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Abstract

Problems with truncated data occur in many areas, complicating estimation and in-
ference. Regarding linear regression models, the ordinary least squares estimator is incon-
sistent and biased for these types of data and is therefore unsuitable for use. Alternative
estimators, designed for the estimation of truncated regression models, have been devel-
oped. This paper presents the R package truncSP. The package contains functions for
the estimation of semi-parametric truncated linear regression models using three different
estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated
estimators, all of which have been shown to have good asymptotic and finite sample prop-
erties. The package also provides functions for the analysis of the estimated models. Data
from the environmental sciences are used to illustrate the functions in the package.
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1. Introduction

Consider situations in which, for some reason, data on some particular characteristic are not
available if their level is below (or above) a fixed limit, but we still need to estimate a regression
model with this variable as the response variable. This problem is common in many areas and
could occur, e.g., when the measurement equipment is associated with a detection limit. One
example is in the environmental sciences, where trace level concentrations, e.g., in air or water,
are typically reported as less than a certain limit of detection, t, rather than as actual values
when they lie below t. The reason for this approach is that the concentrations are considered
as unknown when they cannot be measured accurately (e.g., Lubin et al. 2004 and Helsel
2005). Moreover, in some monitoring studies, values less than t are often not even required to
be reported to the authorities and hence might be completely missing from the dataset. If the

http://www.jstatsoft.org/


2 truncSP: Semi-Parametric Truncated Linear Regression Models in R

measurement value is not recorded at all, the data are left truncated at t. If they are recorded
but registered only as “smaller than” t, the data are said to be left censored. Censoring and
truncation also occur frequently in the area of astronomy, often because of upper detection
limits caused by, e.g., sensitivity limit problems in telescopes (Isobe, Feigelson, and Nelson
1986 and Feigelson and Babu 1998). Other examples of a truncated dependent variable include
sampling from a subpopulation, e.g., the insurance claims registered at an insurance company
(i.e., those insurance damage sizes judged by the insurance holder to have a value greater
than the deductible), e.g., Paulsen, Lunde, and Skaug (2008).

This incompleteness of data requires special estimators of the regression coefficients. Several
alternative estimators of truncated regression models have been suggested. Many of these are
estimators of so-called semi-parametric models, i.e., regression models with the usual para-
metric relationship between the response and the explanatory variables while the distribution
of the error terms is not specified but only assumed to satisfy mild regularity assumptions.
We call such estimators semi-parametric estimators, although it is the models and not the
estimators that are semi-parametric. For a review and a comparison of properties of suggested
estimators for regression models under truncated data, see Lee and Kim (1998). However,
despite the many possible application areas and the good asymptotic and finite sample prop-
erties of the proposed semi-parametric estimators, to our knowledge, few (if any) have found
their way into statistical software. Not even LIMDEP (Greene 2007), which is promoted for its
capability to handle truncated regression (among many other things), provides any estimators
other than a maximum likelihood estimator assuming normally distributed errors.

In this paper, we present the package truncSP for R (R Core Team 2013). truncSP is avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
truncSP and contains three semi-parametric estimators for truncated regression models.
These are the symmetrically trimmed least squares (STLS) estimator (Powell 1986), the
quadratic mode (QME) estimator (Lee 1993 and Laitila 2001), and the left truncated (LT)
estimator (Karlsson 2006). All three estimators use trimming of the conditional density of the
error terms. The STLS approach assumes symmetrically distributed error terms, whereas the
QME and LT approaches have also been shown to be consistent for estimation of the slope
parameters under asymmetrically distributed errors (Laitila 2001 and Karlsson 2006). The
STLS and QME estimators are included in the comparison by Lee and Kim (1998) who find
them to be among the best alternatives. The LT estimator is compared to the QME estimator
in Karlsson (2006) where it is concluded that the LT estimator has better performance than
the QME estimator in some situations.

The paper is organized as follows. In Section 2, we introduce the truncated regression model
and some of the semi-parametric estimators of the regression coefficients suggested in the
literature. In Section 3, the R package truncSP is described, and in Section 4, data on air
pollution and its relationship to traffic and weather characteristics are used to illustrate the
package. The data are available in the package truncSP and also through StatLib (http:
//lib.stat.cmu.edu/). The paper ends with a summary and concluding remarks.

