
JSS Journal of Statistical Software
April 2014, Volume 57, Issue 8. http://www.jstatsoft.org/

R Package multiPIM: A Causal Inference Approach

to Variable Importance Analysis

Stephan J. Ritter
UC Berkeley

Nicholas P. Jewell
UC Berkeley

Alan E. Hubbard
UC Berkeley

Abstract

We describe the R package multiPIM, including statistical background, functionality
and user options. The package is for variable importance analysis, and is meant primarily
for analyzing data from exploratory epidemiological studies, though it could certainly be
applied in other areas as well. The approach taken to variable importance comes from
the causal inference field, and is different from approaches taken in other R packages. By
default, multiPIM uses a double robust targeted maximum likelihood estimator (TMLE)
of a parameter akin to the attributable risk. Several regression methods/machine learning
algorithms are available for estimating the nuisance parameters of the models, including
super learner, a meta-learner which combines several different algorithms into one. We
describe a simulation in which the double robust TMLE is compared to the graphical
computation estimator. We also provide example analyses using two data sets which are
included with the package.

Keywords: variable importance, targeted maximum likelihood, super learner, double robust
estimation.

1. Introduction

1.1. Motivation

In most observational epidemiological studies, the investigators are interested in determining
the independent association between one or more exposure variables and an outcome of inter-
est, which requires adjustment for potentially confounding variables. Typically, and especially
when the study is one of the first to be done in a certain field, there is little or no a priori
knowledge of which variables are “important.” Thus, a wide net is cast, many variables are
measured, and a multivariate regression model is built in an effort to adjust for confounding.

http://www.jstatsoft.org/
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The supposed effects of each exposure variable are read off from the estimated coefficients of
this model, and statistical inference (confidence intervals or p values) is based on the standard
error associated with each coefficient.

However, the interpretation of the model coefficients as the causal effects, and the inference
obtained, are only valid if the model used in the analysis (1) closely approximates the true
model and (2) has been specified a priori, without any feedback from the data. Unfortunately,
these two conditions are somewhat mutually exclusive. Since there is rarely any real, a priori,
knowledge of the true form of the relationships between the variables, the only way that one
can hope to specify the model accurately is through a feedback cycle of multiple candidate
models which are tested against the data and modified accordingly. Usually only a very small
space of possible models can be searched by this ad hoc method. Thus, there is not much
chance that the final model selected will closely approximate the true model. An incorrectly
specified model will result in biased estimates of the adjusted associations. Failure to account
for using feedback from the data in the analysis will typically result in artificially low standard
errors. The likely result is a misleading, narrow confidence interval (or low p value) around a
biased estimate.

Even more problematic is the fact that the parameter used may depend on the model selected,
and thus on the data. For example, for one realization of the data, the informal model
selection may result in no interaction terms with the variable of interest, and thus only one
measure of association would be reported. However, for another realization of the data, the
procedure may choose a multiplicative interaction term in the final model, and in this case
the researcher would report two measures of the adjusted association, for the two different
levels of the presumed effect modifier. In this scenario, the concept of a sampling distribution
of an estimator, which forms the basis for inference, breaks down.

van der Laan (2006) has proposed a solution to the problems outlined above. He takes a causal
inference approach, and suggests that the first step is to decide on a real-valued parameter
of interest (the variable importance measure). Then an efficient and robust estimator of this
parameter can be derived using estimating equation methodology (van der Laan and Robins
2003) or targeted maximum likelihood (van der Laan and Rubin 2006; van der Laan and Rose
2011). This estimator is then applied to each variable in turn, instead of estimating a single,
global regression model.

The whole data analysis can be specified a priori, and one can still optimize the model selection
by making aggressive use of modern machine learning algorithms to estimate the nuisance
parameters of the model. These algorithms will data-adaptively search a large model space,
and thereby, hopefully, come up with a reasonable approximation to the true data-generating
distribution. By turning this entire multi-step procedure into an a priori specified black box,
one can harness the power of aggressive computing to obtain consistent estimates with honest
inference.

A variable importance measure is generally considered a parameter that attempts to quantify,
for each predictor (or exposure) variable, the independent association with (or the independent
contribution to prediction of) the outcome variable. The specific application of such variable
importance measures has taken different forms, depending on the context and statistical
model in which it has been applied. The idea originated in the multiple regression setting
as a method for quantification of variable importance in the presence of correlation among
predictors (see, for example, Green, Carroll, and DeSarbo 1978). However, the idea has
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expanded outside of the parametric regression setting to machine learning algorithms, for
example, with functionality provided by R packages such as randomForest (Liaw and Wiener
2002) and caret (Kuhn 2008; Kuhn, Wing, Weston, Williams, Keefer, and Engelhardt 2011).
The variable importance measures returned by randomForest, for instance, are based on
assessing the increase in estimated risk due to permuting the out of bag data for the variable
in question while it is left unchanged for the others (Liaw and Wiener 2002).

Our approach is not based on estimation of risk, but related more closely to determining the
independent association of each variable in the context of all others. We use the approach of
van der Laan (2006), who proposed using adjusted (marginal) parameters, which are analogous
to coefficients in a parametric regression, but do not rely on parametric specification of the
model. Thus, this idea essentially takes the initial inspiration of using coefficient estimates
in a multiple regression, but instead defines measures of independent associations that can
be estimated data-adaptively by any machine learning algorithm. This has several additional
advantages that are not shared by the other approaches mentioned. For example, the choice
of the parameter of interest can be tailored to the specific problem, and since the method
does not rely on a specific learning algorithm, one can combine an arbitrary set of algorithms
in an ensemble (super) learner in order to estimate the prediction model (see Section 2.4).

1.2. Overview

In this report, we introduce the package multiPIM, written for the R statistical computing
environment (R Core Team 2013), and available for download from the Comprehensive R
Archive Network (CRAN, http://CRAN.R-project.org/package=multiPIM, currently ver-
sion 1.4-1). multiPIM performs variable importance analysis by fitting multiple Population
Intervention Models (PIMs, Hubbard and van der Laan 2008) to a data set with possibly many
exposures (or treatments) of interest and possibly many outcomes of interest. In Section 2,
we summarize the statistical properties of PIMs, describing in particular the procedure for
their estimation using data-adaptive machine learning algorithms. In Section 3, we go into
more detail about multiPIM and its functions. Section 4 describes a simulation which demon-
strates the benefit of using a double robust estimator. In Section 5 and Section 6, we report
on reanalyses of data from the Western Collaborative Group Study (WCGS, Rosenman et al.
1966, 1975) and from a study of water contact and schistosomiasis infection (Spear et al.
2004; Sudat, Carlton, Seto, Spear, and Hubbard 2010). Section 6 (schistosomiasis example)
includes the code for running the analysis. We close with a discussion in Section 7.

