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Abstract

Hedeker and Nordgren (2013) present the stand-alone MIXREGLS program for fitting
the mixed-effects location scale model to continuous longitudinal and other clustered data.
This model can be used when interest lies in joint modeling the mean and dispersion
of subjects’ responses over time. The model extends the standard two-level random-
intercept mixed model by allowing both the within- and between-subject variances to be
influenced by the covariates and for the within-subject variance to additionally depend
on a subject random-scale effect. In this article we present the runmixregls command
to run MIXREGLS seamlessly from within Stata. We illustrate the notable advantages
of using runmixregls by replicating and extending the two example analyses presented
in Hedeker and Nordgren (2013). We then use runmixregls to demonstrate a new and
important research finding. Namely, that ignoring the random-scale effect in the within-
subject variance function will lead to the regression coefficients in this function to be
estimated with spurious precision, especially the regression coefficients of subject-level
covariates.
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1. Introduction

Mixed-effects models (Fitzmaurice, Laird, and Ware 2011; Hedeker and Gibbons 2006; Ver-
beke and Molenberghs 2000) — also known as multilevel models (Goldstein 2011; Snijders
and Bosker 2012), hierarchical linear models (Raudenbush and Bryk 2002), or random ef-
fects models — are widely used in the analysis of longitudinal and other clustered data in
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the social, behavioral and medical sciences. The simplest mixed-effects model for continu-
ous repeated measures data, where observations are nested within subjects, is the two-level
random-intercept model. This model decomposes the variation in the response variable, hav-
ing adjusted for the covariates, into a homogeneous between-subject (BS) variance and a
homogeneous within-subject (WS) variance.

Hedeker and Nordgren (2013) propose the mixed-effects location scale model to extend the
above model by modeling both the WS and BS variances as log-linear functions of the covari-
ates. A subject random-scale effect is then entered into the WS variance function to account
for any remaining unexplained heterogeneity in the residual error variance between subjects.
The model is argued to be especially useful when interest lies in joint modeling the mean and
dispersion of subjects’ responses over time. However, it can equally be employed to analyze
clustered data when interest lies in explaining why both the mean and dispersion of subjects’
outcomes vary across clusters (e.g., hospitals, schools, neighborhoods, etc.).

Hedeker, Mermelstein, and Demirtas (2008b) show how mixed-effects location scale models
can be fitted using maximum likelihood estimation in SAS (SAS Institute Inc 2012) via SAS
PROC NLMIXED. However, Hedeker and Nordgren (2013) note that this procedure can be slow
to run, often requires excellent starting values to converge, and is difficult for less statisti-
cal literate data analysts to use. It is these difficulties which motivated the development
of their stand-alone MIXREGLS program (Hedeker and Nordgren 2013). MIXREGLS is
Windows-based and is run in batch mode; there is no graphical user interface. A limitation of
MIXREGLS is that it has no facilities beyond this single estimation capability. Furthermore,
the process of writing MIXREGLS data and model definition files is fiddly and error prone.
Hedeker and Nordgren (2013) recognize these difficulties and show how the process of fitting
models in MIXREGLS can be partially automated using SAS and to a fuller extent using R.
However, no parallel functionality is provided for the Stata software (StataCorp. 2013).

Other software can also fit mixed-effects location scale models. Rast, Hofer, and Sparks
(2012) present syntax to fit these models using Markov chain Monte Carlo (MCMC) methods
in WinBUGS (Lunn, Thomas, Best, and Spiegelhalter 2000). We note that WinBUGS can
itself be called from Stata using the wb (Thompson, Palmer, and Moreno 2006) and wbs
(Thompson 2014) suites of commands. However, WinBUGS is also difficult for less statistical
literate data analysts to use. Leckie, French, Charlton, and Browne (2015) discuss fitting
similar models using MCMC methods in the Stat-JR statistics package (Charlton, Michaelides,
Parker, Cameron, Szmaragd, Yang, Zhang, Frazer, Goldstein, Jones, Leckie, Moreau, and
Browne 2013), however Stat-JR is not currently accessible within Stata. Certain mixed-effects
location scale models can be formulated using the double hierarchical generalized linear model
(DHGLM) framework proposed by Lee and Nelder (2006) and are implemented in ASReml
(Gilmour, Gogel, Cullis, and Thompson 2009), GenStat (Payne, Murray, Harding, Baird, and
Soutar 2009) and R (R Core Team 2014) (via the dhglm package; Noh and Lee 2013), but
none of these packages are accessible from within Stata. It is worth noting that it is also
not currently possible to fit these models using inbuilt Stata commands. Nor is it possible
to fit these models in SPSS (IBM Corporation 2012) or in specialized mixed-effects modeling
software such as HLM (Raudenbush, Bryk, and Congdon 2012), MLwiN (Rasbash, Charlton,
Browne, Healy, and Cameron 2009) and SuperMix (Hedeker, Gibbons, du Toit, and Cheng
2008a).

In this article, we present the runmixregls command to run the MIXREGLS software seam-
lessly from within Stata. There are notable advantages to running MIXREGLS in this way.



Journal of Statistical Software — Code Snippets

First, runmixregls provides a simple and intuitive command syntax which allows users to
specify the full range of modeling and estimation options implemented in MIXREGLS. Sec-
ond, prior to fitting a particular model, users can take advantage of Stata’s excellent statistics,
graphics and data management commands to prepare and descriptively analyze their data.
Third, after fitting the model, users can apply Stata’s comprehensive hypothesis testing, model
comparison, prediction and plotting facilities to interpret their models and to communicate
their results. Last, all analyses can be reproduced and documented for publication and review
by typing all these commands into a file and running them all at once.

The remainder of the article is structured as follows. Section 2 briefly reviews the mixed-
effects location scale model implemented in MIXREGLS. Section 3 describes how to install
runmixregls from within Stata. Section 4 presents the runmixregls command syntax and de-
scribes the various modeling and estimation options. Sections 5 and 6 illustrate runmixregls
by replicating and extending the two example analyses presented in Hedeker and Nordgren
(2013). Section 7 performs a simulation study using runmixregls to demonstrate a new
and important research finding. Namely, that ignoring random-scale effects in the WS vari-
ance function will lead the WS variance function regression coefficients to be estimated with
spurious precision, especially the regression coefficients of subject-level covariates. Section 8
concludes.

