. Despite the original CRM design being proposed in 1990,
the methodology is still not widely implemented within oncology Phase I trials. The aim
of this paper is to demonstrate, through example of the berm package, how a variety
of possible designs can be easily implemented within the R statistical software, and how
properties of the designs can be communicated to trial investigators using simple textual
and graphical output obtained from the package. This in turn should facilitate an iterative
process to allow a design to be chosen that is suitable to the needs of the investigator. Our
berm package is the first to offer a large comprehensive choice of CRM designs, priors and
escalation procedures, which can be easily compared and contrasted within the package
through the assessment of operating characteristics.

Keywords: Bayesian adaptive designs, continual reassessment method, phase I, dose finding,
dose escalation, R.

1. Background

The continual reassessment method (CRM, O’Quigley, Pepe, and Fisher 1990) is an adaptive
design used in Phase I clinical trials to find the maximum tolerated dose (MTD). The aim
of oncology Phase I trials is to escalate the dose of a new therapy by sequentially entering
patients into the trial and selecting the next dose based on the accumulating toxicity data.
In oncology, cytotoxic drugs are likely to have severe toxicity at high doses, yet at low doses
little efficacy is expected from the drug. Hence, a dose that achieves a tolerable (non-zero)
toxicity level is sought that has efficacy potential. Commonly toxicity is the primary outcome
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on which escalation decisions are based and safety events are classified into dose-limiting
toxicities (DLTs) and non-DLTs. The MTD is then defined as the dose that has risk of
DLT equal to a chosen target toxicity level (TTL), usually between 20-33% in oncology trials
(Tourneau, Lee, and Siu 2009).

Adaptive designs play an important role in dose selection for Phase I trials, with the simple
algorithmic ‘3+3’ approach (Storer 1989) still widely used. The design has been widely
criticized for being inefficient and inflexible (O’Quigley et al. 1990; Heyd and Carlin 1999;
Tourneau et al. 2009; O’Quigley and Zohar 2006) due partly to escalation decisions being
based on outcomes from only the most recent subset of recruited patients. This has led
to a number of model-based designs being developed, the most prominent of these being the
CRM, where escalation decisions are based on point estimates of the posterior distributions or
likelihoods formed from all the accumulated data. A parametric form is often assumed for the
dose-toxicity relationship, based either on a one-parameter ‘working model” (O’Quigley et al.
1990) or a two-parameter logistic function (Whitehead 1997). The one-parameter approach
performs well if focusing on local estimation of the dose-response curve, such as treating
patients at the estimated MTD, despite probable lack-of-fit in other areas of the dose-toxicity
curve (O’Quigley et al. 1990). This has been shown to be true in simulations and theoretical
work even under misspecification of the one-parameter model (Shen and O’Quigley 1996).
A two-parameter model, meanwhile, has been shown to be unstable if dosing tends to be
concentrated at only one level (Paoletti and Kramar 2009), since the model is then over-
specified for the data being collected. Despite this, the two-parameter model is commonly
used due to its ease of interpretation and the ability to make appropriate inferences about
the probabilities of DLTs at each dose level (Neuenschwander, Branson, and Gsponer 2008).
The latter statement is compatible with a fully-Bayesian philosophy, where historical data
or elicitation are used to describe prior beliefs about the shape and uncertainty in the dose
toxicity curve and if the model is not misspecified. Escalation decisions can then be based
on the whole posterior distribution of toxicity at each dose (Neuenschwander et al. 2008),
although it should be noted that knowledge about toxicity at untested doses will be dominated
by the prior. Given the divergent views in the literature around this topic, it is important for
researchers to have easy to use and readily accessible software, that will enable them to make
an informed decision around the choice of CRM model for their particular situation, and the
berm software can be used to this effect.

Despite the demonstrated superiority of model-based over traditional algorithmic designs their
uptake has been slow, with many oncology trials still implementing ‘343’ designs (Tourneau
et al. 2009). There is a danger that model-based designs may be perceived to be something
of a ‘black box’ in which the process underlying the recommendations is not transparent.
To improve the understanding of the methodology requires closer co-operation between the
investigators of the trial and the statistician at the design stage.

Another issue is the conceived lack of user-friendly software. Nevertheless, software to im-
plement CRM designs does exist in various guises. The R package dfcrm (Cheung 2011) has
been developed to implement one-parameter CRM working models and time-to-event CRM
(TITE-CRM) designs (Cheung and Chappell 2000). Simulation studies can be performed to
assess operating characteristics, and various functions are available to evaluate model sensitiv-
ity and to calibrate the design (Cheung 2005; Cheung and Chappell 2002). Other stand-alone
software has been developed to implement CRM models, notably CRMSimulator (Norris and
Cook 2006) and CRM (Venier 1999).
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In this paper we present a new R (R Core Team 2013) package berm, which provides a more
comprehensive implementation of various Bayesian CRM designs. The package is available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=bcrm,
offers extra flexibility in the choice of design aspects, and is intended to allow easy assess-
ment of the designs through summary and graphical outputs. This is often lacking in other
software packages, and we feel that an easy to use and interpret package is needed in order
to promote the use of CRM designs more widely. The berm package has other advantages
in that it implements both one and two-parameter models, allowing the user to contrast
operating characteristics of the different models, and can make use of MCMC computation
via either WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003) or OpenBUGS (Lunn,
Spiegelhalter, Thomas, and Best 2009). The main features of berm are as follows:

1. The freedom to specify the functional form of the model, with a variety of one or two-
parameter models available.

2. A wide choice of prior distributions and options to calculate standardized doses.

3. Decision rules for escalation can be based on risks of toxicity calculated from plug-in
estimates of the mean of the parameter(s), the posterior mean risk of DLT, quantiles of
the MTD distribution as used in an escalation with overdose control (EWOC) design
(Babb, Rogatko, and Zacks 1998), or a loss function that weights intervals of toxicity
risk. A TITE-CRM design is not currently implemented but maybe available in a future
release.

4. A variety of possible stopping rules including a minimum and maximum sample size,
stopping once a maximum number are treated at the final MTD estimate, and stopping
once a required level of precision is obtained.

5. The flexibility to change other design inputs such as the cohort size, the TTL, as well
as algorithmic constraints placed on escalation.

6. Easy to assess operating characteristics using built-in simulation code, or an interactive
approach is possible with data entered and decisions made after each cohort is recruited.