2. Statistical methodology

The approach for estimating PIMs was presented by Hubbard and van der Laan (2008), and
is also described in Young (2007) and Young, Hubbard, Eskenazi, and Jewell (2009). We
summarize the main points here.

2.1. Data structure and parameter of interest

Let us assume that we have an observed data structure

O = (Y,A,W ) ∼ P0,

http://CRAN.R-project.org/package=multiPIM
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where Y is an outcome (which may be either binary or continuous), A is a binary exposure or
treatment variable, W may be a vector of possible confounders of the effect of A on Y , and
P0 is the data-generating distribution. The parameter of interest is

ψ(P0) = ψ = EW [E(Y |A = 0,W )− E(Y |W )]

= EW [E(Y |A = 0,W )]− E(Y ).

This parameter is a type of attributable risk; it compares the overall mean of the outcome to
the mean for a target group (defined by A = 0), averaged over strata of W . The hypothetical
full data is given by

X = (Y0, Y,W ) ∼ PX ,

where Y0 is the counterfactual outcome for A = 0, i.e., the outcome as it would be under
universal application of treatment A = 0. The causal analogue to ψ(P0) is

ψ(PX) = EW [E(Y0|W )− E(Y |W )]

= E[Y0 − Y ].

There are certain assumptions under which ψ(P0) = ψ(PX). The assumptions are:

1. Time ordering assumption: W preceded A and A preceded Y in time. More gener-
ally, the data-generating distribution conforms to a specific nonparametric structural
equation model (Pearl 2000).

2. Consistency assumption: The observed data structure, O, is a missing data structure
on X (van der Laan and Robins 2003).

3. There is no unmeasured confounding, or, equivalently, A is conditionally independent
of Y0, given W (van der Laan and Robins 2003).

4. The experimental treatment assignment (ETA) assumption or positivity assumption:
the probability that A is zero, given W , is bounded away from zero, or Pr(A = 0|W ) >
0. This is a relaxed version of the ETA assumption, which for certain other parameters
requires a positive probability of having each of the treatment levels over the distribution
ofW in the target population (van der Laan and Robins 2003; Messer, Oakes, and Mason
2010).

If these four assumptions hold, and the relevant models are estimated consistently, ψ can be
thought of as an actual causal effect of A on Y . More specifically, it can be thought of as
measuring the hypothetical effect of an intervention in which everyone in the population is
made to be like the members of the target group. For example, if the target group corresponds
to “unexposed”, then ψ would be the effect, on the overall mean of the outcome, of eliminating
the exposure entirely. However, even if some of these assumptions do not hold, ψ may still
be an interesting and worthwhile parameter to pursue. In this case, it can still be thought of
as a type of variable importance (van der Laan 2006), and thus as a good way of quantifying
the (W -adjusted) level of association between A and Y .

The term attributable risk has had several slightly different meanings in the epidemiologi-
cal literature, and some authors prefer the term attributable fraction (e.g., Greenland and
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Drescher 1993). For the case of a binary outcome, our parameter, ψ, is like a causal (W -
adjusted) and sign-reversed version of what Gordis (2004) calls the “attributable risk in the
total population”: (

Incidence in
total population

)
−

 Incidence in
nonexposed group
(background risk)

 (1)

(Gordis 2004, Formula 12.3). In Section 5 below we will calculate a “naive attributable risk,”
(naive since it is bivariate only and does not account for confounding) as the difference between
the mean of the binary coronary heart disease outcome for an unexposed group and the overall
mean of the outcome.

The goal of this work is to create an automated algorithm for estimating ψ for data sets with
potentially many outcomes (Y ’s) and many exposures (A’s) of interest, as well as potentially
high dimensional W.

2.2. Estimators

Two general classes of estimators are available for estimating ψ: plug-in maximum likelihood-
type estimators and estimating equation estimators. In the multiPIM package, we have im-
plemented two estimators from each class. The estimator to be used is specified by supplying
the estimator argument to the multiPIM or multiPIMboot functions.

Estimating equation approaches

The estimating equation estimators available in the multiPIM package are the inverse-probability-
of-censoring-weighted (IPCW) estimator, and its doubly-robust extension (DR-IPCW). These
estimators are derived in Hubbard and van der Laan (2008), and the derivations are based
on the approach described in van der Laan and Robins (2003).

Let O1, O2, . . . , On be independent and identically distributed observations of O, with Oi =
(Yi, Ai,Wi), i ∈ {1, 2, . . . , n}. An IPCW estimator is given by

ψ̂IPCW
n =

1

n

n∑
i=1

[(
I(Ai = 0)

gn(0|Wi)
− 1

)
Yi

]
, (2)

and the corresponding DR-IPCW estimator is given by

ψ̂DR−IPCW
n =

1

n

n∑
i=1

[(
I(Ai = 0)

gn(0|Wi)
− 1

)
Yi −

(
I(Ai = 0)

gn(0|Wi)
− 1

)
Qn(0,Wi)

]
. (3)

gn(0|W ) and Qn(0,W ) are estimates of the nuisance parameters, g(0|W ) and Q(0,W ), re-
spectively. g(a|W ) is the probability of having treatment level A = a given covariates W (also
known as the treatment mechanism or propensity score), and thus g(0|W ) is the probability
of being in the target treatment group (the group defined by A = 0) given observed covariates
W, or P (A = 0|W ). Similarly, Q(a,W ) is the mean value of the outcome, Y, given treatment
level A = a and covariates W, and thus Q(0,W ) is the mean value of Y, given treatment level
A = 0, and given the observed level of covariates W, or E[Y |A = 0,W ].

These nuisance parameters usually need to be estimated from the data. Since A is binary,
g(0|W ) can be estimated using some form of regression with which one can predict the class
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probabilities for a binary outcome. The estimate, gn(0|W ), is taken as the predicted proba-
bility of being in the class given by A = 0, for a subject with covariates W. Q(0,W ) can be
estimated by regressing Y on A and W. The estimate, Qn(0,W ), can be found by using this
regression model to predict on a new data set for which every element of A is set to zero,
but W stays the same. The type of regression which should be used for building this model
depends on whether Y is a binary or continuous variable.

Plug-in estimators

multiPIM also makes available two plug-in estimators: the graphical computation (G-computation)
estimator (Robins 1986, 2000; van der Laan and Rubin 2006), and the targeted maximum
likelihood estimator (TMLE, van der Laan and Rubin 2006; van der Laan and Rose 2011).

The G-computation estimator is given by

ψ̂G−COMP = Ê[Y0]− Ê[Y ]

=
1

n

n∑
i=1

[
Q0

n(0,Wi)
]
− Ȳ .

It is referred to as "G-COMP" in the package (e.g., estimator = "G-COMP"). Greenland and
Drescher (1993) proposed an estimator that would encompass this parameter in the context
of parametric logistic regression.