2. Semi-parametric models and estimators

The form of a linear regression model is

Yi = X>i β0 + εi, i = 1, 2, . . . , n, (1)

http://CRAN.R-project.org/package=truncSP
http://CRAN.R-project.org/package=truncSP
http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/
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Figure 1: Example of truncated data. OLS estimates using the complete data (dotted line)
and the observable data (broken line).

where Yi is the response variable, Xi is a p-dimensional vector of explanatory variables, β0 is
a p-dimensional vector of unknown parameters, and εi is the random error term. The error
terms εi (i = 1, . . . , n) are assumed to be independent and identically distributed with mean
0 and variance σ2.

The objective in regression analysis is to estimate the unknown parameter vector β0 using a
sample of observations of the response variable Yi and the explanatory variables Xi. Well-
known methods for estimating regression models are available in most statistical software
packages. The so-called ordinary least squares (OLS) and maximum likelihood (ML) estima-
tors are the most commonly adopted estimators.

Unfortunately, if the response variable is truncated, for reasons such as those mentioned above,
this complicates estimation and inference. A left (right) truncated response variable means
that observations of (Yi, Xi) are obtained only for the part of the population for which Yi > t,
(Yi < t) where t is the truncation point. This is equivalent to εi > t−X>i β (εi < t−X>i β)
expressed in error terms. Left truncation and right truncation are sometimes called truncation
from below or above, respectively. The regression model (1) with a truncated response variable
is known as a truncated regression model. Henceforth, for simplicity, left truncation at t = 0
is assumed. The data can be easily transformed into this format if they are right truncated
and/or the truncation point is not equal to zero. If the truncation point is t = a (a 6= 0), one
subtracts a from the dependent variable to get data with truncation point t = 0. To transform
right truncated data into left truncated data, one changes the sign of the dependent variable.

Because of the truncation, E(ε|X) is not equal to zero but is a function of X; therefore, the
OLS estimator is biased and inconsistent and thus not suitable for use. Figure 1 illustrates
a simple example with truncated data where the regression line is estimated by OLS using
the complete (un-truncated) sample compared to using only the observable data. With a
truncated (observable) sample, the OLS underestimates the positive slope of the regression
line.

However, an ML estimator, which takes the incompleteness into account, can be used. Con-
sider model (1) under left truncation of Yi at 0. Let X denote the n × p matrix with the
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p-dimensional vector of explanatory variables as rows and y denote the n × 1 vector of the
n observations of the truncated response variable. The likelihood function to maximize with
respect to (β, η) is then

L(β, η|y,X) =

n∏
i=1

f(Yi −X>i β|η)(
1− F (−X>i β|η)

) , (2)

where f(·) and F (·) denote the probability density function (PDF) and cumulative density
function (CDF) of the error term, respectively. Thus, the likelihood (2) is the density of εi
conditional on εi being included in the sample, i.e., that εi > −X>i β. However, there are
some disadvantages with ML estimation. The PDF f(·) used to formulate the likelihood
function has to be chosen. Moreover, for truncated data, the ML estimator is less robust
to distributional misspecification than it generally is for complete data (e.g., Davidson and
MacKinnon 1993, p. 536). Thus, the choice of which PDF f(·) to use in the expression
(2) matters for the properties of the estimator. For truncated regression models, the normal
distribution is often used. This is the estimator implemented in the software LIMDEP (Greene
2007) and also in the package truncreg (Croissant and Zeileis 2013) in R. Results in Vijverberg
(1987) show that assuming a normal distribution in situations when the error distribution
is non-normal (focusing on asymmetric non-normality) leads to biased estimates, the bias
increasing with the degree of truncation. He recommends the use of alternative estimators
under circumstances of non-normality.

2.1. Semi-parametric estimators

Many of the alternative estimators proposed for truncated regression models are so-called
semi-parametric estimators. Most of these are derived under the assumption that the error
term, ε, in (1) has a symmetric PDF. Because of the truncation of Y (and also of ε), however,
we have a sample from a truncated PDF that is, by definition, not symmetric. Symmetry is
also the main assumption, together with some other regularity conditions, that is required to
establish consistency and asymptotic normality of the semi-parametric estimators STLS and
QME (see Theorem 2 in Powell 1986 and Theorem 1 in Lee 1993, respectively), which are
two of the estimators available in truncSP.

To simplify, the idea is to trim or truncate the observations from above to re-create a symmet-
ric PDF and then basically use the OLS estimator on the remaining observations. Another
way to understand the idea behind the estimators is to consider them to be derived through
a conditional moment restriction (see Newey 2001, for details),

E[m(Y −X>β0)|X] = E[m(ε)|X] = 0, (3)

where m(·) is a known scalar function. The conditional moment restriction is regarded as the
first-order condition to a minimization problem that defines the estimator as the minimum of
the corresponding objective function, q(ε), obtained by “integrating back from”m(ε).