2. Review of the mixed-effects location scale model

2.1. Mixed-effects model

Let y;; denote the continuous response measurement for subject i (i = 1,2, ..., N) at occasion
Jj (j=1,2,....,n;). The standard two-level random-intercept mixed-effects model can then be
written as

yij = T30 + vi + €, (1)
U ~ N (07012)) ’ (2)
€ig ~ N (0>062) > (3)

where x;; is a vector of covariates, 3 is the associated vector of coefficients, v; is the random-
intercept effect, and ¢;; is the residual error. The covariates may be time varying or time
invariant. The random-intercept effect and residual error are assumed normally distributed
with zero means and constant variances. The homogeneous BS variance, o2, measures the
variability in subjects’ mean responses, having adjusted for the covariates. The homogeneous
WS variance, o2, measures the variability in subjects’ measurements about their adjusted
mean responses. This model can be fitted in Stata using the xtreg command with the mle

option, or alternatively by using the mixed command.’

2.2. Mixed-effects location scale model

The mixed-effects location scale model implemented in MIXREGLS may be viewed as an

'Prior to Stata 13 (released June 2013), the mixed command was named xtmixed.
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extended reparameterized version of the above model and can be written as

Yij = m;ﬂ + ow,; 60 + €ij, (4)
log (02,) = e, (5)
log (O’i]) = ’LU;;T + Tleli + qu%i + O-w92i7 (6)
eli ~ N(07 1) ) (7)
02i ~ N(07 1) ) (8)
€ij ~ N (0,02].) 5 (9)

where we refer to Equation 4, Equation 5 and Equation 6 as the mean function, the BS
variance function, and the WS variance function, respectively.

Hedeker and Nordgren (2013, p. 3) describe this model in detail and so we provide only a
brief summary here.

The mean function (Equation 4) is the same as that in the standard model (Equation 1),
except that the random-intercept effect, now referred to as the random-location effect, is
parameterized in standardized form, oy,,601;. The first term, oy, ;, denotes the square root of
the BS variance, while 61; denotes the standardized random-location effect, 61; ~ N (0,1).
Note that o.,; is subscripted by 7 and j to indicate that its value may change across subjects
and occasions. The influence of 61; on y;; may therefore be amplified or dampened by the
magnitude of oy,

The BS variance function (Equation 5), models the BS variance, ag”,, as a log-linear function
of a second vector of subject- or occasion-level covariates, u;;, where a denotes the associated
vector of coefficients.

The WS variance function (Equation 6), models the WS variance, a?ij, as a log-linear function

of a third vector of subject- or occasion-level covariates, w;;, where 7 is the associated vector of
coefficients. A quadratic subject-level association is allowed between the unexplained location
and scale variability by entering 61; and its square, 6’%2-, into the WS variance function as latent
covariates with regression coefficients, 7, and 74, to be estimated. This additional flexibility
is useful when the response exhibits floor or ceiling effects, as we then expect a concave
relationship between subjects’ variances and means whereby subjects with very low or very
high means have near-zero WS variances, while subjects with means closer to the middle of
the response scale have higher WS variances. A quadratic association is better able to capture
such concavity. Finally, a new random effect, denoted 65; and referred to as a random-scale
effect, is included to account for unexplained variation in the WS variance above and beyond
the contribution of the covariates. This random effect is assumed normally distributed with

zero mean and constant variance, 03).

When u;; and w;; each include only a constant and when 7, = 7, = 0, = 0, the above mixed-
effects location scale model simplifies to a reparameterized version of the standard two-level
random-intercept mixed-effects model with homogeneous variances presented in Section 2.1.

The use of log-link functions ensures positive variances. However, it makes parameter inter-
pretation less straightforward. In particular, the covariates have multiplicative rather than
additive effects on the variances. In the examples we plot the predicted level-1 variance func-
tions to aid their substantive interpretation. This proves especially helpful in interpreting
quadratic random-location effects on the within-subject variance.
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As in standard mixed-effects models, the random effects normality assumptions may not
necessarily hold and it will be prudent to check their plausibility, for example, by inspecting
quantile-quantile (Q-Q; normal scores plots) or other graphical plots post-estimation.

3. Installing runmixregls

runmixregls requires Stata 12 or later and MIXREGLS. MIXREGLS can be freely down-
loaded from:
http://www.uic.edu/sph/downloads/cms-downloads/cbd/zipfiles/MIXREGLS.zip.

runmixregls can be installed from the Statistical Software Components (SSC) archive by
typing the following command within a net-aware version of Stata

. s8sc install runmixregls

Two files will be installed on your computer: runmixregls.ado, a Stata ado file which defines
the command; and runmixregls.sthlp, a Stata help file which documents the command.
Note that these files will be installed onto your adopath, the path where Stata searches for
the files it needs.

If you have already installed runmixregls from the SSC, you can check that you are using
the latest version by typing the following command

. adoupdate runmixregls

Next, you must declare the fully qualified filename for the MIXREGLS executable (the
MIXREGLS.exe file) so that runmixregls knows where to find the software. You can do
this by specifying a global macro called mixreglspath. Users must substitute the fully
qualified filename that is correct for them, e.g.,

. global mixreglspath "C:\MIXREGLS\mixreglsb.exe"

Advanced users may wish to set the MIXREGLS fully qualified filename every time Stata is
started by simply inserting the following line into their profile do-file profile.do (see help
profile).

4. Syntax diagram

The runmixregls command follows standard Stata syntax for estimation commands. We
restrict our discussion here to the most common options. A complete description is provided
in the runmixregls help file.? You may type the following at any point to view this help file

. help runmixregls

2The runmixregls help file is also available as a PDF document (Leckie 2013). Note that the terminology
used in the help file follows Stata conventions and therefore differs slightly from that presented here where we
have aimed to be consistent with Hedeker and Nordgren (2013).
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Before using runmixregls, you must declare the subject identifier (the variable in the data
which uniquely identifies the subjects) using the xtset command (see help xtset).

xtset wvarname
where varname is the name of the subject identifier.

4.1. Syntax

The runmixregls command has the following syntax
runmixregls depvar [wvarlist] [if] [in] [, options]

where runmixregls is the name of the command, depvar denotes the dependent or response
variable, varlist denotes the list of covariates appearing in the mean function (the square
brackets indicate optional arguments), the 7f exp qualifier allows one to restrict the estima-
tion sample to those observations for which the expression exp is true; the ¢n range qualifier
allows one to restrict the estimation sample to the range of observations given by range, the
comma separates the specification of the mean function from the specification of any modeling
or estimation options listed in options.

4.2. Options

The options are defined as follows

Model

noconstant suppresses the constant term (intercept) in the mean function.
between(varlist [, noconstant]) specifies the variables in the BS variance function.
within(warlist [, moconstant]) specifies the variables in the WS variance function.
association(atype), where atype

none|linear|quadratic

specifies the subject-level association between the (log of the) WS variance and the
random-location effect. The default is association(linear).