For the case of continuous Y , the TMLE is given by

ψ̂TMLE = Ê[Y0]− Ê[Y ]

=
1

n

n∑
i=1

[
Q1

n(0,Wi)
]
− Ȳ

=
1

n

n∑
i=1

[
Q0

n(0,Wi) + ε̂Z(0,W )
]
− Ȳ .

Here, Ȳ = 1
n

∑n
i=1 Yi, Q

0
n(0,W ) is an initial estimate of Q(0,W ), and Q1

n(0,W ) is an updated
estimate that has targeted bias reduction for ψ. The updating is done by fitting a linear
regression: Y is regressed on a “clever covariate” with no intercept and with Q0

n(A,W ) (the
fitted values from the model used for Q(0,W )) as offset (Rose and van der Laan 2011a).

The clever covariate is given by

Z(A,W ) =
I(A = 0)

gn(A|W )

and ε̂ is the estimated coefficient for this covariate.

For the case of binary Y , the updating is done by logistic regression, the offset is logit(Q0
n(A,W )),

and

Ê[Y0] =
1

n

n∑
i=1

expit
(

logit
(
Q0

n(0,Wi)
)

+ ε̂Z(0,W )
)
.

where expit refers to the inverse logit function.
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An article about another R package for targeted maximum likelihood estimation, tmle, has
recently appeared in this journal (Gruber and van der Laan 2012). This package is also
available on CRAN, and implements a TMLE for the marginal additive effect of a binary point
treatment. It also calculates estimates of the risk ratio and odds ratio for binary outcomes, and
can be used to estimate controlled direct effects and the parameter of a marginal structural
model.

2.3. Properties of the estimators

The IPCW estimator will be consistent if g(0|W ) is estimated consistently, and the G-
Computation estimator will be consistent if Q(0,W ) is estimated consistently. The DR-IPCW
estimator and the TMLE are both based on the efficient influence curve for the semiparamet-
ric model, and as a result, they have the double robustness property (meaning that that they
will be consistent if either g(0|W ) or Q(0,W ) is estimated consistently), and they are asymp-
totically locally efficient (Hubbard and van der Laan 2008; van der Laan and Robins 2003;
van der Laan and Rose 2011). As a plug-in estimator, the TMLE has the advantage that the
parameter estimate is guaranteed to fall in the natural range, assuming that an appropriate
estimate of Q(0,W ) is used. For additional advantages of TMLE over other estimators, see
Rose and van der Laan (2011b).

2.4. Super learner and estimation of nuisance parameters

Since the consistency of the estimators is dependent upon consistent estimation of the nui-
sance parameters, it is worthwhile to devote some statistical and computational effort to this
estimation. Thus, the multiPIM package makes use of the super learner (Sinisi, Polley, Pe-
tersen, Rhee, and van der Laan 2007; van der Laan, Polley, and Hubbard 2007; Polley, Rose,
and van der Laan 2011; see also Breiman 1996). The super learner is a data-adaptive meta
learner which can be used to do prediction of binary or continuous outcomes. The form of the
super learner implemented in the multiPIM package uses v-fold cross-validation to select the
best from among a set of “candidate learners” (Sinisi et al. 2007). This form is also known as
the “discrete” super learner. In the more recent super learner algorithm, the final predictor
is a weighted combination of the learners in the “library” (Polley et al. 2011). The candidate
learners may normally be any arbitrary regression method or machine learning algorithm
which maps the values of a set of predictors into an outcome value. In the multiPIM package,
we have implemented a small set of candidates. Most of these rely on separate R packages,
which are also available on CRAN. The user can select from among these candidates in build-
ing a super learner to estimate g(0|W ) or Q(0,W ). This will be described in greater detail in
Section 3.

Theoretical results have shown that, asymptotically, the super learner performs as well as
the so-called oracle selector, which always chooses the best-performing candidate (the level of
performance of a candidate is measured by a specific loss function; Sinisi et al. 2007; van der
Laan et al. 2007). Since it is usually the case that the data-generating distributions are
unknown, combining many different candidates using a super learner (and thereby searching a
very large model space) should reduce the bias of gn(0|W ) and Qn(0,W ). Thus we recommend
using the super learner for estimation of nuisance parameters. However, there is an exception
to this rule when using the TMLE. As a consequence of the bias reduction step (the updating of
Qn(0,W ) with the clever covariate), using a very agressive algorithm to estimate g(0|W ) may
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cause empirical ETA violations, which could result in biased parameter estimates (Petersen,
Porter, Gruber, Wang, and van der Laan 2011). Thus super learning is not recommended
for estimating g(0|W ) when using the TMLE. Since TMLE is the default estimator in the
multiPIM package, we have set the default method for estimating g(0|W ) to be main terms
logistic regression (see Section 3).

A more elegant solution to this problem is to use a sequence of increasingly non-parametric
estimates of g(0|W ). This is the collaborative targeted maximum likelihood estimator (van der
Laan and Gruber 2010; Gruber and van der Laan 2011). However, this estimator has not yet
been implemented for the population intervention parameter we are using here.

2.5. Inference

One can show that the four estimators described above are asymptotically linear, with asymp-
totically normal sampling distributions under very general conditions (van der Laan and
Robins 2003; Zheng and van der Laan 2011). Two methods of estimating the variance are
available in the multiPIM package. The “plug-in” estimates are based on the influence curve
(van der Laan and Robins 2003; this method is not available for the G-Computation estima-
tor). Specifically, if IC(O; P̂ ) is the plug-in estimate of the influence curve (where estimates
of the relevant parts of P0 are represented by P̂ ), then the plug-in standard error is

σ̂plug−in =

√
ˆV ar(IC(O; P̂ ))

n
.

For example, note from Equation 2 and Equation 3 in Section 2.2, that the IPCW and
DR-IPCW estimators are both expressed as means over a certain vector. To get the plug-
in standard error for each of these estimators, take the standard deviation over this vector
instead of the mean, and divide by

√
n.

The preferred method for estimating the variance is to use the bootstrap (Efron 1979). The
bootstrap method is more robust, however it of course requires much more computation time.
We note that the plug-in (influence curve-based) estimates of the variance for the IPCW
estimator in particular tend to be overly conservative (van der Laan, Gill, and Robins 2003).