The STLS estimator is defined as

β̂STLS = arg min
β∈B

1

n

n∑
i=1

qSTLS (εi) = arg min
β∈B

1

n

n∑
i=1

(
Yi −max

(
1

2
Yi, X

>
i β

))2

, (4)

where B denotes the parameter space. This corresponds, in principle, to computing a least
squares estimate using only the observations in the darker shaded area in Figure 2(a), i.e.,
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Figure 2: The contributions of the observations (italicized) to the STLS (4), QME (5), and
LT (6) objective functions.
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Figure 3: Linear regression functions estimated by OLS, STLS, QME and LT on the truncated
data.

trimming the observations where Yi > 2X>i β. The observations outside of this area contribute
to the objective function through the terms (Yi/2)2. This means, in practice, that an initial
guess of β is required to define the trimming. Then, the objective function is minimized with
respect to β to generate an estimate, i.e., a new guess of β, so that a new trimming limit is
defined, and so on iteratively until convergence is accomplished. To effectuate this, some type
of optimization algorithm must be used. As for most iterative optimization procedures, the
initial values can be important for the performance of the optimizer and, in the worst case,
the end result. Hence, a “clever” first guess is required to be successful.

Similarly, the QME estimator is defined as

β̂QME = arg min
β∈B

1

n

n∑
i=1

qQME (εi) (5)

= arg min
β∈B

1

n

n∑
i=1

1
[
−c < Yi −max

(
X>i β, c

)
< c
]({

Yi −max
(
X>i β, c

)}2
− c2

)
,

where c is a constant threshold parameter chosen by the researcher and 1[A] denotes an
indicator function, such that 1[A] = 1 if condition A holds and 0 otherwise. Figure 2(b)
shows the contribution of the observations to the QME objective function. Unlike the STLS
approach, the QME approach requires the researcher to choose the amount of trimming,
i.e., the value of the threshold c, to use. If c is relatively small, the darkest shaded area
in Figure 2(b) is a narrow “belt” containing few observations. If c is relatively large, this
area is wide but rather becomes shorter horizontally as the lighter shaded area (containing
observations contributing (yi−c)2−c2 to the objective function) becomes longer horizontally.
Hence, an intermediate c is preferred. There is no accepted rule for choosing an optimal c. It
was suggested in Lee (1993) that it could be desirable to choose c according to some method
to minimize, e.g., the MSE. This has not been explored further. In their simulation study,
Lee and Kim (1998) used the estimated standard deviation of the observed (i.e., truncated)
dependent variable as threshold value with satisfactory results. In a simulation study, Karlsson
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(2004) used threshold values based on the estimated (by OLS) residual standard deviation,
i.e, the standard deviation of the dependent variable conditional on the explanatory variables.

Laitila (2001) and Newey (2001) showed that the QME estimator of the slope parameters in
(1) is also consistent and asymptotically normally distributed under asymmetric distributions
of the error term. Karlsson (2006) suggested a version of the QME estimator, which she calls
the LT estimator, that trims the observations in a slightly different way to take advantage of
the observed data more efficiently than the QME estimator by using an asymmetric trimming
window; see Figure 2(c). The LT estimator is defined as

β̂LT = arg min
β∈B

1

n

n∑
i=1

qLT (εi) (6)

= arg min
β∈B

n∑
i=1

1[X>i β > cL] · {1[−cL ≤ εi ≤ cU ] · 1

2
ε2i + 1[εi < −cL] · 1

2
c2L+

1[εi > cU ] · 1

2
c2U}+

1[X>i β ≤ cL] · {1[−cL ≤ Yi − cL ≤ cU ] · 1

2
(Yi − cL)2+

1[Yi − cL < −cL] · 1

2
c2L + 1[Yi − cL > cU ] · 1

2
c2U},

where cL and cU are the threshold values. The QME estimator can be seen as a special case
of the LT estimator with cL = cU = c, since the scalar functions used to derive the objective
function (m(·) in Equation 3) then are identical for both estimators. The choice of symmetric
trimming in the QME approach was a direct consequence of assuming a symmetric distribution
of the error term when the estimator was first derived. By letting the upper threshold be
larger than the lower threshold more observations can possibly contribute their information
instead of being trimmed. For further details on how to choose these thresholds see Karlsson
(2006). Note that the LT estimator is not consistent for the intercept parameter in the model,
nor is the QME under asymmetry.