7. Operating characteristics from the CRM design can be compared side-by-side with the
standard 343 design.

8. Informative graphical and textual output from both a single CRM trial and those con-
ducted under a simulation study.

9. Estimation using either ‘exact’ methods (adaptive quadrature via the R integrate
command) or Markov chain Monte Carlo (MCMC) via either WinBUGS or OpenBUGS
using the R packages R2ZWinBUGS (Sturtz, Ligges, and Gelman 2005) and BRugs
(Thomas, O’Hara, Ligges, and Sturtz 2006), respectively.

The aim of this paper is to therefore demonstrate the options available within the software and
to guide users through an example trial with particular emphasis on approaches to critically
evaluate a design and its operating characteristics.
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2. Methods

Assume that k doses have been chosen for possible experimentation in the trial with the MTD
assumed to be within the range of chosen doses. The lowest dose is usually chosen based on
animal toxicology studies and is expected to be very safe in humans. The choice of the k doses
may be constrained by practical considerations, such as tablet manufacturing. Although this
choice is an important consideration for a Phase I trial, and guidelines are available for this
purpose (U.S. Department of Health and Human Services 2010), it is not the focus of this
paper. We shall, however, assume that the doses dy, ..., dy are pre-chosen by the investigator
and correspond to some a-priori guesses of the risk of DLT 6, ...,0; (probabilities) at each
dose. The aim is to identify the MTD z (not necessarily one of the doses selected) whose risk
of DLT is equal to the TTL 60, where 61 < 6 < 0.

2.1. One-parameter CRM designs

The original implementation of the CRM assumes a one-parameter monotonically increasing
functional form between a standardized or re-scaled version of the doses, d7,...,d;, and the
risk of a DLT (see Section 2.1.1 for the calculation of the standardized doses). The underlying
assumption is that the risk of DLT increases with dose. Let Y; denote the binary toxicity
outcome observed in the ith patient recruited to the trial, where Y; = 1 denotes a DLT, and
let the standardized dose chosen for the ith patient be denoted d*(7). O’Quigley et al. (1990)
proposed a one-parameter hyperbolic-tangent dose-response model as follows:

P(Y; =1) = n(d"(i); ) = [(tanh (d"(i)) + 1) /2]", (1)

where a € RT. This model, despite only having one parameter, fulfils the requirement that
there exists an oy € R for which m(z*; ag) = 6, where z* is the standardized version of the
MTD z. That is we are able to use the model to target doses that have the required toxicity
level. Two further 1-parameter models are a logistic model with fixed intercept, ¢, where ¢ is
often taken to be three (O’Quigley and Chevret 1991)

wrn. _ exp(c+ ad (i)
m(d*(i); ) = 1+ exp (¢ + ad*(7))

(2)
and a power model of the form

m(d*(i); o) = d" (1), 3)
The power model is seen to be equivalent to the hyperbolic-tangent model but with a different
transformation of the doses (O’Quigley and Shen 1996; Paoletti and Kramar 2009).

Choosing the standardized doses

The doses are standardized to calibrate the chosen functional form of the dose-response curve
to the investigator’s prior estimates of DLT. This can be achieved by setting df = 7 1(6;; &),
where 77! is the inverse of the risk model, and & is a prior estimate (mean or median) of the
parameter. For example, if the hyperbolic-tangent functional form is used with prior mean
for ar equal to 1 then the standardized doses can be calculated as

df = tanh™1(26; — 1).
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Meanwhile, if the power model is used with prior mean equal to 1 then the standardized doses
are

d;k = 9727

i.e., the standardized doses are equal to the prior estimates of DLT. The standardized doses
are treated as fixed quantities over the study duration. However, since they are calculated
based on the a-priori estimates of toxicity, they should be thought of as part of the design,
which themselves require evaluation.

Bayesian updating

The adaptive nature of the CRM arizes from choosing the dose for the next patient based
on the posterior distribution from the currently recruited patients. A Bayesian approach is
implemented by placing a prior distribution, f(«), on the model parameter. The posterior
distribution for « after n outcomes have been observed is then

fla)L(asyr, - yn)

f(@|y1,---,yn) = fooof(U)L(u;yl,---,yn) du’ (4)

where the likelihood is L(c;y1, - .., yn) = [[1oq ™ (d*(i); )" (1 — 7 (d*(4); o))ty
The prior for a could be one of a number of possible, positive valued, distributions such as

Gamma, Uniform or Lognormal. Often, a default prior is assumed, such as a Gamma(1, 1)
(O’Quigley et al. 1990). For what follows we shall refer to the prior mean of a as my.

Escalation based on point estimates

Decisions regarding the dose to give to the next patient are often based on point estimates
of the risk of DLT. This is especially true for the one-parameter CRM designs where the
philosophy is to dose at the current ‘best’ estimate of the dose closest to the MTD (i.e., a
“patient gain” philosophy, where the next recruited patient is given the optimal treatment
for them, see Whitehead (1997) for example). Two possible point estimates to base dose-
escalation decisions on are:

1. Plug-in mean
o0
Nl(d;kvyhayn):ﬂ-(djﬂ/ af(a’ylvvyn) da)
0
2. Posterior mean

pa(d5 s - - ym) =/0 r(d3sa) falys... yn) do

One attribute of using the plug-in mean as an estimate of the risk of DLT at each dose is
that the standardized doses for one-parameter models are often calculated based on a plug-in
prior mean. Hence at the beginning of the trial the point estimates used for escalation are
consistent with the a-priori estimates of DLT, i.e.,

i) = (ai: [~ afta) da) = x (163 m0) ) = b
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Whichever point estimate is chosen, the dose for the (n + 1)-st patient is the one whose point
estimate is closest to the TTL, that is

d*(n+1) = arg min | pp(dgyt, .- yn) — 0
ge{l,. K}

)

for P=1 or 2.

2.2. A two-parameter CRM design

A two-parameter model (Whitehead 1997; Neuenschwander et al. 2008) is based on the fol-
lowing logistic regression equation

logit(m(d;; B, B2)) = log(B1) + B2d;, (5)

where df = log(d;/dR) is a dose standardized to a reference dose dp, so that log(f1) becomes
the log-odds of toxicity when d; = dgr. The parameters 51 and [ are positive-valued, thus
ensuring a monotonically increasing dose-toxicity relationship. Neuenschwander et al. (2008)
place a bivariate lognormal prior on the two parameters and propose eliciting information on
the risk of DLT at two or more doses to obtain prior means and variances. The posterior
distribution is then
f(B1, B2) L(B1, Basy1, - -+, Yn)
f(ﬁ1752|y1>"'7yn): 00 og : : '7 : = ) (6)
Jo o Jo© flu,v)L(w,vs 1, .., Yn) du dv

where f(f1,2) is the joint prior distribution and L(S1, B2;y1, ..., yn) is the likelihood func-
tion.