Random effects/Residuals

reffects(newvarl newvar2) retrieves the empirical Bayes estimates of the standardized
random effects. The standardized random-location effects are placed in newvarl while
the standardized random-scale effects are placed in mewwvar2. The associated standard
errors are placed in newvarl_se and newvar2_se.

residuals (newvar) retrieves the standardized residual errors and places them in newvar.

Integration

noadapt prevents MIXREGLS from using adaptive Gaussian quadrature. MIXREGLS will
use ordinary Gaussian quadrature instead.
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intpoints(#) sets the number of integration points for (adaptive) Gaussian quadrature.
The default is intpoints(11). The more points, the more accurate the approximation to
the log-likelihood. However, computation time increases with the number of quadrature
points. When models do not converge properly, increasing the number of quadrature
points can sometimes lead to convergence.

Mazimization
iterate(#) specifies the maximum number of iterations. The default is iterate(200). You
should seldom have to use this option.

tolerance (#) specifies the convergence tolerance. The default is tolerance(0.0005). You
should seldom have to use this option.

standardize standardizes all covariates in all functions during optimization. This ensures
all covariates are on the same numerical scale with mean 0 and variance 1. This can be
helpful if the model “blows up” or does not converge to the solution.

MIXREGLS model files

typedatfile displays the MIXREGLS model data file in the results window.
typedeffile displays the MIXREGLS model definition file in the results window.
typeoutfile displays the MIXREGLS model output file in the results window.

savedatffile(filename [, replace]) saves the MIXREGLS model data file. A fully qual-
ified filename should be specified. The replace option overwrites the MIXREGLS
model definition file if it already exists.

savedeffile(filename [, replace]) saves the MIXREGLS model definition file. A fully
qualified filename should be specified. The replace option overwrites the MIXREGLS
model definition file if it already exists.

saveoutfile(filename [, replace]) saves the MIXREGLS model output file. A fully qual-
ified filename should be specified. The replace option overwrites the MIXREGLS
output file if it already exists.

Reporting
level (#) specifies the confidence level, as a percentage, for confidence intervals. The default
is level(95).

display_options controls column formats, row spacing, line width, and display of omitted
variables and base and empty cells; see help estimation options##display_options
for more details.

noheader suppresses the display of the summary statistics at the top of the output; only the
coefficient table is displayed.

notable suppresses display of the coefficient table.

coeflegend specifies the legend of the coefficients and how to specify them in an expression
to be displayed rather than displaying the statistics for the coefficients.
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5. Example 1: Reisby depression study

The first example analyses presented by Hedeker and Nordgren (2013) relate to data drawn
from a six-week longitudinal psychiatric study of 66 depressed inpatients (Reisby, Gram,
Bech, Nagy, Petersen, Ortmann, Ibsen, Dencker, Jacobsen, Krautwald, Sondergaard, and
Christiansen 1977). Patients were diagnosed at baseline with either endogenous (N = 37)
or non-endogenous (N = 29) depression and were then rated weekly using the Hamilton
depression rating scale. The data are two-level with observations (level-1) nested within
patients (level-2). The total number of observation is 375, 21 less than the expected 66 x 6 =
396 as some subjects were missing on some weeks.

5.1. Data

We start by loading the data. We do this using the use command where we specify the clear
option to replace any data should they currently exist in memory.

. use reisby, clear

We then use the codebook command with the compact option to compactly describe the data
contents.

codebook, compact

Variable Obs Unique Mean Min Max Label

id 396 66 323.9697 101 610 Subject

hamdep 396 37 16.22475 -9 39 Depression score
week 396 6 2.5 0 5 Week

endog 396 2 .5606061 0 1 Endogenous
endweek 396 6 1.40404 0 5 Endogenous * Week

The output shows that the data includes five variables: the subject identifier, id; the response
variable, hamdep (range = 0 to 39, where -9 is the missing value code); the week number, week
(coded sequentially from 0 to 5); the grouping variable, endog (coded 0 for non-endogenous
subjects, 1 for endogenous subjects); and the interaction between endog and week, endweek.
We use the recode command to recode the 29 missing values described above from -9 to
Stata’s system missing value . so that these observations will not be used in the analysis.

. recode hamdep (-9 = .)
(hamdep: 21 changes made)

To get a better sense of the data, we plot depression scores against time separately for non-
endogenous and endogenous subjects. We use the twoway command with the 1ine plottype
to give a twoway line plot of hamdep against week. The connect (ascending) option requests
that we connect the points in ascending order of the x variable, here week. This ensures that
we plot a separate line for each subject. The x1abel (0(1)5) option specifies that major ticks
and labels appear on the x axis from 0 to 5 in steps of 1. The by(endog) option requests we
draw separate plots within the graph for the two subject groups defined by endog.
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Figure 1: Spaghetti plot of depression trajectories plotted separately for non-endogenous (left
panel) and endogenous subjects (right panel).

. twoway (line hamdep week, connect(ascending)), xlabel(0(1)5) by (endog)

The plot shows depression scores tend to improve over time for all subjects. Endogenous
subjects appear to have higher depression scores at baseline but it is unclear as to whether
these subjects tend to recover more or less rapidly than non-endogenous subjects. There is
substantial variability between subjects and this increases over time; the observed trajectories
fan outwards as the study progresses. There is a slight suggestion that endogenous subjects
are more heterogeneous than non-endogenous subjects at each point in time, but this is far
from certain. Some subjects certainly appear to recover more erratically than others, but it is
less clear as to whether the erraticness of individual subjects’ sequences of depression scores
is related to time or depression group.

5.2. Model

Hedeker and Nordgren (2013, p. 11) address these questions by specifying the following mixed-
effects location scale model

hamdep;; = o + Bi1week;; + (zendog, + [zendweek;; + 0y, 01; + €ij, (10)

log (agi) = o + aendog;, (11)

log (a?J) = 7o + Tiweek;; + Toendog; + 101; + 0,02, (12)
01 ~ N (0,1), (13)

B ~ N (0,1), (14)

€ij NN (0,0’62”) y (15)
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where, in the mean function, hamdep is modeled in terms of week, endog and endweek, to
allow endogenous and non-endogenous subjects to differ in baseline depression severity and
to recover at different rates. The random-location effect, o,,01;, allows for subject intercept
heterogeneity above and beyond that explained by the covariates. The log of the BS variance,
Jgi, is modeled as a function of endog to allow endogenous and non-endogenous subjects to
be differentially variable in terms of their mean depression scores, having adjusted for time,
group and group by time interaction effects. The log of the WS variance, 0'62”_, is modeled as a
function of week and endog to allow the variability of a subject’s depression scores about their
individual trajectories to differ across the two groups and to change over time. The location
effect is entered into the WS variance function to allow for a linear subject-level association
between the log of the WS variance and the random-location effect. The random-scale effect,
o,b9;, allows for any remaining unexplained variation in WS response heterogeneity across
subjects.