Lee and Kim (1998) present a review of estimators of truncated regression models, along
with a simulation study of their properties. Their results show the STLS estimator, the
QME estimator, and their own suggestion (i.e., the cosine (COS) estimator) to be the best
estimators. LT is not included in the comparison, but its finite sample behavior is studied
and compared to the behavior of QME by means of simulation in Karlsson (2006). The LT
estimator is found to behave well in terms of bias and MSE. However, if the error distribution
is correctly specified for the ML estimator, e.g., errors are normally distributed and the PDF
used in (2) is the normal distribution, then the ML estimator is generally more efficient than
these semi-parametric estimators.

Figure 3 shows the linear regression functions estimated by the STLS, QME, and LT ap-
proaches. Superimposed is also the OLS estimate, ignoring the truncation, which underesti-
mates the slope. Evident from this figure is that the semi-parametric estimators give more
accurate estimates of the slope than the OLS estimator. The LT estimated intercept is off
target, as would be expected, but the QME estimated intercept is acceptable because the
error term in (1) is symmetric in this example.
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2.2. Asymptotic properties

Powell (1986) showed that the STLS estimator is
√
n-consistent and that

√
n(β̂STLS − β0)

converges in distribution to N(0, VSTLS ), where VSTLS denotes the asymptotic covariance
matrix under some regularity conditions, including that the error terms conditionally on X
are symmetrically distributed around zero. For details on assumptions and the expression for
VSTLS , see Theorem 2 in Powell (1986).

Lee (1993) showed that the QME is also
√
n-consistent and that

√
n(β̂QME −β0) converges in

distribution to N(0, VQME ), under symmetrically distributed error terms and some additional
assumptions; see Theorem 1 in Lee (1993) for details. However, as noted above, Laitila (2001)
showed that the QME is also consistent for β0 with a unique, but unknown, constant bc added
to the intercept, and asymptotically normally distributed under asymmetrically distributed
error terms, under the additional assumption of independence between ε and X. That is,
almost surely, β̂QME → β̇0 and

√
n(β̂QME − β̇0) → N(0, V̇QME ) in distribution, where β̇0

is β0 with bc added to the intercept. Under a symmetric error distribution, bc is zero, and
V̇QME = VQME . Details can be found in Laitila (2001). This finding means that when there is
reason to suspect that a symmetric error distribution is not a suitable assumption, the QME
estimator still has good properties.

Similarly, Karlsson (2006) showed that the LT estimator is
√
n-consistent for the slope pa-

rameters in (1) and that
√
n(β̂LT − β̃0) converges in distribution to N(0, VLT ), where β̃0 is the

parameter vector β0 with an unknown constant µ added to the intercept. The LT estimator
is also consistent for the intercept plus µ. Note, however, that the intercept can never be
consistently estimated by the LT estimator.

The STLS estimator allows for heteroskedasticity of an unknown form, as does the QME
estimator if the conditional error term distribution is symmetric. However, the LT and QME
estimators, under asymmetrically distributed error terms, do not.

Common to all three estimators is that the expression for their covariance matrices VSTLS ,
VQME (or V̇QME ), and VLT includes components where the PDF of the error distribution,
f(·), occurs. For example,

V̇QME = (Cn −Dn)−1An(Cn −Dn)−1,

where

An =
1

n

n∑
i=1

E
(

1[X>i β̇0 − c > 0]1[−c < Yi − β̇0 < c](Yi −Xiβ̇0)
2XiX

>
i

)
,

Cn =
1

n

n∑
i=1

E
(

1[X>i β̇0 − c > 0]1[−c < Yi − β̇0 < c]XiX
>
i

)
,

Dn =
1

n

n∑
i=1

E

(
1[X>i β̇0 − c > 0]

(
c(f(c− bc) + f(−c+ bc))

1− F (−X>β0)

)
XiX

>
i

)
. (7)

Because of the occurrence of f(·) in the expression of Dn, estimation of the covariance ma-
trices by substitution of sample moments in place of the expectations in (7) is difficult. An
alternative suggested by Lee (1993) and explored by Karlsson (2004) is to use bootstrap tech-
niques. Karlsson (2004) showed that the covariance matrix of the QME estimator can be
satisfactorily estimated using the bootstrap. The bootstrap algorithm that was used starts
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by taking B bootstrap samples of n observations
(
Yi, X

>
i

)
with replacement from the original

sample. Next, a bootstrap replicate (i.e., a QME estimate), β̂bootb , is calculated for each of the
B samples, and finally the covariance matrix is estimated using

1

B

B∑
b=1

(β̂bootb − ¯̂
βboot)(β̂bootb − ¯̂

βboot)>, (8)

where
¯̂
βboot = 1

B

B∑
b=1

β̂bootb .