3. The multiPIM R package

The multiPIM package consists of two main functions, two methods, and four character vec-
tors. The multiPIM function provides the main variable importance analysis functionality.
The multiPIMboot function can be used to bootstrap the multiPIM function and get boot-
strap standard errors for the parameter estimates. There is a summary method for the class
"multiPIM" objects which are returned by the functions multiPIM and multiPIMboot, and
a print method for the summary objects. Finally, the elements of the four character vectors
(all.bin.cands, default.bin.cands, all.cont.cands and default.cont.cands) repre-
sent the regression methods/machine learning algorithms which are available for estimating
the nuisance parameters g(0|W ) and Q(0,W ) (see Section 3.5 and Section 3.6), and are meant
to be passed in as arguments to multiPIM and multiPIMboot.
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3.1. Input and output

The arguments to the multiPIM function are as follows:

multiPIM(Y, A, W = NULL,

estimator = c("TMLE", "DR-IPCW", "IPCW", "G-COMP"),

g.method = "main.terms.logistic", g.sl.cands = NULL,

g.num.folds = NULL, g.num.splits = NULL,

Q.method = "sl", Q.sl.cands = "default", Q.num.folds = 5,

Q.num.splits = 1, Q.type = NULL,

adjust.for.other.As = TRUE, truncate = 0.05, return.final.models = TRUE,

na.action, check.input = TRUE, verbose = FALSE, extra.cands = NULL,

standardize = TRUE, ...)

The main input to the multiPIM function is in the form of three data frames: W, A and Y. Each
of these data frames may contain multiple columns. The data frame A should contain binary
(0/1) exposure variables, and Y should contain outcome variables. W is optional. If supplied,
it should contain covariate variables which the user wishes to include in the adjustment set,
but for which he/she is not interested in estimating a variable importance. The function
calculates one estimate of ψ for each exposure-outcome pair. That is, if A(j) is the jth of
J exposure variables (i.e., the jth of J columns of A) and if Y (k) is the kth of K outcome
variables (i.e., the kth of K columns of Y), then JK estimates, ψ̂j,k, of ψ will be calculated,
one for each pair (A(j), Y (k)) such that j ∈ {1, 2, . . . , J} and k ∈ {1, 2, . . . ,K}.

3.2. Adjustment set and the adjust.for.other.As argument

With the adjust.for.other.As argument, the user can control which variables are kept
in the adjustment set in calculating the estimate, ψ̂j,k, for each pair, (A(j), Y (k)). If
adjust.for.other.As is TRUE, the other columns of the data frame A, i.e., all A(j∗) such
that j∗ 6= j, will be included in the adjustment set. That is, in the notation of Section 2, they
will be included as members of W , and thus will be included, along with the columns of the
data frame W, as possible covariates to select from in building the models from which g(0|W )
and Q(0,W ) are estimated. If adjust.for.other.As is set to FALSE, the other columns of A
will not be included in the adjustment set. In this case, the data frame W must be supplied.
If W is supplied, the variables it contains will be included in the adjustment set for all models,
no matter the value of adjust.for.other.As.

3.3. Rebuilding of models used to estimate Q(0,W )

When multiPIM is run, it builds only one model per exposure variable (column of A), from
which g(0|W ) is estimated. The estimate of g(0|W ) based on each model is then used in
the calculation of each of the parameter estimates which involves the corresponding exposure
variable. However, this is not the case for the models from which Q(0,W ) is estimated.
The model for a specific outcome variable is rebuilt each time the effect of a new exposure
variable is being calculated. One property of some of the machine learning algorithms used
as candidates for the super learner is that they may drop certain covariate variables from the
model. In order to ensure the smoothness of the sampling distribution of the estimator, the
relevant exposure variable is forced back in to any model for Q(0,W ) from which it has been
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dropped (see Section 3.5 and Section 3.6 and see also Zheng and van der Laan 2011). Thus,
one such model must be built per exposure-outcome pair.

3.4. Implementation of super learner

As mentioned in Section 2.4, the preferred method for estimating the nuisance parameters
is to use a super learner with many candidates (with the exception of estimating g(0|W )
when using the TMLE). The implementation of the super learner in the multiPIM package
uses v-fold cross-validation to select the best from among a set of candidate learners. All
exposure variables in A must be binary, and thus only binary outcome regression methods are
implemented for use in building a super learner to estimate g(0|W ). However, the outcome
variables in Y may be binary or continuous, and thus some continuous outcome regression
methods/machine learning algorithms are implemented as well, in order to be used in a
super learner for estimating Q(0,W ). The performance of candidates in a binary outcome
super learner is evaluated using the negative log likelihood loss function. The performance of
candidates in a continuous outcome super learner is evaluated using the mean squared error
loss function. The following two sections describe the default candidate algorithms which
have been implemented.

3.5. Default binary outcome candidates

The default binary outcome super learner candidates are given by the vector
default.bin.cands:

default.bin.cands <- c("polyclass", "penalized.bin", "main.terms.logistic")

The point of making this vector, and the vectors all.bin.cands, default.cont.cands, and
all.cont.cands available to the user is so that they (or subsets of their elements) may be
passed to the multiPIM and multiPIMboot functions as the arguments g.method, Q.method,
g.sl.cands or Q.sl.cands. This is the mechanism whereby the user may specify which
regression methods should be used in building models to estimate g(0|W ) and Q(0,W ).

Polyclass candidate

This super learner candidate uses the function polyclass from the R package polspline
(Kooperberg, Bose, and Stone 1997; Stone, Hansen, Kooperberg, and Truong 1997; Kooper-
berg 2012). polyclass fits linear splines and their tensor products using a model selection
process guided by the Akaike information criterion (Kooperberg et al. 1997).

Since there is a possibility with this algorithm that certain variables may be dropped from the
model, the implementation is slightly different for the case when this candidate is being used
to estimate Q(0,W ) vs. when it is being used to estimate g(0|W ). In order to make sure that
the relevant exposure variable stays in the model when estimating Q(0,W ) (see Section 3.3),
the object returned by polyclass is inspected to see if the relevant variable is a member
of the basis functions selected. If it is not, a second, logistic regression model is fit using
the predictions from the polyclass model as a covariate, along with the relevant exposure
variable which was dropped from the polyclass model. In order to stay somewhat flexible,
an interaction term between the exposure variable and the predictions from polyclass is also
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included in this logistic model. Thus, this secondary logistic model has the form

logit
(
Q∗k(A(j),W ∗)

)
= β0 + β1A

(j) + β2 logit
(
Q̂0

k(A(j),W ∗)
)

+ β3A
(j) logit

(
Q̂0

k(A(j),W ∗)
)
,

where W ∗ depends on the value of the adjust.for.other.As argument, Q̂0
k(A(j),W ∗) are

the predictions from a polyclass model for which the outcome was Y (k), and the β’s are
regression coefficients. Note that this model contains the original polyclass model as a
submodel (just set β2 = 1 and β0, β1, β3 = 0).

After both the polyclass and the logistic model have been fit, prediction on a new data set is
done by first getting the polyclass model’s predictions on this new data, and then predicting
on these new predictions using the logistic model.