An important feature of the data shown in Figure 1, but not captured by the model is that
subjects vary in terms of their time trends as well as their intercepts. Ideally we would
introduce a random-slope on week into the model to account for this. However, this modeling
extension is not currently implemented in MIXREGLS. Restricting subjects to have parallel
trajectories will force the WS variance to increase as a function of time.

Before we can fit this model, we must first use the xtset command to declare the grouping
or panel variable, which for these data is id

. Xtset id
panel variable: id (balanced)

The above model can then be fitted using the following runmixregls command.

. runmixregls hamdep week endog endweek, between(endog) within(week endog)

runmixregls - Run MIXREGLS from within Stata

Mixed-effects location scale model Number of obs = 375
Group variable: id Number of groups = 66
Obs per group: min = 4
avg = 5.7
max = 6
Run time (seconds) = 5.715
Integration points = 11
Log Likelihood = -1122.2965
hamdep | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ e
Mean |
week | -2.295431 .1877299  -12.23  0.000 -2.663375 -1.927488
endog | 1.879423 1.076568 1.75 0.081 -.2306119 3.989457

endweek | -.028614 .2677226 -0.11  0.915 -.5533407 .4961127
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_cons | 22.37832 . 723378 30.94 0.000 20.96053 23.79612

_____________ o
Between |

endog | .5068167 .4581146 1.11 0.269 -.3910714 1.404705

cons | 2.198253 .3544331 6.20 0.000 1.503577 2.892929

_____________ e
Within |

week | .1923404 .0628283 3.06 0.002 .0691991 .3154817

endog | .2881487 .2454437 1.17 0.240 -.1929121 .7692094

_cons | 2.087681 .2363751 8.83 0.000 1.624394 2.550968

_____________ e
Association |

linear | .2132653 1455909 1.46 0.143 -.0720875 .4986182

_____________ e
Scale |

sigma | .6586948 1339515 4.92 0.000 .3961547 .9212349

The first term after the name of the command is the response variable, hamdep, and this
is then followed by the list of mean function covariates, week endog endweek. The first
option, between (endog), specifies the BS variance covariates, the second option, within (week
endog), specifies the WS variance covariates.

The formatting of the runmixregls output follows that of other Stata panel data estimation
commands. A range of ancillary model information is presented first, followed by the table of
parameter estimates and standard errors.

The first line of output simply states that MIXREGLS was run from within Stata using
the runmixregls command. Immediately below that, the output states that the model is a
mixed-effects location scale model where the grouping or panel variable is id. To the right, the
output states that the model is fitted to an estimation sample of 375 observations belonging
to 66 subjects where the number of observations per subject ranges from 4 to 6 with an
average of 5.7 observations.

The next block of output, immediately above the table, reports that MIXREGLS took 5.715
seconds to fit the model using 11 integration points. The log-likelihood statistic is also
presented.

The table of parameter estimates and standard errors is presented in five blocks, labeled Mean
(mean function regression coefficients), Between (BS variance function regression coefficients),
Within (WS variance function regression coefficients), Association (subject-level location-
scale association parameters) and Scale (random-scale effect standard deviation). The table
also reports z-ratios, p values and 95% confidence intervals.

The substantive interpretation of these results is given by Hedeker and Nordgren (2013, p. 13),
and so we provide only a brief summary here. The mean model shows a significant negative
effect of time (Bl = —2.29, p < 0.05) indicating depression scores decrease over the six-week
study in the non-endogenous group. The endogenous group does not differ significantly from
this trend in either their mean baseline depression score (Bg = 1.88, p = 0.08) or in their
average rate of improvement over time (33 = —0.03, p = 0.92). There are also no group
differences in terms of the BS variance (&; = 0.51, p = 0.27) or the WS variance (75 = 0.29,

11
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p = 0.24). Thus, endogenous subjects are found to be no more or less heterogeneous than
non-endogenous subjects in either their mean depression scores or in the variability of their
depression scores about their individual trajectories means. The WS variance significantly
increases with time (73 = 0.19, p < 0.05) suggesting that a subject’s depression scores become
more variable with time. However, as discussed above, the magnitude of this effect would
be expected to reduce were we able to introduce random time trends into the model. The
linear random-location effect does not have a significant effect on the log of the WS variance
(7, = 0.21, p = 0.14). Finally, the scale standard deviation is significant (6, = 0.66, p < 0.05)
indicating that some subjects’ depression scores are significantly more dispersed than other
subjects even after adjusting for group and time effects.

5.3. Random effects and residuals

Next we retrieve the empirical Bayes estimates of the standardized random-location and
random-scale effects by specifying the reffects(thetal theta2) option. The standard-
ized random-location effects are placed in a new variable named thetal while the standard-
ized random-scale effects are placed in theta2. The associated standard errors are placed
in thetal_se and theta2_se. We retrieve the standardized residual errors by specifying
rstandard(estd).

. runmixregls hamdep week endog endweek, between(endog) within(week endog)
> reffects(thetal theta2) residuals(estd)

(output omitted)
The runmixregls output is identical to before and so we do not redisplay it here.
Figure 2 in Hedeker and Nordgren (2013, p. 20) presents a histogram of the standardized

model residuals which shows them to be approximately normally distributed. Our Figure 2
replicates this figure using the histogram command.

. histogram estd, width(0.5) start(-3) frequency
(bin=11, start=-3, width=.5)

where we specify the width(0.5) and start(-3) options to set the width of the bins to 0.5
and to set the theoretical minimum value to -3. The frequency option requests the histogram
to be drawn as frequencies.

Figure 3 in Hedeker and Nordgren (2013, p. 21) presents a bivariate scatter plot of the
estimated random-location and random-scale effects. Our Figure 3 replicates this figure using
the scatter command.

. scatter theta2 thetal, mlabel (id)

where we have added the mlabel(id) option to add marker labels to the figure showing
subjects’ unique identifier values, id. The plot shows no obvious association between the
estimated location and scale effects corroborating the non-significance of the random-location
effects on the WS variance (7; = 0.21, p = 0.14).
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Figure 2: Histogram of standardized model residuals.
N —
® 505 ®606
604
®361 ®334
- *101 #4350 o328
®327 0304
; .
g *®0 econ o 103
o ®315 #580350 113 #5610
S . P
® O 0305 %319 2485 g 106 33
5 #313 0352 o
43 - 12
,_-tg 123 349 8 W7 ® 3091358
w o1 o8l ey e m7 56316
504 331 o a2y 345
' #347
®117 ®338 308
C}I -
T T T T T
-2 -1 0 1 2

EB std. location r.e.