FEscalation with overdose control (EWOC)

Escalation can be based on point estimates of the posterior distribution, as in the one-
parameter case. An alternative approach proposed by Babb et al. (1998) targets a quan-
tile of the actual MTD distribution. First, the (standardized) MTD is defined based on a
transformation of the two-parameter logistic model as follows:

logit ™! (6) — log (1)
Ba

To avoid overdosing, the next dose can then be chosen based on the quantile of the cumu-
lative posterior distribution function (CDF) for the MTD, F(v;y1,...,yn) = P(MTD* <
YY1, ---,Yn). For example, to target the 100g-percentile, the dose selected for the (n + 1)-st
patient is such that the predicted probability that it exceeds the MTD is equal to ¢

MTD* =

F(d*(n+1);y1,...,yn) = ¢

The value ¢ is chosen to be less than 0.5, thus ensuring that the next dose is below the posterior
median estimate of the MTD. In practice, the 100g-percentile of the MTD distribution is
unlikely to be amongst the set of pre-specified doses and hence the dose for the (n + 1)-st
patient is chosen as the dose closest to the specified quantile of the CDF:

d*(n+1) = arg min} F(d2§y1>---7yn) —q ’
cell,...k}
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Escalation based on toxicity intervals

Neuenschwander et al. (2008) take a fully-Bayesian approach and allow dose-escalation de-
cisions to be based on the whole posterior distribution. First, desirable and less-desirable
regions of toxicity are defined, such as ‘Underdosing’, ‘Target dosing’, ‘Overdosing’ and
‘Severe overdosing’. Such regions are defined by the risk of DLT and based on these in-
tervals a loss-function is set-up. Suppose that M regions of toxicity have been defined,

[po = 0,p1], (p1,p2], - .., (Prmr—1,pm = 1], and an associated loss function for dose d} defined
as

Loss(B1, Ba; d;) = b, if w(d}; B1, B2) € (Pm—1,Pml, (7)
which is a function of the parameters in the two-parameter model. The losses {1, ...,¢y; are

pre-specified and correspond to each region of toxicity. The Bayes risk, or posterior expected
loss, for dose d; is then defined as

B(d}) = /0 /0 Loss(B1, Ba d2) £(Bu, Balys- . yn) dBrdBa ()

The dose which minimizes the Bayes risk is selected as the next dose. Under a Bayesian
philosophy with well-defined priors this approach allows the current uncertainty in the risk
of DLT at each dose level to be accounted for in the dose-escalation procedure. For example,
two doses may have very similar point estimates (posterior mean or median) of the risk of
DLT but the posterior probability that the risk exceeds an unacceptable toxicity may be quite
different. This can be accounted for using the toxicity interval approach.

2.3. Stopping rules

Patients continue to be recruited to the trial until either a fixed sample size is achieved or
one of a number of possible stopping rules is triggered. Dynamic stopping rules based on
the information collected thus far are appealing and may allow a trial to stop earlier than
anticipated. O’Quigley and Reiner (1998) propose a stopping rule based on the probability
that the patients that remain to be recruited, together with the final recommended MTD, are
all assigned the same dose level. If, at any time, this predicted probability is high, then the
trial is stopped. Whilst this is an appealing stopping rule, it can be difficult to implement in
practice especially if the number of patients yet to be recruited is large, as all combinations of
future responses need to be calculated. A simpler ‘settling’ rule based on whether a dose has
been allocated k times (Korn, Midthune, Chen, Rubinstein, Christian, and Simon 1994), for
a pre-specified k, compares favorably with the rule based on combinatorial trees (O’Quigley
2002). Alternatively, a stopping rule based on the precision of the final MTD estimate is
another advocated approach (Heyd and Carlin 1999), and we demonstrate this approach in
the example application in the next section.

3. The berm package: an example application

All of the approaches described in Section 2 can be implemented using the function bcrm in
the berm package. To install and load the package within R type

R> install.packages("bcrm")
R> library("bcrm")
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Dose 5mg 10mg 15mg 2bmg 40mg 50mg 60mg
Prior guess of risk  0.05 0.10 020 0.30 035 040 0.45

Table 1: Prior guesses of risk of DLT given by investigator before trial commences.

The main features of this package will now be highlighted through the design of a fictitious
Phase I oncology trial.

Suppose a drug is to be tested in an oncology first-in-man Phase I trial where the objective
is to find a maximum tolerated dose corresponding to a risk of DLT occurring in 30% of
patients. Seven dose levels have been identified for possible experimentation (5mg, 10mg,
15mg, 25mg, 40mg, 50mg, 60mg), and due to safety concerns the first cohort of patients will
receive the lowest dose, identified as a likely safe dose from animal toxicology studies. The
investigator wishes to recruit patients in cohorts of size three, and not to allow dose-skipping
during escalation. The investigator’s best guess of the risk of DLT at the lowest dose is 5%
whilst their best guess of the MTD is at dose level 4 (i.e., a 30% risk of DLT at this dose
level). After further discussions the initial guesses of risk of DLT are established for each dose
level as shown in Table 1.

Using this information, the statistician is to present a report of possible CRM designs and their
operating characteristics for a sample size of 42 patients. The investigator requires the design
to be ‘well-calibrated’ in that it should escalate rapidly to the MTD whilst not subjecting too
many patients to doses that are too toxic. Under scenarios where the drug is more toxic than
expected, the design should be flexible enough to react quickly to accumulating toxicities.
The investigator is also worried about how their prior guesses regarding the risk of DLT may
affect the escalation procedure.

3.1. Interactively conducting a CRM trial

Suppose our choice of CRM model is a one-parameter power model, where a Gamma(1,1) prior
is used, i.e., f(a) = exp(—a). The one-parameter power model is specified in the function bcrm
using the argument £f = "power". By default, one-parameter models are fit using numerical
methods (adaptive quadrature). Meanwhile the prior is specified using the prior.alpha =
list(a, b, c) argument, where element a specifies the distributional form, and elements b
and c are the parameters of the chosen distribution. The choice of distributions are (i) a = 1:
Gamma(b, ¢), where b = shape, ¢ = scale, (ii) a = 2: Uniform(b, ¢), where b = min, ¢ = max,
(iii) a = 3: Lognormal(b, c¢), where b = mean on the log scale, ¢ = standard deviation on
the log scale, (iv) a = 4: Bivariate Lognormal(b, ¢), where b =mean vector on the log scale,
¢ =Variance-covariance matrix on the log scale. Hence, a Gamma(1,1) prior is specified by
prior.alpha = list(1, 1, 1).

