
JSS Journal of Statistical Software
January 2014, Volume 56, Book Review 2. http://www.jstatsoft.org/

Reviewer: Amelia McNamara
University of California, Los Angeles

Dynamic Documents with R and knitr

Yihui Xie
Chapman & Hall/CRC, Boca Raton, FL, 2014.
ISBN 978-1-4822-0353-0. xxv + 190 pp. USD 59.85.
http://www.crcpress.com/product/isbn/9781482203530

The book Dynamic Documents with R and knitr, provides a thorough introduction to both
the use and creation of the R package knitr. knitr is a dynamic document engine, meaning that
it produces documents that are responsive to changes in the source code. The most typical
use-case for knitr would be embedding R code into an HTML or LATEX document. A user
would write the dynamic source code (e.g., in LATEX) and use knitr syntax to embed R code
within it. When the document is processed with knitr, the associated R output (code, data,
statistics, plots) is automatically incorporated into the report and updated simply by changing
the R code. However, knitr is extremely flexible, so that use case should not be considered
the only one. Package (and book) author Yihui Xie enumerates many other possibilities, and
the extensibility of the package means that you can adjust it for your own needs.

Xie specifies some terminology that I will try to maintain throughout this review; the“dynamic
document” is the source code document (e.g., LATEX and R/knitr code) and the “report” is
what is produced (for example, a pdf).

knitr was inspired by Sweave, a similar tool in base R. Sweave was designed for the one spe-
cific use case specified above: to embed R code into LATEX. Xie goes into some detail about
the differences between Sweave and knitr in Chapter 15, but one of the primary differences
between the two is knitr’s flexibility. You can use knitr to embed almost any programming
language into any dynamic document. For example, you could include Python code in a Mark-
down document. In addition, knitr comes with more attractive default syntax highlighting,
and makes it much easier to modify styles by using “themes,” either user-defined or from the
package itself (discussed in Chapter 6).

If you are looking to learn how to use knitr, this book is for you. There are a limited number
of resources for learning knitr, because the package is relatively new and the documentation
produced by Xie is so good. Between the package website, the associated Google group, and
this book, almost any question you might have can be answered. Unlike other cases, where
there might be a market for books on the package written by people who are not the package
author, I think this book will continue to be the best resource about knitr, with the possible
exception of the use case I mention below.

http://www.jstatsoft.org/
http://www.crcpress.com/product/isbn/9781482203530

2 Dynamic Documents with R and knitr

Xie says in the preface that the book is broken into two pieces, one aimed at beginners and
one for advanced users. Beginners should focus on chapters 1–8, and advanced users might
want to skip to chapters 9–11. Before reading the book, I considered myself an “advanced”
user of knitr, and thought of my undergraduate students (who had not seen Markdown or
LATEX, let alone knitr) as beginners. As I read the book, though, I realized that I was an
intermediate user who had things to learn from both sections of the book, and the book would
probably be overwhelming for someone who had never generated a report from code.

This is more a difference of opinion about what “beginner” means, but I had hoped for some
materials that would be appropriate to reproduce for my students as an introduction to the
idea of dynamic documents and a quick start guide for new users. Instead, Xie assumes a
level of knowledge about typesetting systems and their syntax. For example, on page 2 of the
book, Xie makes reference to \includegraphics{}, a LATEX command that I would assume
“beginners” would not know about, and a few pages later uses a Monte Carlo algorithm as a
“trivial” example. Again, the term beginner in this case should be defined as someone who
already uses a typesetting syntax like Markdown or LATEX, not someone making the transition
from pasting R output into Word documents (as my students are). The minimal examples
given in Chapter 3 are a nice resource for true beginners, but I think they need a little more
context; a place to download the code, instructions on where to open it and what commands
to run in order to get the generated report. However, this is my only criticism of the book.
Again, I think Xie’s documentation is so clear and thorough that there is little need for any
competitors to this book or his website.

The book introduced me to many new ways to use knitr, outside of the use case I have
already alluded to (embedding R code into LATEX documents). For example, I was interested
to learn that stitch("yourscript.R") would allow you to create a report straight from
an R source document. Similarly, spin() turns R scripts in roxygen format into knitr/R
Markdown reports. If you are using knitr within RStudio (highly recommended), you can use
the notebook button at the upper right of the document pane to quickly create an HTML
page from your code (either using stitch or spin, depending on the format of the comments,
it seems). You could also use knit_rd() to turn standard R documentation into an HTML
website that shows the results from the examples. If you want to use an external code file
(rather than including everything inline in one knitr document) you can use a commenting
syntax similar to roxygen to label chunks within your source document, and then reference
them in the dynamic document you are coding. All these use cases and more were described
in the book, along with simple illustrative examples.