Figure 3: Bivariate scatter plot of estimated random-location and random-scale effects.

Tables 1 and 2 of Hedeker and Nordgren (2013, p. 18-20) present subjects who appear inter-
esting in terms of their location and scale estimates. We can easily replicate these tables, but
we must first carry out a small number of data manipulation steps.
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We start by only keeping those variables needed to construct the tables and by renaming the
response from hamdep to hd.

. keep id hamdep week thetal thetaZ2
. rename hamdep hd

Next we use the reshape command to convert the data from “long form” (one record per
observation) to “wide form” (one record per subject).

. reshape wide hd, i(id) j(week)

(note: j =012345)

Data long -> wide
Number of obs. 396 -> 66
Number of variables 5 -> 9
j variable (6 values) week ->  (dropped)

xij variables:
hd -> hdO hdl ... hdb

We then reformat the display precision of thetal and theta2 to three decimal places.
. format 74.3f thetal theta2

Lastly we use the gsort command to sort the data in descending order by theta2.

. gsort -theta2

Table 1 in Hedeker and Nordgren (2013, p. 18) lists the two subjects with the highest scale
estimates and the two subjects with the lowest scale estimates. We can replicate the first
half of this table by using the 1list command where we specify if inlist(_n, 1, 2) to
list the data for only the first two records (subjects) in the data (i.e., the two subjects
with the highest scale estimates). These two subjects (Subjects 606 and 505) show unusual
trajectories whereby their baseline depression scores appear somewhat anomalous relative to
their subsequent scores.

. list id theta2 hd? if inlist(_n, 1, 2)

1. | 606 1.585 19 33 12 12 3 1]
2. | 505 1.532 21 11 18 0 0 4 |
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We can replicate the second half of this table by changing the if statement to only list the
last two records (subjects) in the data (i.e., the two subjects with the lowest scale estimates).
These two subjects (Subjects 335 and 308) have linear rates of decline which closely match
those predicted by the mean time trend.

. list id theta2 hd? if inlist(_n, 65, 66)

| id theta2 hd0 hdl hd2 hd3 hd4 hd5 |

65. | 335 -1.317 21 21 18 15 12 10 |
66. | 308 -1.365 22 21 18 17 12 11 |

Table 2 in Hedeker and Nordgren (2013, p. 20) presents the data for subjects located in the
four corners of Figure 2. To replicate this table, we first sort the data in ascending order by
theta?.

. sort theta2

Subjects 117 and 347 are located in the bottom left corner of Figure 2. These subjects have
some of the mildest depression scores and show continual smooth improvement in their scores

over the course of the study.

. list id thetal theta2 hd? if inlist(id, 117, 347)

| id  thetal theta? hd0 hdl hd2 hd3 hd4 hd5 |

11. | 117  -1.492 -1.284 19 16 13 12 7 6 |
43. | 347 -1.580 -1.157 18 15 14 10 8 .

Subject 345 is located in the bottom right corner of Figure 2. This subject also shows continual
smooth improvement in their scores over the course of the study, but these scores are always
substantially above average.

. list id thetal theta2 hd? if inlist(id, 345)

| id  thetal theta2 hd0 hdil hd2 hd3 hd4 hd5 |

41. | 345 2.104 -0.747 29 27 27 22 22 23 |

Subject 505 is located in the top left corner of Figure 2. This subject shows a very erratic
series of mostly low depression scores.
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. list id thetal theta2 hd? if inlist(id, 505)

Subjects 607, 322, 328 and 360 are located in the top right corner of Figure 2. These subjects
show erratic patterns of depression scores which are mostly substantially above average and
show little improvement with time.

. list id thetal theta2 hd? if inlist(id, 607, 322, 328, 360)

57. | 607 1.517 0.919 30 39 30 27 20 4 |
58. | 322 1.272 0.946 28 21 25 32 34 .
60. | 328 1.676 0.992 22 24 28 26 28 29 |
61. | 360 1.333 1.003 21 28 27 29 28 33 |

5.4. Additional analyses extending those of Hedeker and Nordgren (2013)

In Section 7 we shall use runmixregls in a simulation study which presents a new and impor-
tant research finding. Namely, that ignoring random-scale effects in the WS variance function
will lead the WS variance function regression coefficients to be estimated with spurious pre-
cision, especially the regression coefficients of subject-level covariates. In the remainder of
this section we shall motivate this simulation study by examining the impact of ignoring
random-scale effects in the Reisby data.

We must first reload the data, recode the missing values of hamdep, and declare the data to
be panel data.

. use reisby, clear
. recode hamdep (-9 = .)

(hamdep: 21 changes made)
. xtset 1id
panel variable: id (balanced)
Next we refit the model, removing the non-significant association between the WS variance

and the random-location effects. We increase the number of integration points to 15 simply
to demonstrate how one would do this.
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. runmixregls hamdep week endog endweek, between(endog) within(week endog)
> association(none) intpoints(15)
runmixregls - Run MIXREGLS from within Stata
Mixed-effects location scale model Number of obs = 375
Group variable: id Number of groups = 66
Obs per group: min = 4
avg = 5.7
max = 6
Run time (seconds) = 8.562
Integration points = 15
Log Likelihood = -1123.3514
hamdep | Coef Std. Err z P>|z]| [95% Conf. Intervall
_____________ A e
Mean |
week | -2.243849 .1824122 -12.30 0.000 -2.60137 -1.886328
endog | 1.857631  1.087379 1.71 0.088 -.2735937 3.988855
endweek | -.0148295 .2706679 -0.05 0.956 -.5453287 .5156698
cons | 22.20598 . 7204633 30.82 0.000 20.7939 23.61807
_____________ o
Between |
endog | .5071772 .4454097 1.14 0.255 -.3658097 1.380164
_cons | 2.214175 .3438434 6.44 0.000 1.540254 2.888095
_____________ o
Within |
week | .1849597 .06295 2.94 0.003 .06158 .3083394
endog | .3025271 .2462052 1.23 0.219 -.1800263 .7850804
_cons | 2.093628 .2372195 8.83 0.000 1.628686 2.55857
_____________ o
Scale |
sigma | .698531 .1279097 5.46 0.000 .4478326 .9492295

The only subject-level covariate in the WS variance function is the depression group variable.
The results show that there is no significant difference in WS variance between the endogenous
and non-endogenous subjects, even at the 20% level (72 = 0.30, p = 0.22). We shall compare
this finding with that obtained from a model which ignores the significant random-scale effects.