Standardized doses will be calculated using a plug-in mean estimate and for consistency esca-
lation decisions will also be based on the plug-in mean. This is the default in berm, although
they can be changed using the sdose.calculate and pointest arguments if required. Hence
escalations are based on a “patient gain” philosophy (Whitehead 1997). A constrained form of
the CRM, whereby no dose-skipping is allowed, is also the default, and hence the starting dose
level must be specified using the argument start. An unconstrained design can be conducted
by setting constrain = FALSE. The bcrm function allows a number of stopping rules to be
specified using the stop argument, which is a list with one or more of the following: (i) nmax:
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The maximum sample size of the trial, (ii) nmtd: The maximum number to be treated at the
final MTD estimate (Korn et al. 1994), i.e., if the next recommended dose has already been
administered to nmtd patients then the trial will stop, (iii) precision: A vector of the lower
and upper percentage points that the MTD 95% credible intervals for the risk of toxicity
should lie within (Heyd and Carlin 1999), (iv) nmin: The minimum sample size of the trial
to be used in conjunction with nmtd or precision.

We start by considering a fixed sample size of 42, but later consider other options based on
the precision of the toxicity estimate at the final recommended dose. To interactively conduct
such a trial we run the following code in R, by first specifying the prior guesses of the risk of
DLT at each dose:

R> p.tox0 <- ¢(0.05, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45)

R> dose.label <- c(5, 10, 15, 25, 40, 50, 60)

R> bcrm(stop = list(nmax = 42), p.tox0 = p.tox0, dose = dose.label,

+ ff = "power", prior.alpha = c(1, 1, 1), target.tox = 0.30, start = 1)

The recommended dose for the first cohort of patients is returned by the program, which
in this case is equal to our starting dose (dose level 1, 5mg). The user is allowed to choose
whether to accept this recommendation or override the recommendation with another dose.
The user then records the DLTs observed in the first cohort. Suppose that we accept the
recommendation that the first cohort be dosed at 5mg, and we observe no toxicities in any of
the first three patients. After inputting this information, a recommendation for the second
cohort is given. The output from the program thus far is as follows:

RECOMMENDED DOSE FOR PATIENTS 1 to 3 IS: 5

ENTER DOSE FOR PATIENTS 1 to 3
POSSIBLE CHOICES ARE 5 10 15 25 40 50 60
("RETURN' TO ACCEPT RECOMMENDATION, O TO EXIT AND RETURN CURRENT RESULTS)

ENTER TOXICITY DATA FOR PATIENT 1 (1=TOX, 0=NO TOX): O
ENTER TOXICITY DATA FOR PATIENT 2 (1=T0X, 0=NO TO0X): O
ENTER TOXICITY DATA FOR PATIENT 3 (1=TOX, 0=NO TOX): O

ENTERED VALUES:
DOSE ... 5
TOXICITIES .... 0 0O
PRESS "RETURN' IF OK, OR ANY OTHER KEY TO ENTER NEW VALUES

RECOMMENDED DOSE FOR PATIENTS 4 to 6 IS: 10

ENTER DOSE FOR PATIENTS 4 to 6
POSSIBLE CHOICES ARE 5 10 15 25 40 50 60
("RETURN' TO ACCEPT RECOMMENDATION, O TO EXIT AND RETURN CURRENT RESULTS)

The interactive nature of the program continues until all 42 patients have been recruited,
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Dose omg 10mg 15mg 25mg 40mg 50mg 60mg
No. DLTs 1 0 2 4 5 0 0
No. non-DLTs 2 3 13 ) 7 0 0

Table 2: Number of DLTs and non-DLTs observed during a trial with sample size 42.

where the program then terminates and returns an object of class bcrm. Printing such an
object gives output of posterior estimates (mean, median, standard deviation, and quantiles)
of the risk of DLT at each dose together with the recommended MTD.

Data accumulated from a trial can also be entered using the data argument, where data is
a data frame specifying patient numbers, dose levels and toxicities of previously recruited
patients. For example, suppose the data shown in Table 2 in summary form were collected
during the trial.

The data can be used directly as input to obtain the estimated MTD at the end of the trial
or as starting data for a larger trial. The code and the full sequential data is therefore as
follows:

R> data <- data.frame(patient = 1:42, dose = rep(c(1, 2, 3, 4, 5, 5, 5, 5,
+ 4, 4, 3, 3, 3, 3), each = 3), tox = c(1, rep(0, 13), 1, 1, rep(0, 4),
+ rep(1, 3), rep(0, 3), rep(1, 5), rep(0, 7), 1, rep(0, 3)))

R> trial.output <- bcrm(stop = list(nmax = 42), data = data,

+ p.tox0 = p.tox0, dose = dose.label, ff = "power",
+ prior.alpha = c(1, 1, 1), target.tox = 0.30)

Stopping: Reached maximum sample size
R> print(trial.output)
Estimation method: exact
Model: 1-parameter power
Prior: Gamma( Shape:1, Scale:1)
Standardised doses (skeleton):
5 10 15 25 40 50 60
0.05 0.10 0.20 0.30 0.35 0.40 0.45
Modified (constrained) CRM used, starting dose: 5
Plug-in estimate of probability of toxicity used to select next dose
Toxicities observed:
Doses

5 10 15 25 40 50 60
n 3 3156 912 0 O
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Posterior p(DLT) quantiles: 2.5%, 25%, 50%, 75%, 97.5%
Diamond shows next recommended dose

Probability of DLT
|
|

1 1 1 1
0 20 40 60
Dose

Outcome

WMo
noour

Number

l
5 10 15 25 40
Dose

Figure 1: Plot of estimated risk of DLT and outcomes observed at the end of the trial (after
42 patients have been recruited).