The resulting variances can be used for inference, e.g., significance tests and confidence inter-
vals. Aside from “regular” confidence intervals based on normal approximation, the bootstrap
replicates can be used to calculate confidence intervals. A technique for doing this is the
so-called percentile method (Efron 1981). To construct a (1− α)% confidence interval using
this method, one simply takes the (α/2)th percentile of the bootstrap replicates as the lower
limit and the (1 − α/2)th percentile as the upper limit. Bootstrap confidence intervals with
an acceptable coefficient of variation of the estimate usually require more bootstrap replicates
than when estimating standard errors using the bootstrap. Based on the recommendations
in Efron (1987) B = 2000 is used as default in the truncSP package.

3. Functions in the package

The package truncSP contains three main functions, stls(), qme() and lt(), for estimation
using the STLS, QME and LT estimators (see (4), (5) and (6)), respectively.

stls(formula, data, point = 0, direction = "left", beta = "ml",

covar = FALSE, na.action, ...)

qme(formula, data, point = 0, direction = "left", cval = "ml",

const = 1, beta = "ml", covar = FALSE, na.action, ...)

lt(formula, data, point = 0, direction = "left", clower = "ml",

const = 1, cupper = 2, beta = "ml", covar = FALSE, na.action, ...)

All three functions require an object of class ‘formula’, giving a symbolic description of the
linear model that is to be estimated (for more information, see the R documentation for class
‘formula’).

The arguments point and direction indicate the truncation point and direction of trunca-
tion, respectively. The default values are point = 0 and direction = "left", respectively.
The objective functions used in the optimization were formulated under the assumption that
the data are in this form, so if point 6= 0 and/or direction = "right", the data are trans-
formed (see Section 2). The resulting estimates are then transformed back to the original
scale.

The optimization problems posed by the estimators are solved through the use of the R
function optim() (from package stats, see R Core Team 2013), a general-purpose optimizer.
The default, method = "Nelder-Mead", an implementation of the algorithm described in
Nelder and Mead (1965), is used. This method has the advantage of also being applicable for
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non-differentiable functions, but can be quite slow. The maximum number of iterations is set
to 2000, but the user can alter this through the ... argument, through which the control

argument of optim() can be adjusted.

The function optim() requires starting values for the parameters to be optimized over. These
values are provided in the main function call through the argument beta. The default method
is "ml" which uses the estimated coefficients from a truncated maximum likelihood model,
assuming Gaussian errors, fitted using the function truncreg() (see package truncreg, Crois-
sant and Zeileis 2013). Method "ols" means that the estimated regression coefficients from
fitting a linear regression model through OLS are used. The R function lm() (from package
stats, see R Core Team 2013) is used to provide these. Finally, the starting values can be
provided manually as a vector, a column matrix or a row matrix.

The argument covar indicates whether or not the covariance matrix of the regression coeffi-
cients is estimated. If TRUE, the bootstrap (as described in Section 2.2) is used. The functions
for this use the function boot() from the boot package (see Canty and Ripley 2014 and
Davison and Hinkley 1997). The number of bootstrap replicates is set to R = 2000 as the
default, but this can be adjusted through the ... argument, which passes the R argument
on to boot(). The bootstrap procedure can be time-consuming because it requires repeated
optimization to produce the bootstrap replicates; therefore, the default is covar = FALSE.

Functions qme() and lt() also have arguments for the threshold values (parameter c in (5)
and parameters cL and cU in (6)) to be used when trimming the conditional density of the
error terms. For qme(), the argument cval indicates how the threshold value is to be chosen.
The methods "ml" (the default) and "ols" use the estimated residual standard deviation
from a truncated regression model fitted with truncreg() or from a linear regression model
fitted with lm(), respectively. Another option is to manually provide the threshold value by
supplying a number or numeric vector of length 1. The function lt() requires arguments for
the upper and lower thresholds. The argument clower controls the lower threshold value and
has the same options and default value as cval for qme(). The argument cupper determines
what upper threshold to use. The user supplies a number that is used to multiply the lower
threshold. The default value is cupper = 2 which means that the upper threshold is two
times the size of the lower threshold. Setting cupper = 1 means that the lower and upper
thresholds are the same and that the LT estimates coincide with the QME estimates.