At this point it is helpful to understand that MIXREGLS has fitted the full model shown
above in three sequential and increasingly complex stages. The results of each model stage
are provided as the starting values for the next stage. This sequential approach improves the
convergence of the full model. The stage 1 model assumes the WS variance to be homogeneous.
The stage 2 model adds in the WS variance covariates. The stage 3 model adds in the random-
scale effects. The linear or quadratic subject-level association between the random-location
effects and the WS variance is also added at this stage if it has been specified. In the current
model, we specify there to be no such association and so the only difference between the stage

17
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2 and stage 3 models is the inclusion of the random-scale effects. We can therefore simply
compare the stage 2 and stage 3 model results for WS variance depression group regression
coefficient.

The stage 1, 2 and 3 estimation results are saved by runmixregls and can be listed using the
ereturn list command. Full explanations are given in the runmixregls help file.

. ereturn list

scalars:
e(N)
e(N_g)
e(g_min)
e(g_avg)
e(g_max)
e(k)
e(k_1)
e(k_2)
e(k_3)
e(time)
e(11)
e(11_1)
e(11_2)
e(11_3)
e(iterations)
e(iterations_1)
e(iterations_2)
e(iterations_3)
e(chi2_1vs2)
e(chi2_1vs3)
e(p_2vs3)
e(p_1vs3)
e(p_1vs2)
e(chi2_2vs3)

macros:
e(cmd)
e(title)
e(depvar)
e(ivar)
e(adapt)
e(n_quad)
e(iterate)
e(tolerance)
e(standardize)
e(properties)

matrices:

375

66

4
5.681818181818182
6

10

7

9

10
8.561999999999999
-1123.351440429688
-1140.599487304688
-1134.499755859375
-1123.351440429688
14

5

3

6
12.19946289062591
34.49609375
2.33616128400e-06
1.55659769135e-07
.0022434701330112
22.29663085937409

"runmixregls"

"Mixed-effects location scale model"

"hamdep"
llidll

lllll

n 15"
ll200||
".0005"
IIOII

ll'b V||
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e(b) : 1 x 10
e(V) : 10 x 10

e(b_1) 1x7
e(b_2) 1x9
e(b_3) 1 x 10
e(V_1) 7Tx7
e(V_2) 9x 9

e(V_3) : 10 x 10

functions:
e(sample)

The names assigned to the different stage specific model results are suffixed by _1, _2 and
_3. For example, the parameter estimates from each stage are stored in the matrices e(b_1),
e(b_2) and e(b_3), while their corresponding variance-covariance matrices are stored in the
matrices e(V_1), e(V_2) and e(V_3).

We can examine the stage 2 parameter estimates by using the matrix list command.

. matrix list e(b_2)

e(b_2)[1,9]
Mean: Mean: Mean: Mean: Between: Between:
week endog endweek _cons endog _cons
yl -2.3985558 1.8533485 .015627996 22.55652 .48166201  2.2502859

Within: Within: Within:
week endog _cons
y1 .17670505 .27196762  2.3461366

More usefully, we can construct a complete estimates table for the stage 2 results by first
making copies of e(b_2) and e(V_2).

e(b_2)
e(V_2)

. matrix b_2
. matrix V_2

Then we store these copies using the ereturn post command.
. ereturn post b_2 V_2
Finally we display the complete estimates table using the ereturn display command.

. ereturn display

| Coef. Std. Err. z P>z [95% Conf. Intervall]
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week |-2.398556 .1843516  -13.01 0.000 -2.759878  -2.037233

endog | 1.853348 1.106233 1.68 0.094 -.3148287 4.021526

endweek | .01528 .2694955 0.06 0.955 -.5129214 .5434813

_cons | 22.55652 . 7442506 30.31 0.000 21.09782 24.01522

_____________ e
Between |

endog | .481662 .446266 1.08 0.280 -.3930032 1.356327

_cons | 2.250286 .3460042 .50 0.000 1.57213 2.928442

_____________ o
Within |

week | .176705 .0607766 2.91 0.004 .057585 .2958251

endog | .2719676 .1620559 1.68 0.093 -.045656 .5895913

cons | 2.346137 .1833082 12.80 0.000 1.986859 2.705414

The group difference in the WS variance now appears significant at the 10% level (72 = 0.27,
p = 0.09), whereas when we accounted for the random-scale effects it was not significant
even at the 20% level. In Section 7 we shall demonstrate that the apparent increase in the
precision of the WS variance function coefficients when ignoring the random-scale effects is
entirely spurious.

6. Example 2: Positive mood study

The second example analyses presented by Hedeker and Nordgren (2013) relate to data drawn
from a week-long intensive longitudinal study of 515 adolescent school students (Mermelstein,
Hedeker, Flay, and Shiman 2002). Ecological momentary assessments (EMA) were collected
by randomly prompting students to respond to questions about their mood, place, activity
and companionship. The data are two-level with observations (level-1) nested within students
(level-2). The response is a positive mood score and interest lies in explaining why subjects
differ in their positive mood variability from prompt-to-prompt as well as why some subjects
have higher average positive mood than others. The main covariates of interest are student
gender and whether the student was alone when prompted.

6.1. Data
First we load the data.
. use posmood, clear

Next we describe the data’s content.

codebook, compact
Variable Obs Unique Mean Min Max Label
subject 17514 515  257.635 1 515 Subject
posmood 17514 28 6.732652 1 10 Positive mood score
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alone 17514 2 .4627155 0 1 Alome
genderf 17514 2 .5842183 0 1 Female

The output shows that the data includes four variables: the subject identifier, subject; the
response variable, posmood (range = 1 to 10); the week number, week (coded sequentially
from 0 to 5); whether the student was alone when prompted, alone (coded 0 for with others,
1 for alone); and student gender, genderf (coded O for males, 1 for females). In total the
515 subjects contributed 17514 observations. The mean positive mood is 6.73 out of 10 and
subjects were alone with a proportion of 0.46 or 46% of the observations.

To get a better sense of the data, Figure 4 plots a trellis plot of positive mood scores against
observation number for the first 20 subjects in the data. To plot this figure, we must first
generate a unique observation identifier within each subject and then xtset the data.

bysort subject: gen observation = _n

. label var observation "Observation'
. Xtset subject observation

panel variable: subject (unbalanced)
time variable: observation, 1 to 58
delta: 1 unit

The xtset output informs us that at least one subject contributes as many as 58 observations.
Next we use the xtline command to draw the plot.

. xtline posmood if subject<=20, byopts(style(compact))

where we specify if subject<=20 to restrict the plot to the first 20 subjects and we specify
the byopts(style(compact)) option to draw a more compact version of the plot than is
plotted by default.