Toxicities 1 0 2 4 5 0 O

Posterior estimates of toxicity:

Doses
5 10 15 25 40 50 60
Mean 0.0793 0.140 0.2490 0.3510 0.4000 0.4490 0.497
SD 0.0391 0.053 0.0665 0.0707 0.0705 0.0693 0.067
Median 0.0727 0.133 0.2440 0.3490 0.3990 0.4480 0.497
Doses
Quantiles 5 10 15 25 40 50 60
2.5% 0.0227 0.0545 0.131 0.219 0.265 0.314 0.365
25% 0.0505 0.1010 0.201 0.301 0.351 0.401 0.451
50% 0.0727 0.1330 0.244 0.349 0.399 0.448 0.497
75% 0.1010 0.1720 0.292 0.398 0.448 0.496 0.543
97.5% 0.1730 0.2600 0.390 0.494 0.541 0.585 0.626

Plug-in estimates of toxicity:
5 10 15 25 40 50 60
[1,] 0.0699 0.129 0.239 0.343 0.394 0.443 0.492

Next recommended dose: 25

A plot of the posterior estimates can be obtained after each cohort has been recruited by

11
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Figure 2: Plot of allocated doses and DLTs observed throughout the trial.

specifying plot = TRUE in the initial call to berm, or by using the plot function to plot a berm
object. For example plot(trial.output) displays the results in Figure 1. In addition, to plot
the dose trajectory and DLT outcomes from the trial, use the command plot (trial.output,
trajectory = TRUE). This gives the plot shown in Figure 2.

3.2. Assessing operating characteristics through simulations

Simulations are a key tool used to assess design operating characteristics. Of particular
interest is the (average) percentage of times each dose is experimented on during the Phase
I trial and the percentage of times each dose is recommended as the MTD at the end of
the trial. Different simulation scenarios should be investigated assuming the a-priori guesses
(e.g., in Table 1) are both correct and incorrect. For the latter a number of scenarios could be
envisaged, such as assuming toxicity is 20% greater than expected, 20% less than expected,
or that the risk of DLT increases at a greater/lesser rate than expected. Table 3 shows five
simulation scenarios that will be investigated in this application, although it is common for a
more exhaustive list to be considered.

To conduct a simulation study, set the argument simulate = TRUE, specify the true risks
of DLT wusing truep, and choose the number of simulations using nsims. An object of class
bcrm.sim is returned, which can be printed or plotted to obtain operating characteristics.
The code used to carry out 1000 simulations from scenario 1 is

R> truep <- c(0.05, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45)

R> sim.scenl <- bcrm(stop = list(nmax = 42), p.tox0 = p.tox0,

+ dose = dose.label, ff = "power", prior.alpha = c(1, 1, 1),
+ target.tox = 0.30, start = 1, simulate = TRUE, nsims = 1000,
+ truep = truep)

R> print(sim.scenl)
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Dose 5mg 10mg 15mg 25mg 40mg 50mg 60mg
Prior guess of risk 0.05 0.10 020 030 035 040 0.45
Scenario 1 0.05  0.10 020 030 035 040 045
(Toxicity as expected)

Scenario 2 0.06  0.12 0.24  0.36 0.42 0.48 0.54
(20% greater than expected)

Scenario 3 0.04 008 016 024 028 0.32 0.36
(20% less than expected)

Scenario 4 0.05 011 024 039 049 0.60 0.72
(greater rate of DLT increase)

Scenario 5 0.0 009 016 0.21 0.23 024 0.25

(lesser rate of DLT increase)

Table 3: Scenarios to be investigated in simulation studies.

Operating characteristics based on 1000 simulations:

Sample size 42

Doses
5 10 15 25 40 50 60
Experimentation proportion 0.0734 0.0942 0.230 0.264 0.168 0.106 0.0635
Recommendation proportion 0.0000 0.0050 0.199 0.380 0.228 0.129 0.0590

Probability of DLT
[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
Experimentation proportion 0.398 0.539 0.0635 0 0
Recommendation proportion 0.204 0.737 0.0590 0 0

The simulation shows that the correct dose (25mg) will be recommended as the MTD ap-
proximately 38% of the time. At first this may appear to be quite low. However, it should
be noted that neighboring doses (15mg and 40mg) also have risk of DLT not far from the
TTL of 30%. In fact, the design selects a dose with true risk of DLT between 20% and 40%
approximately 74% of the time. Given the gradually increasing toxicity profile, this may be
an acceptable operating characteristic for the clinician. In terms of both experimentation and
recommendation, only around 6% of participants receive a dose and 6% of trials recommend
a dose whose risk of DLT is greater than 0.4.

Experimentation and recommendation percentages from all simulation scenarios are shown
in Table 4, by regions of true toxicity. For the scenarios investigated, the recommendation
proportions are generally high for drugs whose risk is in the range (0.2,0.4]. Indeed the
recommendation proportions are above 90% at these levels of risk for Scenarios 3-5. This
is partly due to more doses having true risk within this range for these scenarios. Of slight
possible concern for the clinician is Scenario 2, where all doses have 20% higher toxicity than
anticipated. Here, doses with risk of DLT > 0.40 are recommended as M'TDs approximately
14% of the time. Furthermore, around 19% of patients would be dosed at these levels of risk

13
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True risk DLT
Scenario [0,0.2] (0.2,0.4] (0.4,0.6] (0.6, 0.8]
Experimentation proportions
Scenario 1 0.398 0.539 0.064 0.000
Scenario 2 0.192 0.617 0.191 0.000
Scenario 3 0.301 0.699 0.000 0.000
Scenario 4 0.184 0.675 0.136 0.004
Scenario 5 0.294 0.706 0.000 0.000
Recommendation proportions
Scenario 1 0.204 0.737 0.059 0.000
Scenario 2 0.022 0.837 0.141 0.000
Scenario 3 0.051 0.949 0.000 0.000
Scenario 4 0.019 0.926 0.054 0.001
Scenario 5 0.033 0.967 0.000 0.000

Table 4: Operating characteristics obtained from simulations with Gamma(1,1) prior.

True risk DLT
Scenario [0,0.2] (0.2,0.4] (0.4,0.6] (0.6, 0.8]
Experimentation proportions
Scenario 1 0.280 0.719 0.000 0.000
Scenario 2 0.143 0.743 0.113 0.000
Scenario 3 0.236 0.764 0.000 0.000
Scenario 4 0.143 0.775 0.082 0.000
Scenario 5 0.234 0.766 0.000 0.000
Recommendation proportions
Scenario 1 0.082 0.916 0.002 0.000
Scenario 2 0.000 0.904 0.096 0.000
Scenario 3 0.012 0.988 0.000 0.000
Scenario 4 0.000 0.954 0.046 0.000
Scenario 5 0.005 0.995 0.000 0.000

Table 5: Operating characteristics obtained from simulations with Gamma(20,0.05) prior.

during the trial.