Penalized candidate

The second binary outcome candidate, named "penalized.bin" to distinguish it from the
continuous outcome version, is based on the penalized function from the R package penalized
(Goeman 2010, 2012). This function performs regressions with either L1 (lasso) or L2 (ridge)
penalties, or with a combination of the two. The implementation of this candidate in the
multiPIM function uses only an L1 penalty. The value of the penalty is chosen using the
profL1 function, also from package penalized. With profL1, cross-validation is carried out
on ten possible values of the L1 penalty. The values range from zero to the minimum value
which would cause all coefficients to shrink to zero.

When estimating g(0|W ), all columns of W (and, depending on adjust.for.other.As, possi-
bly all other columns of A besides the one actually being modeled) are put into the penalized
model as penalized main terms. However, when estimating Q(0,W ), in order to prevent
shrinking of its coefficient to zero, the relevant exposure variable is added to the model as an
unpenalized covariate.

Main terms logistic candidate

The final binary outcome candidate uses the function glm from the package stats (R Core Team
2013) to build a main terms logistic regression model. Since glm does not drop any covariates,
it is not necessary to change the implementation for when Q(0,W ) is being estimated vs. when
g(0|W ) is being estimated.

3.6. Default continuous outcome candidates

The default continuous outcome super learner candidates are given by the vector
default.cont.cands:

default.cont.cands <- c("polymars", "lars", "main.terms.linear")

Since the exposure variables are always binary, continuous outcome candidates are always
used for estimating Q(0,W ), and never for g(0|W ). Thus, they must always allow for the
forcing of variables into the model.

Polymars candidate

The polymars candidate uses the polymars function, from package polspline. This function
is similar to the polyclass function, but it can be used for modeling a continuous outcome
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instead of a categorical outcome. Another difference between the two functions is that the
polymars function has a mechanism for forcing specific variables into the model. This mech-
anism is used in the polymars candidate, and thus no extra regression model needs to be built
in order to force the exposure variable back into the model in case it is dropped.

Lars candidate

This candidate is based on the function lars from the package lars (Efron, Hastie, Johnstone,
and Tibshirani 2004; Hastie and Efron 2012). lars performs least angle regression, a variant
of the lasso. For the lars candidate, the function cv.lars is used to cross-validate on a
grid of possible points on the solution path. If the final lars model has a coefficient of
0 for the relevant exposure variable, a secondary linear regression model is fit using the
exposure variable and the predictions from the lars model as covariates, similarly to the
logistic regression model described above for the polyclass candidate (see Section 3.5.1).

Main terms linear candidate

The "main.terms.linear" candidate uses the function lm from the package stats to fit a
main-terms-only linear regression model. Again, since no covariates are dropped by this
method, no secondary forcing model is necessary.

3.7. Alternative regression methods and other user options

In addition to the default candidates mentioned above, there are several optional candidates
which can be added to super learners. For both binary and continuous outcomes, there is a
candidate based on the rpart function from package rpart (Therneau, Atkinson, and Rip-
ley 2010; Breiman, Friedman, Olshen, and Stone 1984). There is also a continuous outcome
version of the penalized candidate. The user of the multiPIM function may also use any of
the super learner candidates mentioned as a stand-alone regression method for estimating
g(0|W ) or Q(0,W ). This can be done by specifying the g.method or Q.method arguments
as the the name of the desired candidate. The user may also supply one or more arbitrary,
self-implemented, regression methods, either to add to a super learner as candidates, or to
use as stand-alone regression methods. This makes it possible to use the more recent ver-
sion of the super learner, which has been implemented in the CRAN package SuperLearner
(Polley and van der Laan 2011). Another recommended learner which can be added as a
user-supplied candidate/method is the Deletion/Substitution/Addition algorithm (the DSA
package, Neugebauer and Bullard 2010; Sinisi and van der Laan 2004). The mechanism for
specifying user-supplied candidates/methods is via the extra.cands argument and is fully
documented in the Candidates help file:

R> ?Candidates

The user may also choose:

� How many “folds” and splits to use for the v-fold cross-validation in the super learner
(the defaults are 5 and 1, respectively).

� Whether and at which value to truncate (from below) gn(0|W ) in order to avoid insta-
bility of the estimator (the default is to truncate at 0.05).
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3.8. multiPIMboot function

The multiPIMboot function can be used instead of the multiPIM function when the user
wishes to use bootstrapping to calculate standard errors. multiPIMboot will run multiPIM

once on the original data set, then sample with replacement from the rows of the data and re-
run multiPIM the desired number of times on resampled data sets. All arguments to multiPIM

are also available for multiPIMboot, and these have the same defaults. Additional arguments
are:

� times, for specifying the number of bootstrap replicates.

� id, to identify clusters and perform a clustered bootstrap.

� multicore, mc.num.jobs, and mc.seed for running the bootstrap on multiple processor
cores from a single R session. This requires the parallel package (R Core Team 2013),
which is distributed with R as of version 2.14.0. Previous versions of multiPIM relied
on the multicore and rlecuyer packages for this functionality (Urbanek 2011; Sevcikova
and Rossini 2009).

Based on our experience with two different quad-core systems, the factor of speedup when
multicore = TRUE is close to the number of (physical) cores used, which is not surprising
since bootstrapping is embarrassingly parallel. Note that the single run of multiPIM on
the original data is done first in serial, before multicore’s parallel function sends multiple
bootstrap jobs to the cores. Thus the CPU usage will not hit 100% of all cores until the first
run is complete.

In order to improve reproducibility of parallel runs when multicore = TRUE, the random
number generator type is automatically set using

R> RNGkind("L'Ecuyer-CMRG")

This causes R to use an implementation of the generator described by L’Ecuyer, Simard,
Chen, and Kelton (2002), which allows using different and reproducible streams within each
parallel thread of execution.

3.9. Statistical recommendations and effects on computation time

Most of the computation time spent when running the multiPIM function goes into fitting the
models from which g(0|W ) and Q(0,W ) are estimated. Also, assuming the same options are
used, the multiPIMboot function will take much longer to run than the multiPIM function,
since it just repeatedly calls the multiPIM function. Thus, three very effective ways of reducing
the computation time are to:

1. Use plug-in standard errors by running multiPIM instead of multiPIMboot.

2. Use the IPCW estimator, which requires estimating only g(0|W ), and not Q(0,W )
(unlike the two double robust estimators, TMLE and DR-IPCW).

3. Do not use super learning, but instead use methods which require very little computation
time, such as main terms linear and main terms logistic regression.
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However, for maximal robustness and accuracy of inference, it is recommended to use multiP-
IMboot with the default arguments (bootstrap standard errors, TMLE estimator, super learning
to estimate Q(0,W )). The multicore functionality has been added as a way to reduce the
time required to run this full bootstrap analysis.