The plot shows some subjects contribute more observations than others. We also see that
both mean positivity and mood variability varies substantially across subjects. For example,
Subjects 17 and 19 show similar mean positivity, but differ substantially in their mood vari-
ability with Subject 19 exhibiting a more variable mood than Subject 17. In contrast, Subject
18 exhibits very high mean positivity, close to the maximum score of 10, and very low mood
variability. This pattern is consistent with a ceiling effect in the positive mood scale.

6.2. Model 1
The first model Hedeker and Nordgren (2013, p. 22) specify for these data is written as
posmood,; = Bo + Bralone;; + Pogendert; + oy, 01; + €5, (16)
log <Ugij) = o + ajalone;; + asgenderf,, (17)
log (O’?ij) = 79 + T1alone;; + mgenderf, + 161; + 0u,09i, (18)
61, ~ N (0,1), (19)
02 ~ N (0,1), (20)
i~ N (0,02, 1)

21
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Figure 4: Spaghetti plot of positive mood scores plotted for the first 20 subjects.

where in the mean function posmood is modeled in terms of alone and genderf, to allow
for mean mood differences by gender and whether subjects are alone. The random-location
effect, o,,601;, allows for subject intercept heterogeneity above and beyond that explained by
the covariates. The log of the BS variance, agi, is modeled as a function of genderf to allow
male and female subjects to be differentially variable in terms of their mean positive mood
scores, having adjusted for the mean differences in gender and whether subjects are alone.
It is also modeled as a function of alone and so the magnitude of each subject’s random-
location effect is allowed to be modified on occasions when they are alone. The log of the
WS variance, O'zij, is modeled as a function of alone and genderf to allow the variability of
a subject’s positive mood about their individual mean level to differ by gender and whether
students are alone. The location effect is entered into the WS variance function to allow for a
linear subject-level association between the log of the WS variance and the random-location
effect. The random-scale effect, o,,609;, allows for any remaining unexplained variation in WS
response heterogeneity across subjects.

. runmixregls posmood alone genderf, between(alone genderf)
> within(alone genderf)

runmixregls - Run MIXREGLS from within Stata

Mixed-effects location scale model Number of obs = 17514
Group variable: subject Number of groups = 515
Obs per group: min = 3

avg = 34.0

max = 58
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Run time (seconds) = 317.061
Integration points = 11
Log Likelihood = -34141.961
posmood | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ o e e e e e e e e
Mean |
alone | -.3699634 .025034 -14.78 0.000 -.4190291 -.3208977
genderf | -.1500064 .1090527 -1.38 0.169 -.3637458 .0637331
_cons | 6.990347 .0810537 86.24  0.000 6.831485 7.149209
_____________ o
Between |
alone | .1053504 .0364417 2.89 0.004 .033926 .1767749
genderf | .0044638 .1305573 0.03 0.973 -.2514238 .2603513
_cons | .2984207 .0978013 3.05 0.002 .1067336 .4901078
_____________ P
Within |
alone | .0807709 .0247427 3.26 0.001 .0322762 .1292657
genderf | .2159367 .0613066 3.52 0.000 .0957779 .3360954
_cons | .7632344 .0474795 16.08 0.000 .6701763 .8562924
_____________ P
Association |
linear | -.217607 0310226 -7.01 0.000 -.2784102 -.1568039
_____________ o e e e e e e e e e e e
Scale |
sigma | .597438 .022634 26.40 0.000 .5530761 6418

The summary information at the top of the output states that the model is fitted to an esti-
mation sample of 17514 observations belonging to 515 subjects. The number of observations
per subject ranges from 3 to 58 with an average of 34 observations. The model took 317
seconds to converge.

The substantive interpretation of these results is given by Hedeker and Nordgren (2013, p. 23),
and so we provide only a brief summary here. The mean function shows subjects experience
significantly lower moods when alone (Bl = —0.37, p < 0.05), but there is no mean mood
difference by gender (BQ = —0.15, p = 0.17). The BS variance function also shows females
to be no more variable than males in their mean levels of positivity (Ge = 0.004, p = 0.97).
However, unexplained differences in mean moods between subjects become more pronounced
when subjects are alone relative to when they are with others (&; = 0.11, p < 0.05). The WS
variance function shows females have significantly more variable moods from one observation
to the next than males (7o = 0.22, p < 0.05). Subjects are also shown to have more variable
observation-to-observation moods when they are alone relative to when they are with others
(71 = 0.08, p < 0.05). The linear random-location effects are negatively associated with the
WS variance and so, having adjusted for the covariates, subjects with higher mean moods tend
to have lower mood variability (7; = —0.22, p < 0.05). Finally, the random-scale standard
deviation is significant suggesting that there is an unexplained component to subjects’ mood
variability (6, = 0.60, p < 0.05).
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We store these estimation results, giving them the name modell, so that we can retrieve them
at a later point.

. estimates store modell

To aid the interpretation of this model Hedeker and Nordgren (2013, p. 25) predict the BS
variance and the WS variance separately for the four subject groups formed by crossing gender
by alone status: (1) Male, not alone; (2) Male, alone; (3) Female, not alone; (4) Female, alone.
Below we replicate these predictions. First we use the generate and replace commands with
appropriate if statements to generate a new categorical variable named group which indicates
these four subject groups

. generate group = .

(17514 missing values generated)

. replace group = 1 if genderf==0 & alone==0
(3810 real changes made)

. replace group = 2 if genderf==0 & alone==
(3472 real changes made)

. replace group = 3 if genderf==1 & alone==
(6600 real changes made)

. replace group = 4 if genderf==1 & alone==1
(4632 real changes made)

Then we define a value label named grouplabel and attach this to this variable.

. label define grouplabel 1 "Male, not alone"

> 2 "Male, alone"
> 3 "Female, not alone"
> 4 "Female, alone"

. label values group grouplabel

Taking the exponential of both sides of the log-linear BS variance function (Equation 17)
gives
2

Oy, = €xp (ap + cvjalone;; + asgendert,). (22)

We use the predictnl command to store these predictions in a new variable called BSvariance.

We make use of the function xb(Between) which replicates the calculation of the linear pre-
dictor, uiTjév, here, &g + Gralone;; + Gagenderf;.
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. predictnl BSvariance = exp(xb(Between))
Next we use the tabstat command to tabulate the predicted BS variance by subject group.

tabstat BSvariance, by(group) nototal format(74.3f)

Summary for variables: BSvariance
by categories of: group

group | mean
_________________ P
Male, not alone | 1.348
Male, alone | 1.497
Female, not alon | 1.354
Female, alone | 1.504

These predicted values show the variability in mean moods across subjects are amplified when
subjects are alone, relative to when they are with others.