We can improve the behavior of the design if we are willing to be more informative in our
prior beliefs. For the one-parameter power model being used here, this relates to a smaller
prior variance on the parameter «. Recall, that we gave a Gamma(1,1) prior for «, which has
a mean and variance of one. Hence the standardized doses are equal to the prior estimates of
DLT (see Section 2.1.1). Suppose the clinician is willing to make the following statement: “I
am 95% confident that the true risk of DLT at dose level 4 (our best guess of the MTD) is
not higher than 0.45.” This translates to the following probability statement,

) log(0.45)
P(r(dt; 45) = P(0¥ < 0.45) = P otaany ) = 095
(m(dy; a) < 0.45) = P(0F < 0.45) <0‘< log(0.30)> 0.9

Evaluating this quantile and keeping the mean of the Gamma distribution as one, a suitable
prior is therefore Gamma(20,0.05), i.e., a Gamma distribution with shape 20 and scale 0.05.
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Figure 3: Summary statistics of the simulated trajectories under Scenario 1.

Table 5 shows the operating characteristics of the chosen scenarios using this more informative
prior. Under Scenario 2, the experimentation proportion for doses with risk >0.4 has now
reduced to 0.113, and the recommendation proportion has reduced to 0.096. In 90% or more
of the simulated trials across all scenarios investigated the recommended MTD has true risk
of DLT between 20% and 40%. This demonstrates how a more informative prior can improve
the operating characteristics of the design amongst a range of plausible scenarios. Naturally,
scenarios that deviate markedly from the prior estimates could perform worse if the prior is
too precise.

With any simulation study conducted, the individual trial dose levels and outcomes can be ex-
tracted by using the trajectories = TRUE argument in the print command. Alternatively,
a summary of the trajectories can be plotted. For example, plot(sim.scenl, trajectories
= TRUE) produces Figure 3 for Scenario 1.

Comparison with the standard 3+38 design

To compare operating characteristics with the standard 3+3 design, the option threep3 =
TRUE can be added to the original bcrm command, or alternatively it can be added to the
plot command post-estimation. For example, a comparison of the operating characteristics
for Scenario 1 can be made by specifying plot(sim.scenl, threep3 = TRUE), which then
produces Figure 4.

Variable sample sizes

Thus far, it has been assumed that the sample size has been fixed at 42 patients, perhaps
based on a feasible recruitment rate. However, suppose the investigator wishes to implement
a stopping rule based on the precision of the MTD estimate (Heyd and Carlin 1999), and
is willing to stop the trial early if the 95% posterior credible interval for the risk of toxicity
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Figure 4: Comparison of operating characteristics for the CRM and 3+3 designs under
Scenario 1.

at the final dose lies within 15% to 45%. However, the investigator also wishes to keep the
maximum sample size at 42. Such a stopping rule can be invoked using the argument stop =
list(nmax = 42, precision = c(0.15, 0.45)). The distribution of required sample sizes
based on this stopping rule can then be investigated by conducting a simulation study. The
code below does this for Scenario 1 (Table 3) and plots the operating characteristics (Figure 5),
where the sample size distribution is shown in the top left panel.

R> truep <- ¢(0.05, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45)

R> sim.stop <- bcrm(stop = list(nmax = 42, precision = c(0.15, 0.45)),
+ p.tox0 = p.tox0, dose = dose.label, ff = "power",

+ prior.alpha = c(1, 1, 1), target.tox = 0.30, start = 1,

+ simulate = TRUE, nsims = 1000, truep = truep)

R> plot(sim.stop)

The expected sample size in this scenario is 40.7, only slightly lower than the maximum spec-
ified sample size. This suggests that the majority of simulations did not reach the required
precision for the MTD estimate before reaching the maximum sample size. This supports
findings from other studies that the sample sizes commonly seen in Phase I trials are insuffi-
cient to achieve good precision around the MTD estimate (Iasonos, Wilton, Riedel, Seshan,
and Spriggs 2008).

3.3. ‘What if’ scenario analyses

A further useful check of the performance of the design is to see how it performs under some
pre-defined scenarios. In particular, suppose the investigator wishes to know the following
information:
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Figure 5: Plot of operating characteristics from Scenario 1 simulation study, with variable
sample size based on precision of the final dose.

1. Given no toxicities are observed, how many cohorts need to be recruited before the top
dose level is reached?

2. If toxicities are seen early on, does the design still escalate?

Scenario (a) can be investigated via a single simulation, setting the true risks of DLT to be
zero. This is done below for the design with Gamma(1,1) prior:

R> truep <- c¢(0, 0, 0, 0, 0, 0, 0)

R> scenarioa <- bcrm(stop = list(mmax = 42), p.tox0 = p.tox0,

+ dose = dose.label, ff = "power", prior.alpha = c(1, 1, 1),
+ target.tox = 0.30, start = 1, simulate = TRUE, nsims = 1,
+ truep = truep)

R> scenarioa

Operating characteristics based on 1 simulations:

Doses
5 10 15 25 40 50 60
Experimentation proportion 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.571
Recommendation proportion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.000

Probability of DLT
[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
Experimentation proportion 1 0 0 0 0
Recommendation proportion 1 0 0 0 0

17
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We see that 3 patients (7.14%) are dosed at each level below the uppermost (60mg), indicating
that the design escalates continuously up the dose levels if no toxicities are observed (since
the design uses cohorts of size 3). If a Gamma(20,0.05) prior is used, however, then 9 patients
are dosed at the second highest level (50mg) before escalation to the highest dose, with all
doses below 50mg receiving 3 patients each.

The code presented below addresses scenario (b) for the case where one out of three toxicities
are seen in the first cohort. This is investigated for both the Gamma(1,1) prior and the
Gamma(20,0.05) prior.

c(0, 0, 1))
data,

R> data <- data.frame(patient = 1:3, dose = rep(1, 3), tox
R> scenariob.gamma.l1.1 <- bcrm(stop = list(nmax = 3), data
+ p.tox0 = p.tox0, dose = dose.label, ff = "power",

+ prior.alpha = c(1, 1, 1), target.tox = 0.30, plot = TRUE)

R> scenariob.gamma.20.0.05 <- bcrm(stop = list(nmax = 3),

+ data = data, p.tox0 = p.tox0, dose = dose.label,

+ ff = "power", prior.alpha = c(1, 20, 0.05), target.tox = 0.30,
+ plot = TRUE)

Both designs recommend escalation if one out of three toxicities are observed in the first
cohort. However, if two out of three toxicities are observed, the design with Gamma(1,1) prior
recommends remaining at the first dose level, whilst the design with Gamma(20,0.05) prior
continues to recommend escalation to the second level. Indeed, although the performance
of the Gamma(20,0.05) prior design was superior in the simulation scenarios investigated
(Section 3.2), for this more extreme scenario where toxicities are observed early on, the design
may perform not as required due to the prior now being too informative. This behavior would
also have been identified if an extremely toxic simulation study was undertaken, for example
assuming > 30% risk of toxicity at the lowest dose.