Using the bootstrap instead of plug-in standard errors will have the greatest effect on running
time. If bootstrap is just not feasible, it is recommended to run multiPIM with the TMLE es-
timator. Additional fine tuning of the running time can be done by using the summary method
(see next section) to see which super learner candidates are using the most computation time.
The computation time of the super learner depends on which candidates are included and
on the number of splits and “folds” used for cross-validation. Using a single split and 5 folds
should be adequate in most cases, but it may be safer to use a higher number of folds, such as
10, especially if the data set has only a few hundred observations. Increasing the number of
splits beyond one may also improve the accuracy of the cross-validation candidate selection
mechanism (Molinaro, Simon, and Pfeiffer 2005).

3.10. Summary method

Both the multiPIM and the multiPIMboot functions return objects of class "multiPIM". We
have written a summary method which can be called on these objects in order to generate
numerical summaries of the statistical results (as well as a breakdown of where the compu-
tation time was spent). The method uses the parameter estimates and standard errors to
calculate test statistics and unadjusted as well as Bonferroni-adjusted p values, and allows
for easy and customizable printing of tables showing these results. We demonstrate this by
running an example which has been adapted from the help file for the multiPIM function:

R> library("multiPIM")

R> num.columns <- 3

R> num.obs <- 250

R> set.seed(23)

We generate a data frame containing random binary data to use as exposure variables:

R> A <- as.data.frame(matrix(rbinom(num.columns * num.obs, 1, 0.5),

+ nrow = num.obs, ncol = num.columns))

Next we generate outcomes based on the exposures, by starting with random noise and adding
multiples of the exposure variables:

R> Y <- as.data.frame(matrix(rnorm(num.columns * num.obs),

+ nrow = num.obs, ncol = num.columns))

R> for(i in 1:num.columns) Y[, i] <- Y[, i] + i * A[, i]

Next we make sure that the two data frames have unique names, then run multiPIM on them
and run summary on the resulting object:

R> names(A) <- paste("A", 1:num.columns, sep = "")

R> names(Y) <- paste("Y", 1:num.columns, sep = "")

R> result <- multiPIM(Y, A)

R> summary(result)
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The call was:

multiPIM(Y = Y, A = A)

Results for the exposure "A1" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 -0.57198 0.08182 6.9911 2.727e-12 2.455e-11

Y2 0.02413 0.06810 0.3544 7.231e-01 1.000e+00

Y3 -0.03655 0.06482 0.5639 5.728e-01 1.000e+00

Results for the exposure "A2" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 -0.008016 0.06724 0.1192 9.051e-01 1.000e+00

Y2 -0.935624 0.08708 10.7444 6.298e-27 5.668e-26

Y3 -0.029830 0.05764 0.5176 6.048e-01 1.000e+00

Results for the exposure "A3" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 0.04203 0.07485 0.5615 5.744e-01 1.000e+00

Y2 0.11055 0.06871 1.6090 1.076e-01 9.685e-01

Y3 -1.57871 0.11371 13.8832 8.012e-44 7.211e-43

Total time for main multiPIM run:

2.742882 seconds

Breakdown by g vs. Q modeling:

method seconds %.of.total

g modeling main.terms.logistic 0.01749 0.6378

Q modeling sl 2.70922 98.7727

Total time for Q model super learner cross validation (x-val):

2.595054 seconds

Breakdown by candidate:

seconds %.of.Q.x-val.time

polymars 0.8299 31.981

lars 1.5593 60.087

main.terms.linear 0.1918 7.391
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Notice that for the pairs A[, i] vs. Y[, i], i = 1 to 3, the adjusted p values get progressively
lower, since Y[, i] is i * A[, i] plus noise. However, off-diagonal p values are higher since
there is no dependence of Y[, i] on A[, j] when i 6= j. There is a corresponding trend
in the actual parameter estimates, which get progressively more negative for the diagonal
(A[, i] vs. Y[, i], i = 1 to 3) exposure-outcome pairs.

The breakdown of the computation time shows that most of the time goes into the super
learning for the Q model, most of this Q modeling time is being spent on the lars candidate.

4. Simulation

In order to demonstrate the benefit of using a double robust estimator, we compared the
TMLE to the G-Computation estimator in a simulation. The complete R script which runs
the simulation can be found in the supplements to this paper.

4.1. Simulated data

The data consisted of four covariate variables W = (W (1),W (2),W (3),W (4)), a single exposure
variable A and a single outcome variable Y . W was generated as multivariate normal with
mean vector µ = (0, 0, 0, 0) and covariance matrix

Σ =


1 0.2 0.2 0.2

0.2 1 0.2 0.2
0.2 0.2 1 0.2
0.2 0.2 0.2 1


A was generated from a logistic model based on W , with

Ai ∼ Bernoulli(expit(βW>i )),

where β = (0.2, 0.2, 0.2, 0.2) andWi = (W
(1)
i ,W

(2)
i ,W

(3)
i ,W

(4)
i ). We made the data generating

model for Y more complex:

Yi = W
(1)
i W

(2)
i +W

(3)
i W

(4)
i +Ai

[
(W

(1)
i )2 + (W

(2)
i )2 + (W

(3)
i )2 + (W

(4)
i )2

]
+ error,

with the errors i.i.d. Normal(µ = 0, σ2 = 4), and with (W
(j)
i )2 equal to the square of W

(j)
i ,

for j = 1, 2, 3, 4.

Data sets were generated with sample sizes, n, evenly spaced on the log scale between 100
and 250,000, with one data set per value of n.

4.2. Estimators

To get estimates of ψ, we ran the multiPIM function twice on each data set, once with
estimator = "TMLE" and once with estimator = "G-COMP". Nuisance parameters were es-
timated using main terms logistic regression for g(0|W ) (TMLE only) and main terms linear
regression for Q(0,W ). Thus the model for g(0|W ) was correctly specified, while the model
for Q(0,W ) was misspecified.
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Figure 1: Simulation results. The TMLE estimates are centered around the true parameter
value, while the G-Computation estimates are slightly biased.

4.3. Results

The results are shown in Figure 1. It is clear that there is some bias towards zero in the
G-Computation estimates. This is due to the misspecified model for Q(0,W ). The TMLE
estimator uses the same biased estimates of Q(0,W ) as the G-Computation estimator, but
thanks to the double robustness and the fact that g(0|W ) is being estimated using the correct
model, the TMLE estimates stay centered around the true parameter value. The variability
of the two estimators appears to be similar throughout the range of sample sizes.