Both qme() and lt() have an additional argument associated with the threshold values.
The argument const corresponds to the number by which to multiply cval or clower. For
example, if the user wants to use the QME approach with a threshold value that is half the
estimated standard deviation from a model estimated by OLS, he/she supplies the arguments
cval = "ols", and const = 0.5. Supplying the arguments clower = "ml", const = 2, and
cupper = 2 to lt() means that the lower threshold will be two times the estimated standard
deviation from a truncated maximum likelihood model and that the upper threshold will be
two times the size of the lower threshold, i.e., four times the estimated standard deviation.
The default value is const = 1.

The functions stls(), qme(), and lt() return S4 objects of class ‘stls’, ‘qme’, and ‘lt’,
respectively. The objects contain starting values and the estimated coefficients as well as
residuals, residual degrees of freedom and fitted values. If covar = TRUE they also contain
the estimated covariance matrix, the value of R used, and the bootstrap replicates. Information
from the optimizer, such as the value of the objective function corresponding to the estimated
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coefficients and the number of iterations until convergence, is included. Objects of classes
‘qme’ and ‘lt’ also contain information about the threshold values used.

Methods for analyzing the estimated models are also provided. The extractor functions
coef(), residuals(), fitted(), and vcov() extract the estimated coefficients, residuals,
fitted values, and (if estimated) the covariance matrix of the model. An object from any of
the three classes can be summarized through the function

summary(object, level = 0.95, ...)

If the covariance matrix has been estimated, the summary includes estimated standard devi-
ations and significance tests of the regression coefficients as well as confidence intervals. The
confidence intervals are of two different types, the first based on the normal distribution and
the second on the percentile method (see Section 2.2). The argument level gives the level
of confidence for the confidence intervals, with a default of 95%. The function summary()

returns an S4 object of class ‘summary.stls’, ‘summary.qme’ or ‘summary.lt’, which extends
classes ‘stls’, ‘qme’, and ‘lt’, respectively.

4. An illustrative example

This section aims to illustrate the functions in the package as well as to demonstrate differences
between the estimators and the effects of using different thresholds values. This is done
using data originally collected by the Norwegian Public Roads Administration for a study
of air pollution at a road in Oslo, Norway (Aldrin 2006). The dataset PM10 was initially
retrieved from StatLib (http://lib.stat.cmu.edu/) and is available in the truncSP package.
It consists of a subsample of 500 observations from the study and has also been used (among
other datasets) as the basis of a simulation study to compare methods of estimating nonlinear
functions in additive regression models (Aldrin 2006). The variables in the dataset are

PM10 hourly values of the logarithm of the concentration of PM10 (particles),

cars the logarithm of the number of cars per hour,

temp the temperature two meters above ground (degrees Celsius),

wind.speed wind speed (meters per second),

temp.diff the temperature difference between 25 and two meters above ground (degrees
Celsius),

wind.dir wind direction (between 0 and 360 degrees),

hour hour of day,

day day number from October 1, 2001.

As previously mentioned, it is common for environmental data to be truncated because of
problems in reliably measuring low concentrations. To mimic such a situation and to demon-
strate the functions in the package, a new dataset has been generated, eliminating all obser-
vations with a PM10 value of 2 or less. This dataset, PM10trunc, contains 460 observations
(which corresponds to 8% truncation) and is also available in truncSP.

http://lib.stat.cmu.edu/
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Figure 4: Scatter plots showing the relationships between the variable PM10 and explanatory
variables in the dataset PM10.

Figure 4 shows a plot of the explanatory variables in the un-truncated dataset PM10 against
the response variable PM10. It is evident that most relationships are nonlinear, indicating
that a linear model is not the best solution when modeling these data. However, this analysis
is not intended to be used to describe or explain the relationships in the data but rather to
illustrate the functions in the package.