Indeed, the poor performance of the Gamma(20,0.05) prior when early toxicities are observed
is even more apparent when considering the scenario where one out of three toxicities are
observed in the first cohort and three out of three are seen in the second cohort (at the second
dose level). Under this scenario, the design with Gamma(1,1) prior would recommend de-
escalating back to dose level 1, whilst a Gamma(20,0.05) prior still recommends escalating
to dose level 3. The performance under such ‘worst case’ scenarios, even if not likely, are
important to report to the investigator to allow an informed judgement.

3.4. Two-parameter models

An alternative to the one-parameter models is the two-parameter logistic model. To use this
model, a bivariate lognormal prior is required for the parameters (31, 52). Recall that log(/1)
is the log-odds of the risk of toxicity at the reference dose, dp (Equation 5). Hence, by setting

di = log(d;/25)

we can set the prior mean for log(/31) as the investigator’s prior log-odds estimate of the risk of
toxicity at dose level 4 (25mg), log(0.30/0.70) = —0.85. We wish to allow enough uncertainty
in the prior risk of toxicity at this dose to allow escalation to higher doses if it is shown to
be safe. To allow for this scenario the investigator is willing to accept the risk of toxicity at
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level 4 may be lower than 0.30, but they are almost certain (95%) that the risk is not lower
than 0.05. Hence a prior variance for log(f1) can be derived as

2
Var(log(81)) = (log(O.05/(()1;%5;)(0—.01;)5;(0.3/0.7)> 1082,

where ®~1() is the inverse of the standard normal cumulative distribution function.

We elicit the prior mean and variance for the slope parameter (o using the investigator’s
opinion about the risk of toxicity at the lowest dose. Specifically, the investigator’s best guess
of the risk of toxicity is 5%. However, to allow flexibility in the design to account for possible
early toxicities, the investigator is willing to accept that there is a 10% chance that the risk
is greater than 40%. These two statements translate into the following prior estimate and
variance for log(/32):

log(BQ) ~ log (10g(0.05/0.95) — 10g(0.30/0.70)> 0.965

log(5/25)

A A 2
log(0.4/0.6) — log(B1) — log(52) log(5/25) 9
Var(l = = 1.98".
Furthermore, we assume zero a-priori correlation between the parameters.
A two-parameter model can be fit using the argument ££f = "logit2". As we wish to calculate

the standardized doses from the doses themselves rather than from prior estimates of risk,
we replace the p.tox0 argument with the sdose argument, which allows us to manually
specify the standardized doses. The bivariate lognormal prior is specified using prior.alpha
= 1ist(4, mu, Sigma), where mu is the prior mean vector and Sigma is the prior variance-
covariance matrix. Finally, it is preferable, though not necessary, to calculate the posterior
distributions in a two-parameter model using MCMC methods as it is computationally faster
than quadrature methods. Two options are available for this; either using WinBUGS via
the R2WinBUGS package or OpenBUGS via the BRugs package. The latter is the most
efficient, computationally. In either case, the user must ensure that the appropriate program
has been downloaded and installed on their system before running berm. The program used
to calculate the posterior distributions can then be specified using the method argument, e.g.,
method = "BRugs".

The corresponding prior estimates of toxicity risk for the two-parameter model can be plotted
by specifying a trial of size zero as follows:

R> mu <- c¢(-0.847, 0.265)

R> Sigma <- rbind(c(1.2872, 0), c(0, 1.9872))

R> bcrm(stop = list(nmax = 0), sdose = log(dose.label/25),

+ dose = dose.label, ff = "logit2", prior.alpha = list(4, mu, Sigma),
+ target.tox = 0.30, start = 1, method = "BRugs", plot = TRUE)

Figure 6 shows the resulting plot of the prior dose-toxicity curve, and contrasts it to the
one-parameter model with Gamma(1,1) and Gamma(20,0.05) priors. The priors for the two-
parameter model are seen to impose less precise risks of toxicity than the Gamma(20,0.05)
one-parameter model but more precise risks than the one-parameter Gamma(1,1) model.
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Figure 6: Plot of prior dose-toxicity quantiles (2.5%, 25%, 50%, 75%, 97.5%) for a) the two-
parameter model, b) the one-parameter model with Gamma(1,1) prior, ¢) the one-parameter
model with Gamma(20,0.05) prior.

Dose
Model omg 10mg 15mg 2bmg 40mg 50mg 60mg
One-parameter Gamma(1,1) 3 3 3 3 3 3 24
One-parameter Gamma(20,0.05) 3 3 3 3 3 3 24
Two-parameter ‘posterior mean’ 3 3 3 6 3 3 21
Two-parameter EWOC ¢ = 0.25 3 3 3 15 3 3 12
Two-parameter Toxicity intervals 3 3 3 9 3 3 18

Table 6: Number of individuals treated at each dose level if no toxicities are observed.

Escalation methods

The escalation decisions are to be based on the posterior mean rather than a plug-in estimate;
this can be set by specifying pointest = "mean". A two-parameter design based on posterior
mean escalation was found to reach the highest dose (60mg) after seven cohorts had been
recruited (21 patients) if no toxicities were observed (Table 6).

Alternatively, an EWOC design can be fit by specifying the quantile of the MTD distribution
to be used for escalation in the pointest argument, e.g., pointest = 0.25. Since this design
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Figure 7: Plot of posterior dose-toxicity quantiles (2.5%, 25%, 50%, 75%, 97.5%) for the two-
parameter model after four cohorts have been recruited to dose levels 1-4 with no toxicities
observed.

is more conservative than a design that targets the posterior mean, it takes longer to reach
the highest dose when no toxicities are observed. In this situation, the EWOC design would
reach the highest dose after ten cohorts (30 patients) had been recruited (Table 6).