5. Analysis of western collaborative group study data

5.1. Study background

The Western Collaborative Group Study (WCGS) is a prospective study on coronary heart
disease (CHD) which began in 1960 (Rosenman et al. 1966). The subjects were males, aged 39-
59 at the start of follow-up, who were employed in several different corporations in California.
The main goal of the study was to assess a possible effect of behavior type on incidence of CHD.
After psychological testing, subjects were classified as having either of two behavior types, A
or B. Type A is characterized by, among other qualities, “excessive drive, aggressiveness, and
ambition”, while type B is characterized by having fewer of these qualities or having them in
lesser extents (Rosenman et al. 1966).
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5.2. Description of data

The data set has been included as part of the multiPIM package and can be loaded with

R> data("wcgs")

The data analyzed represent a follow-up experience of 8.5 years (through 1969, Rosenman
et al. 1975). The original subject enrollment count at the start of the study was 3524.
However, subjects were later excluded for the following reasons: not being in the correct age
range at intake, having CHD already manifest at intake, working for one specific corporation
which pulled itself out of the study, or being lost to follow up for various reasons (Rosenman
et al. 1975). This left 3154 subjects whose data was available for analysis. Since 12 of these
subjects had missing values for one of the variables to be used in the analysis, these 12 subjects
were also removed from the analysis for a final n = 3142. Of these final 3142 subjects, 257
(8.2%) had a CHD event.

Variables present in this data set include baseline covariates such as height and weight, the
type A/B behavior pattern, total cholesterol levels, systolic and diastolic blood pressure, and
smoking history (number of cigarettes smoked per day). Also present is the binary outcome
variable indicating whether a CHD event occurred within the follow-up period.

The multiPIM function requires the exposure variables to be binary. Thus, they were di-
chotomized as follows:

� typeAB: This is just the behavior pattern variable with type A coded as 1 (exposed),
and type B coded as 0 (unexposed). Thus the target group is type B behavior, in the
sense that the resulting parameter estimate, ψ̂, can be thought of as an attributable
risk which compares the level of the outcome in the entire population to the level for
those with type B behavior.

� chol: The total cholesterol, dichotomized with a cutoff point of 240. The target group
is therefore those with total cholesterol less than 240.

� cigs: This was coded as 1 for smokers (anyone who smokes 1 or more cigarettes per
day) and 0 for non-smokers. Thus, the target group is non-smokers.

� highBP: Instead of having two highly correlated cholesterol variables, this single variable
was coded as 1 (or exposed) if either diastolic blood pressure was greater than 90, or
systolic blood pressure was greater than 140, and coded as 0 otherwise. Thus, the target
group consists of individuals for whom neither measure is elevated.

� bmi: First the body mass index (BMI) was calculated by dividing weight in kg by the
square of height in m2. Then this variable was dichotomized using a cutoff point of BMI
= 25. Anything greater than 25 was coded as 1 and anything less than 25 as 0. Thus,
the target group is those with BMI less than 25.

These five variables were passed to the multiPIMboot function as the data frame A. Summary
statistics for these exposure variables are given in Table 1.

Also present in the data set was a variable giving the subjects’ age in years. This variable was
included in the analysis by being passed to multiPIMboot as the single-column data frame
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Unexposed Proportion Prop. unexp. Prop. exp. Naive
group exposed with CHD with CHD attr. risk

typeAB type B 0.504 0.051 0.112 −0.0311
chol < 240 0.343 0.057 0.129 −0.0247
cigs < 1/day 0.476 0.060 0.106 −0.0223
highBP D < 90 & S < 140 0.212 0.070 0.126 −0.0119
bmi < 25 0.411 0.073 0.095 −0.0089

Table 1: Summary information for the five binary exposure variables used in the analysis.
The first column states the characteristic that defines the unexposed group; D: diastolic
blood pressure; S: systolic blood pressure; prop. unexp./exp. with CHD: proportion of unex-
posed/exposed with CHD; naive attr. risk: naive attributable risk – this is just the value in
the 3rd column minus the overall disease rate of 0.082 (8.2%).

age typeAB chol cigs highBP bmi chd

age 1.00 0.09 0.10 0.00 0.12 0.02 0.12
typeAB 1.00 0.02 0.06 0.07 0.03 0.11
chol 1.00 0.08 0.10 0.04 0.12
cigs 1.00 −0.02 −0.10 0.09
highBP 1.00 0.17 0.08
bmi 1.00 0.04
chd 1.00

Table 2: Correlation matrix for all variables used in the analysis.

W. As stated above, ages ranged from 39-59 at the start of follow-up. Table 2 shows the
correlation matrix for all variables used in the analysis.

5.3. Estimator used

The multiPIMboot function was run using the default estimator (TMLE) and the default
methods for estimating nuisance parameters: main terms logistic regression for g(0|W ), super
learning using the default binary outcome candidates (see Section 3.5) for the initial estimate
of Q(0,W ). The adjust.for.other.As argument (see Section 3.2) was also kept at its
default value of TRUE. The call to multiPIMboot was made as follows (for complete script see
the supplements):

R> boot.result <- multiPIMboot(Y, A, W, times = 2000, multicore = TRUE,

+ mc.num.jobs = 8, verbose = TRUE)

The elapsed time for running this job on a quad core iMac was about 4.6 hours.

5.4. Results

Table 3 shows the results of running the multiPIMboot function on the WCGS data. Three of
the five exposure variables were found to have a significant effect on the CHD outcome after
Bonferroni adjustment of p values. These were: A or B behavior type, cholesterol level, and
cigarette smoking status. Since the outcome is binary, the parameter estimates (first column
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ψ̂TMLE σ̂plug−in σ̂boot T p pBonferroni

typeAB −0.0271 0.0051 0.0051 5.33 9.66E-08 4.83E-07
chol −0.0201 0.0042 0.0042 4.78 1.76E-06 8.78E-06
cigs −0.0210 0.0048 0.0049 4.28 1.90E-05 9.50E-05
highBP −0.0074 0.0031 0.0030 2.43 0.015 0.076
bmi −0.0055 0.0044 0.0044 1.25 0.210 1.0

Table 3: Results of running the multiPIMboot function on the WCGS data. ψ̂TMLE : param-
eter estimates; σ̂plug−in : plug-in standard errors (from the influence curve); σ̂boot : bootstrap
standard errors; T : test statistic (calculated using σ̂boot); p: unadjusted, two-sided p value
from comparison of T with the standard normal distribution function; pBonferroni : Bonferroni-
adjusted p value.

of Table 3), are on the scale of a proportion. For example, if one accepts the validity of the
causal assumptions enumerated in Section 2.1, then the parameter estimate for the variable
typeAB implies that if type A behavior were eliminated from the population and everyone
was made to have behavior type B, the incidence of CHD would be reduced by about 2.7
percentage points (recall that 8.2% of the sample had an incident CHD event).

Comparison of Table 3 with Table 1 shows that the adjusted parameter estimates (first column
of Table 3) are all less than the naive estimates (final column of Table 1). Some of the apparent
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Figure 2: Cumulative standard deviations of the bootstrap parameter estimates for all five
exposure variables.
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Figure 3: Histograms showing bootstrap distributions of parameter estimates for each ex-
posure variable. Dashed vertical lines show actual parameter estimates. There were 2000
bootstrap replicates.
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effect is being “adjusted out.” Also, the standard errors decrease with decreasing proportion
exposed. For example, the lowest bootstrap standard error, 0.0030, is for the variable highBP,
for which the proportion exposed was the lowest of all five exposure variables (0.212). Since
the target group is the unexposed, low proportions of exposed subjects correspond to high
proportions of subjects in the target group, and since the groups being compared are the
entire sample vs. the target group, it makes sense that high proportions in the target group
correspond with low standard errors.