4.1. The estimators

To demonstrate the various semi-parametric estimators and compare them to an estimator
that is not designed for truncated data, linear models are fitted to the un-truncated dataset
using OLS and to the truncated (tr.) dataset using OLS and the three semi-parametric
estimators available in truncSP. Table 1 shows the estimated regression coefficients from these
models as well as the number of iterations (Iter.) required by the semi-parametric methods.
The semi-parametric estimates are obtained using the default settings, i.e., estimates from
a truncated maximum likelihood model estimated with truncreg() are used as the starting
values of the vector of regression coefficients, and the estimated residual standard deviation
from that same model is used for the threshold / lower threshold in qme() and lt(). Two
times this value is set as the upper threshold in the lt() function. It is evident from the
results that a large number of iterations is required for the semi-parametric estimators to find
the estimates, especially for qme(). Concentrating on the estimates of the slope parameters,
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β̂intercept β̂cars β̂temp β̂wind.speed β̂temp.diff β̂wind.dir β̂hour β̂day Iter.

OLS (full) 1.231* 0.327* −0.002−0.103* 0.011 0.000 0.000 0.000 −
OLS (tr.) 2.085* 0.201* 0.001−0.062¨ −0.004 0.000 0.008 0.000 −
STLS 1.804* 0.247* 0.000−0.101’ −0.010 0.000 0.009 0.000 1353
QME 1.748* 0.274* 0.002−0.111¨ 0.112 0.000 −0.002 0.000 1885
LT 1.653* 0.307* 0.016−0.132¨ 0.044 0.000 0.011 0.000 1231

Significance codes: p value 0–0.001 = *; 0.001–0.01 = ¨; 0.01–0.05 = ’; 0.05–0.1 = .

Table 1: Estimated coefficients from fitting linear models using different techniques to PM10

and PM10trunc. STLS, QME and LT estimates are derived using the default settings (starting
coefficients and threshold values from method "ml", const = 1 and cupper = 2).

β̂intercept β̂cars β̂wind.speed Iter.

OLS (full) 1.352* 0.321* −0.105* −
OLS (tr.) 1.994* 0.230* −0.064* −
STLS 1.475’ 0.309* −0.107’ 104
QME 2.250¨ 0.203’ −0.126¨ 178
LT 2.235* 0.246* −0.104¨ 120

Significance codes: p value 0–0.001 = *; 0.001–0.01 = ¨; 0.01–0.05 = ’; 0.05–0.1 = .

Table 2: Estimated coefficients from fitting linear models using different techniques to PM10

and PM10trunc, retaining only the significant variables. STLS, QME and LT estimates are
derived using the default settings (starting coefficients and threshold values from method
"ml", const = 1 and cupper = 2).

it is clear that none of the models for the truncated data come close to the results from the
model of the un-truncated data, although the estimates from the semi-parametric estimators
do come closer than the OLS estimate. The variables cars and wind.speed are significant in
all models, although wind.speed is less so in the models for the truncated data. Comparing
the estimated coefficients for these variables, those from the semi-parametric estimators come
closer to the un-truncated model than those from OLS. Overall, it is difficult to say that one
estimator gives results that are clearly better than the others for all estimated coefficients
using the truncated data.

To simplify comparisons, the analysis is repeated with only the significant variables, yielding
the results shown in Table 2. Fewer iterations are required to estimate this smaller model.
It is again evident that both variables are significant, although generally less so in the semi-
parametric models. It is also clear that the coefficients for cars and wind.speed from the
models estimated using STLS and LT are closer to the values estimated using the full data
than the OLS estimates based on the truncated data. QME gives the estimated coefficient
for cars that is furthest from the OLS estimate based on the full data.

As described in Section 2.1, the threshold values used in qme() and lt() affect the number
of observations used to identify the estimates and thereby the estimates themselves. Table 3
illustrates this, showing the results of different runs of the qme() function, all using estimates
from a truncated maximum likelihood model as starting values for the vector of regression
coefficients but different threshold values. The threshold values have been adjusted using the
const argument (see Section 3), with const ranging from 0.5 to 2. It is evident that the
threshold value chosen has a major impact on the resulting estimates. In this case, setting a
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Thresholds β̂intercept β̂cars β̂wind.speed
0.5 · "ml" 3.115 (0.772) 0.048 (0.104) −0.069 (0.049)
1 · "ml" 2.250 (0.684) 0.203 (0.089) −0.126 (0.040)
2 · "ml" 1.488 (3.598) 0.320 (0.434) −0.143 (0.115)

Table 3: Models estimated with the QME approach using different threshold values (standard
errors in parentheses).

threshold value at half of the estimated residual standard deviation, and thereby decreasing
the number of observations used for identifying the estimates, yields estimates that are far
from those in the un-truncated data. Setting two times the standard deviation as the threshold
value increases the number of observations used and yields estimates for the intercept and
cars that are closer to those from the full model than those using const = 1. However, using
a higher threshold value gives substantially increased standard errors compared to the lower
thresholds, and none of the variables are significant.