The final escalation design that can be fit in berm is an escalation based on toxicity intervals
design. To fit such a model, the risk of toxicity cutpoints must be specified as a vector
using the tox.cutpoints argument, and the associated losses using the loss argument.
For example the arguments tox.cutpoints = c(0.2, 0.4, 0.6) and loss = c(1, 0, 1,
1.2) specifies a design that places a loss of 1 to a toxicity risk < 0.2, a loss of 0 if the risk
if between 0.2 and 0.4, a loss of 1 for risk between 0.4 and 0.6 and a loss of 1.2 for risk
> 0.6. Using these losses, the design reaches the highest dose after eight cohorts (24 patients)
(Table 6). Indeed, with the choice of doses and priors used in this example, we found that
the design could easily get stuck at dose level 4 for a long period of time, especially if a high
loss was specified for risks of toxicity > 0.6. The reason for this is that while dose levels 5-7
remain untested, the posterior distribution gives a non-negligible probability to high risks of
toxicity at these doses, primarily due to the logistic dose-toxicity shape being imposed. This
can be seen in Figure 7 where the first 4 cohorts are specified to have no toxicities as coded
below. The relatively sparse priors used in this example are driving the dose allocation and
reflect the fact that there is often a higher cost for escalating to dose level 5 than staying at
level 4. If the priors truly reflect the investigators uncertainty in the toxicity then this lack
of escalation represents ‘reasonable behavior’ for the investigator. However, the presentation
of such operating characteristics may cause the investigator to reassess their chosen priors.
Indeed a loss function such as loss = c(1, 0, 1, 2) that penalizes high toxicity risk more
extremely would not reach the highest dose when no toxicities are observed.

R> data <- data.frame(patient = 1:12, dose = rep(1:4, each = 3), tox = 0)
R> loss <- c(1, 0, 1, 1.2)

21
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R> tox.intervals.bcrm <- bcrm(stop = list(nmax = 12), data = data,
+ sdose = log(dose.label/25), dose = dose.label, ff = "logit2",
+ prior.alpha = list(4, mu, Sigma), target.tox = 0.30,

+ tox.cutpoints = tox.cutpoints, loss = loss, method = "BRugs")
R> plot(tox.intervals.bcrm)

Stmulation results for two-parameter models

A simulation study is the best way to comprehensively assess the performance of the two-
parameter model and the three possible escalation procedures described. The code shown
below, utilizes BRugs to conduct a simulation study of the two-parameter model using the
posterior mean for escalation decisions, under scenario 1 (Table 3):

R> truep <- ¢(0.05, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45)

R> sim.scenl.twoparam <- bcrm(stop = list(nmax = 42),

+ sdose = log(dose.label/25), dose = dose.label, ff = "logit2",
+ prior.alpha = list(4, mu, Sigma), target.tox = 0.30,

+ pointest = "mean", start = 1, simulate = TRUE, nsims = 1000,
+ truep = truep, method = "BRugs")

R> sim.scenl.twoparam

Operating characteristics based on 1000 simulations:

Sample size 42

Doses
5 10 15 25 40 50 60
Experimentation proportion 0.0753 0.0933 0.226 0.431 0.0967 0.0389 0.0391
Recommendation proportion 0.0000 0.0060 0.196 0.558 0.1410 0.0480 0.0510

Probability of DLT
[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
Experimentation proportion  0.395 0.566 0.0391 0 0
Recommendation proportion 0.202 0.747 0.0510 0 0

More generally, the performance of the three designs under scenarios 1 and 2 are shown in
Table 7. The EWOC design doses fewer patients at levels with high risk of DLT but in contrast
it doses more patients at suboptimal dose levels. This design also accrues fewer patients to
dose levels close to the TTL (20-40% risk of DLT). The toxicity intervals escalation design
performs the best in terms of recommending a dose close to the TTL, for both scenario 1
and 2. When comparing these designs to the one-parameter model with Gamma(1,1) prior
(Table 4) we see that the designs are comparable under scenario 1, but perform slightly better
under scenario 2. These comparisons can be very dependent on the choice of doses, model,
and priors, and hence cannot usually be generalized to other situations. Of course in reality,
when designing a Phase I trial, a more comprehensive simulation study should be conducted
to assess the possible models and designs.
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True risk DLT
Scenario  Model [0,0.2] (0.2,0.4] (0.4, 0.6]
Experimentation proportions
Scenario 1 Two-parameter 0.395 0.566 0.039
EWOC ¢ =0.25 0.532 0.462 0.007
Toxicity intervals 0.415 0.573 0.012
Scenario 2 Two-parameter 0.193 0.714 0.093
EWOC ¢ =10.25 0.288 0.687 0.025
Toxicity intervals 0.190 0.766 0.044
Recommendation proportions
Scenario 1 Two-parameter 0.202 0.747 0.051
EWOC ¢ =0.25 0.324 0.662 0.014
Toxicity intervals 0.200 0.784 0.016
Scenario 2 Two-parameter 0.020 0.894 0.086
EWOC ¢ =0.25 0.055 0.916 0.029
Toxicity intervals  0.020 0.925 0.055

Table 7: Operating characteristics obtained from simulations with two-parameter models for
Scenarios 1 (toxicity as expected) and 2 (toxicity 20% greater than expected).

4. Summary

The berm package has been designed to allow a comprehensive assessment and implementation
of a variety of Phase I Bayesian adaptive designs of a ‘continual reassessment method’ nature.
These include common one and two-parameter models with escalation decisions being based on
either a plug-in estimate, the posterior mean, an ‘escalation with overdose control’ quantile, or
the use of a loss function to weight intervals of toxicity risk. The syntax has been designed to
be relatively simple to use, where all options are specified as arguments within an overarching
function, bcrm. Trials can be conducted interactively or operating characteristics can be
obtained using built-in simulation code.

This package focuses on a Bayesian implementation of CRM models. However, a likelihood
based version of the CRM can be applied (O’Quigley and Shen 1996). Here, a two-stage
design is often employed, where a rule-based ‘start-up’ is used until heterogeneity is observed
in the response. A two-stage design will not be particularly advantageous in terms of efficacy
but can be particulary attractive to clinicians used to dealing with the standard 343 design
(Tasonos, Zohar, and O’Quigley 2011). The ‘start-up’ rules can also be based on lower grade
toxicity information, facilitating an accelerated escalation when few low grade toxicities are
observed (Iasonos et al. 2011). In practice, a ‘start-up’ rule can also easily be applied with
the Bayesian designs described in the berm package; the accumulated information on DLTs
in the ‘start-up’ stage are just incorporated using the data argument in the normal way. An
automatic way to assess the operating characteristics of such two-stage designs is not yet
implemented but will be a consideration for future releases.

The emphasis of the package is to allow an easy implementation and clear presentation of
CRM designs. To this end, relevant summary and graphical output of the ongoing trial
or simulation study can be easily obtained using the print and plot wrapper functions.
This enables clinical trial statisticians to easily present results to clinicians and to facilitate
discussion about the appropriateness of the design.
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