It is also interesting to note that the maximum off-diagonal value in the correlation matrix
(Table 2), which was 0.17, corresponds to the correlation between the variables bmi and
highBP. These are the two variables for which the results were insignificant after Bonferroni
adjustment. It is possible that the effect measurements for each of these two variables may
have been diluted since the other of the two was also included in the adjustment set. Also, it
seems promising that the sum of the (adjusted) parameter estimates (0.0811) is approximately
equal to the overall disease rate of 8.2%.

Figure 2 and 3 provide some evidence for the validity of the bootstrap variance estimation
procedure. The histograms in Figure 3 indicate that there were no glaring irregularities in
the bootstrap distributions of the parameter estimates, and the cumulative standard errors
plotted in Figure 2 all appear to converge well before the 2000th bootstrap replicate.

6. Study on water contact and schistosomiasis infection

In this section we provide more example code, using data which was collected as part of the
study by Spear et al. (2004), and revisited by Sudat et al. (2010). This data has also been
included as part of the multiPIM package and can be loaded with

R> data("schisto")

6.1. Study background

The study was conducted in a rural area in Sichuan Province, China, to which schistosomiasis
is endemic. In November, villagers from 20 villages surrounding Qionghai Lake were inter-
viewed about their activities over the past 7 months that brought them into contact with
water. At the end of the infection season, stool sampling and analysis were carried out to
determine which of the villagers had become infected.

6.2. Description of data

The schisto data frame contains the following columns:

� Outcome variable:

– stoolpos: 1 indicates infected, 0 indicates uninfected.

� Exposure variables (these record the amount of water exposure of each subject with
respect to doing the activities listed, during the 7 month period from April through
October):
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– laundwc: washing clothes or vegetables.

– toolwc: washing agricultural tools.

– bathewc: washing hands and feet.

– swimwc: playing or swimming.

– ditchwc: irrigation ditch cleaning and water diverting.

– ricepwc: planting rice.

– fishwc: fishing.

� Covariates:

– village: a label for the village.

– age.category: 5 different age categories (< 18, 18-29, 30-39, 40-49, 50+).

We prepare the W, A and Y data frames:

R> W <- data.frame(lapply(schisto[, 9:10], as.factor))

R> A <- schisto[, 2:8]

Y will have only one column, so we need to use drop = FALSE to prevent it from being turned
into a vector:

R> Y <- schisto[, 1, drop = FALSE]

6.3. The analysis

If one wishes to keep the information contained in continuous exposure variables when using
them in the adjustment set, multiPIM can be called inside a for loop, with the other columns
of A included as part of W.

To cut down on running time, we use the IPCW estimator and the rpart candidate as a
stand-alone for g.method. This analysis is similar to that performed by Sudat et al. (2010)
and gives similar results (see Table 4).

R> set.seed(23)

R> num.types <- ncol(A)

R> multiPIM.results <- vector("list", length = num.types)

R> for(i in 1:num.types) {

+ A.current <- A[, i, drop = FALSE]

+ A.current[A.current > 0] <- 1

+ W.current <- cbind(W, A[, -i])

+ multiPIM.results[[i]] <- multiPIM(Y, A.current, W.current,

+ estimator = "IPCW", g.method = "rpart.bin")

+ }

R> results.tab <- t(sapply(multiPIM.results,

+ function(x) summary(x, bf.multiplier = 7)$sum[1, 1, ]))

R> rownames(results.tab) <- names(A)
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param.estimate stand.error test.stat p.val p.val.bon.adj

laundwc −0.01 0.01 0.77 0.44 1.00
toolwc −0.03 0.01 2.81 0.00 0.03
bathewc 0.03 0.04 0.70 0.48 1.00
swimwc −0.01 0.02 0.75 0.45 1.00
ditchwc −0.02 0.02 0.85 0.40 1.00
ricepwc −0.09 0.03 2.75 0.01 0.04
fishwc 0.00 0.00 0.31 0.75 1.00

Table 4: Results for schisto analysis. The tool washing and rice planting variables remain
significant after Bonferroni adjustment.

7. Discussion

The issue of how data can be used to select models and how this should be reflected in the final
inference is extremely important in epidemiology today. Ioannidis (2005), in discussing “why
most published research findings are false”, writes about the detrimental effects of “flexibility
in designs, definitions, outcomes and analytical modes” (p. 0698). Leaving the analyst to
make arbitrary choices in the model selection process can lead to bias and distorted inference.
However, while it is desirable to reduce the flexibility of the analyst to make arbitrary decisions
based on the data, it is helpful to make use of automated machine learning methods which
are flexible in that they search a large space of possible models.

One common complaint against the complex models which often result from machine learn-
ing methods is that they lack interpretability. The solution is the use of low dimensional
parameters of interest that have meaningful public health interpretation, and are not tied
directly to the model used for E[Y |A,W ]. By divorcing ourselves from the need to return
directly interpretable parameters as coefficients of a regression model, we open the door to
powerful data-adaptive procedures that give hope of consistently estimating the parameter of
interest. The researchers can choose the parameter of the data-generating distribution that
best addresses the scientific question.

multiPIM accomplishes what has been a contradictory goal: it uses flexible modeling, but
still returns asymptotically normal measures of variable importance with robust inference.
An additional benefit, which depends on the validity of the causal assumptions and on how
the target levels for the exposure variables are chosen, is that the returned parameter esti-
mates have a relevant public health interpretation (they quantify the effect of a hypothetical
intervention). Also, since they are on the scale of the outcome, these estimates are directly
comparable across different exposure variables, which will typically be on different scales.
Due to the machine learning approach, no arbitrary a priori specification of the relevant mod-
els is required, and a meaningful ranking of relative importance is provided, with unbiased
inference.

Though this is an important first step, there are several ways in which multiPIM could be
improved, such as 1) by targeting the model selection of the treatment mechanism using
a collaborative targeted maximum likelihood estimation approach, 2) by estimating the at-
tributable risk as a smooth function of A = a, so that one will not need to dichotomize at a
target level, and 3) by providing better integration with the SuperLearner and caret pack-
ages, in order to benefit as much as possible from R’s latest machine learning capabilities.
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However, multiPIM represents a new way for researchers to harness the power of machine
learning, avoid the bias of arbitrary parametric models, and still get an interpretable measure
of relative variable importance, without the typical pitfalls (highlighted in Ioannidis 2005),
that plague current exploratory approaches.
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