4.2. Output examples

The basic output from simply running any of the functions stls(), qme() or lt() gives
the function call, estimated coefficients, number of iterations, and (for qme() and lt())
information about the threshold values used.

R> library("truncSP")

R> data("PM10trunc", package = "truncSP")

R> qme(formula = PM10 ~ cars + wind.speed, data = PM10trunc, point = 2,

+ covar = TRUE)

Call:

qme(formula = PM10 ~ cars + wind.speed, data = PM10trunc, point = 2,

covar = TRUE)

Coefficients:

(Intercept) cars wind.speed

2.2497 0.2030 -0.1256

Iterations:

function

178

Threshold information:

Method Constant Value

ml 1 0.7599

Calling summary() on an object from one of the main functions gives output that, at its core,
is similar to that from lm() or glm(), the R functions for fitting linear and generalized linear
models (from package stats, see R Core Team 2013). Apart from a summary of the estimated
regression coefficients, significance tests and confidence intervals are calculated, provided that
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the covariance matrix has been estimated. Confidence intervals based on both the normal
distribution and the percentile method (see Section 2.2) are provided.

R> qmeobj <- qme(formula = PM10 ~ cars + wind.speed, data = PM10trunc,

+ point = 2, covar = TRUE)

R> summary(qmeobj)

Call:

qme(formula = PM10 ~ cars + wind.speed, data = PM10trunc, point = 2,

covar = TRUE)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.24971 0.68630 3.278 0.00113 **

cars 0.20304 0.08795 2.309 0.02141 *

wind.speed -0.12564 0.04037 -3.112 0.00197 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations:

function

178

Threshold information:

Method Constant Value

ml 1 0.7599

95% Confidence Intervals:

Lower Upper

(Intercept) 0.90101 3.59841

cars 0.03021 0.37587

wind.speed -0.20497 -0.04630

95% Confidence Intervals (Percentile):

Lower Upper

(Intercept) 0.4898 2.9970

cars 0.1066 0.4231

wind.speed -0.2065 -0.0495

If the covariance matrix has not been estimated, the output takes the following form.

Call:

qme(formula = PM10 ~ cars + wind.speed, data = PM10trunc, point = 2,

covar = FALSE)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2497 NA NA NA

cars 0.2030 NA NA NA

wind.speed -0.1256 NA NA NA

Number of iterations:

function

178

Threshold information:

Method Constant Value

ml 1 0.7599

No covariance matrix has been estimated, hence no t-tests or confidence

intervals are returned. To get these, choose covar=TRUE in the function

call for qme().

Finally, a useful extractor function (described briefly in Section 3) available in the package is
vcov() for extraction of the covariance matrix of the estimated coefficients.

R> vcov(qmeobj)

(Intercept) cars wind.speed

(Intercept) 0.471009843 -0.0591754070 -0.0086694016

cars -0.059175407 0.0077345542 0.0004846089

wind.speed -0.008669402 0.0004846089 0.0016297807

5. Summary and conclusions

Problems with the types of incompleteness of data called truncation occur in many areas
and applications. Estimators of so-called semi-parametric truncated regression models have
been shown to have good asymptotic and finite sample properties. The practical use of these
estimators has been hindered, however, by the lack of software implementations available.
Previously, it has fallen to the individual scientist to write code for specific problems with
these types of data, but the R package presented in this paper endeavors to provide a more
general solution. Three semi-parametric estimators, all of which have been shown to perform
well, are included in the package truncSP.

Data from the environmental sciences, where applications with truncated data are common,
were used to illustrate the functions in the package. Although the data are nonlinear in nature,
this served to demonstrate differences between using semi-parametric estimators and using
the regular OLS estimator. The effect and importance of carefully choosing the threshold
value for trimming of the error terms were also illustrated.

It is our hope that the truncSP package will fill a hole in the world of statistical software, as it
provides functions for estimation of semi-parametric truncated linear regression models. The
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package also has the potential to be developed for nonlinear regression. Karlsson, Cantoni, and
de Luna (2009) suggest using local versions of the STLS and QME estimators, inspired by local
polynomial regression for un-truncated data (Fan and Gijbels 1996), to estimate nonlinear
regressions. The functions in truncSP could be adjusted for this purpose by introducing
“localizing” weights, as described in Karlsson et al. (2009).
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