For me, one of the most useful parts of the book is a table, which provides a reminder of
start/end and inline syntax for a variety of different typesetting systems. This is useful
because it gives a list of possible file formats for the dynamic document, as well as a reminder
about how to include R code. I have reproduced it in Table 1.

In Chapter 5, Xie goes into detail about all of these file formats and why you would want to
use them. Then in Chapter 13, he enumerates a few more complicated formats that can be
used with knitr, including HTML5 slides, Pandoc (a universal document converter), Jeckyll,
and WordPress. He also explains in Chapter 11 about the other programming languages that
are supported with language engines in knitr. Language engines give knitr the capability to
run code in another language and retrieve the results. In the case of languages like C++,
code can be run and results reported, and the C++ code can be displayed in the report, as
well. With other supported languages like TikZ and Highlight (a tool for syntax highlighting

Journal of Statistical Software – Book Reviews 3

Format Start End Inline

Rnw <<*>>= @ \Sexpr{x}

Rmd ```{r *} ``` `r x`

Rhtml <!--begin.rcode * end.rcode--> <!--rinline x-->

Rrst .. {r *} :r:`x`

Rtex \% begin.rcode * \% end.rcode \rinline{x}

brew <\% x \%>

Table 1: Start, end, and inline syntax for file formats supported by knitr.

of code other than R), the goal is typically just to retrieve the results, rather than also display
the code.

Also given great treatment are the many ways you can modify and customize knitr for your
own purposes. The package comes with a variety of pre-built options that parameterize
the output from a given chunk of code, including options like fig.show = 'hold' to place
all plots after the chunk of code, instead of threaded in with it, and 'animate' to create
animations (this requires additional packages). However, if you want to create your own
chunk options, you can use any valid R code. For example, Xie shows how to create a chunk
option that inserts some particular LATEX code before and after a chunk. You can also create
option templates, which are new named parameters that include a number of standard chunk
options. For example, a new option template named fig.large that sets both the width and
height of a figure, so you do not need to use fig.width and fig.height every time.

Another common modification that comes up is the width of knitr output. My students are
often frustrated because the highlighted area of code overhangs the margins of the LATEX doc-
ument, sometimes even spilling over the edge of the page itself. Xie explains the possible ways
to remedy this problem, namely reducing the width of knitr output using options(), break-
ing lines of R code manually (using paste(), for example) and making the LATEX document
wider (for example, using the geometry package).

Finally, Xie addresses what I think is the most complicated and fraught piece of knitr: caching.
Because documents can be long, and re-running the code every time you compile your docu-
ment is often very time consuming, knitr can cache results, plots, etc., so that the output is
stored for later use, and only re-run if the code is changed. Although chunks can be given a
default caching behavior (and this behavior can be overridden or customized for every chunk)
there are still problems that can emerge. Xie explains some of these issues and their treatment.

The most general issue is that while knitr uses an MD5 hash to ensure that any change in
the code results in an update of the cache, there are changes that are not captured by the
hash. For example, if all the code remains the same, but you change the data (for example,
updating with a cleaner file or another year’s data) that will not be caught by the caching by
default. However, you can add additional chunk options to catch modified data. Similarly,
while knitr makes an effort to cache side effects, they may not all be captured, so it is best to
deal with them explicitly. And if chunks depend on one another you should either manually
specify dependencies or use the chunk option autodep, so that changes in one chunk will
result in cache updates to the other chunks that depend on it. Xie also notes that if you are
using a language other than R, caching typically does not work (because knitr does not know
which objects to keep), so dependent code chunks typically need to be combined.

4 Dynamic Documents with R and knitr

Dynamic Documents with R and knitr provides a thorough explanation of many different
use cases for knitr, as well as addressing issues that may arise and how to resolve them.
The book is written in Yihui Xie’s clear and conversational writing style, which makes it
easy to understand what he is talking about, and I do not see another book competing with
its content. My only quibble with the book was its lack of “getting started” materials for
beginners, but it seems unlikely a true beginner would pay USD 60 for a book if they did not
have at least a minimal idea of what it was about. All in all, this is a great read and handy
desk reference for the regular knitr user.

Reviewer:

Amelia McNamara
Department of Statistics
University of California, Los Angeles
Los Angeles, CA 90095, United States of America
E-mail: amelia.mcnamara@stat.ucla.edu
URL: http://www.stat.ucla.edu/~amelia.mcnamara/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 56, Book Review 2 Published: 2014-01-09
January 2014

mailto:amelia.mcnamara@stat.ucla.edu
http://www.stat.ucla.edu/~amelia.mcnamara/
http://www.jstatsoft.org/
http://www.amstat.org/