Taking the exponential of both sides of the log-linear WS variance function (Equation 18)
gives

2
61‘]

oZ = exp (19 + Tialone;; + mogenderf; + 1601; + 0,02 . (23)

We wish to obtain the population-averaged WS variance for each of our four subject groups.
This is obtained by integrating out the random-location and random-scale effects. It can be
shown that the resulting expression is given by?

Uzij = exp {7’0 + Tialone;; + Togenderf; + % (7'12 + 03)} . (24)
We will use the predictnl command to also store these predictions. However, in order to do
so we first need to know how to specify the parameters 7; and o, in the above expression.
We can find their internal Stata parameter names by reissuing the runmixregls command
with only the coeflegend option. This will simply redisplay the current (active) estimation
results, but will present the parameter names rather than displaying the statistics for these

coefficients.

. runmixregls, coeflegend

runmixregls - Run MIXREGLS from within Stata

Mixed-effects location scale model Number of obs = 17514
Group variable: subject Number of groups = 515
Obs per group: min = 3

avg = 34.0

max = 58

3We integrate out the random-scale effects by making use of the fact that if a random variable is log normally
distributed with mean p and variance o2, then its expected value is given by exp (u + 502).

25
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Run time (seconds) = 317.852
Integration points = 11
Log Likelihood = -34141.961
posmood | Coef. Legend
_____________ e
Mean |
alone | -.3699634 _b[Mean:alone]
genderf | -.1500064 _b[Mean:genderf]
_cons | 6.990347 _b[Mean:_cons]
_____________ e
Between |
alone | .1053504 _b[Between:alone]
genderf | .0044638 _b[Between:genderf]
_cons | .2984207 _b[Between:_cons]
_____________ o
Within |
alone | .0807709 _b[Within:alone]
genderf | .21569367 _b[Within:genderf]
_cons | .7632344 _b[Within:_cons]
_____________ U
Association |
linear | -.217607 _b[Association:linear]
_____________ o
Scale |
sigma | .5697438 _b[Scale:sigma]

We see that the internal Stata parameter names for 7; and o, are _b[Association:linear]
and _b[Scale:sigma], respectively. We can now use predictnl to predict the population-
averaged WS variances, placing them in a new variable called WSvariance. We make use
of the function xb(Within) to replicate the calculation of the linear predictor, 'w;-;f', here,
T0 + ﬂaloneij + fggenderfi.

. predictnl WSvariance = exp(xb(Within)
> + 0.5 % (_b[Association:linear]"2 + _b[Scale:sigma]"2))

Next we tabulate the predicted population-averaged WS variance by subject group

. tabstat WSvariance, by(group) nototal format(%4.3f)

Summary for variables: WSvariance
by categories of: group
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Male, alone | 2.847
Female, not alon | 3.259
Female, alone | 3.533

These predicted values show that females have higher occasion-to-occasion mood variability
than males. Similarly subjects have more variable moods when alone, relative to when they
are with others.

Having predicted the BS and WS variances for each subject group, Hedeker and Nordgren
(2013, p. 25) go on to calculate the intraclass correlation coefficient (ICC) for each subject
group. The ICC is defined as the expected residual correlation between two observations from

the same subject and is calculated as r = agij / (agij + U?i]).

We can once again use the predictnl command to calculate these predictions

. predictnl ICC = exp(xb(Between))/(exp(xb(Between)) + exp(xb(Within)
> + 0.5 * (_b[Association:linear]~2 + _b[Scale:sigma]~2)))

We then tabulate the ICC by subject group

. tabstat ICC, by(group) nototal format (7%4.3f)

Summary for variables: ICC
by categories of: group

group | mean
_________________ P
Male, not alone | 0.339
Male, alone | 0.345
Female, not alon | 0.294
Female, alone | 0.299

These predicted values show that there is substantial clustering in the data for all four groups,
but that observations are more correlated within males than females. In contrast, subjects’
observations appear no more correlated when they are alone, than when they are with others.

6.3. Model 2

The second model Hedeker and Nordgren (2013, p. 26) specify explores the interaction between
gender and whether subjects are alone on their mean moods, BS heterogeneity in mean moods,
and in their WS mood variability. Specifically, they include algenf, the interaction between
alone and genderf in the mean function, the BS variance function, and the WS variance

27
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function. Their model can be written as

posmood,; = f + Sialone;; + fogendert, + fSzalgent;; + oy, 01i + €, (25)
log<oﬁm) = ap + ajalone;; + asgenderf; + azalgent,;, (26)
log (Uij) = 70 + T1alone;; + Togendert; + T3algent;; + 101, + 0u,0, (27)
Oo; ~ N(Oa 1) ) (29)
eij ~ N (0, aZij) . (30)
First we generate the interaction term.
. generate algenf = alone * genderf
Then we fit the model.
. runmixregls posmood alone genderf algenf, between(alone genderf algenf)
> within(alone genderf algenf)
runmixregls - Run MIXREGLS from within Stata
Mixed-effects location scale model Number of obs = 17514
Group variable: subject Number of groups = 515
Obs per group: min = 3
avg = 34.0
max = 58
Run time (seconds) = 249.67
Integration points = 11
Log Likelihood = -34137.281
posmood | Coef Std. Err z P>zl [95% Conf. Interval]
_____________ t————————rrrrrrrrrrrrrrrrrrrrr -
Mean |
alone | -.2931987 .037085 -7.91 0.000 -.3658841 -.2205134
genderf | -.1228584 .1095034 -1.12 0.262 -.3374811 .0917644
algenf | -.1435512 .0502354 -2.86 0.004 -.2420109 -.0450916
_cons | 6.975568 .0815586 85.563 0.000 6.815716 7.13542
_____________ +_______________________________________________________________
Between |
alone | .0954204 .050034 1.91  0.057 -.0026444 .1934852
genderf | .005984 .1353521 0.04 0.965 -.2593013 .2712693
algenf | -.0091599 .0733212 -0.12 0.901 -.1528669 .134547
_cons | .3057143 .099226 3.08 0.002 .1112349 .5001937
_____________ +_______________________________________________________________
Within |
alone | .0995315 .0384968 2.59 0.010 .0240792 .1749837
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genderf | .2374749 .0656224 3.62 0.000 .1088574 .3660925

algenf | -.0308296 .0502215 -0.61 0.539 -.1292619 .0676028

_cons | .7498941 .0494864 15.15 0.000 .6529027 .8468856

_____________ o
Association |

linear | -.217481 0309968 -7.02 0.000 -.2782336 -.1567285

_____________ o
Scale |

sigma | .5969527 0226075 26.41 0.000 .5526428 .6412626

We store the estimation results, naming them model2.
. estimates store model2

We can replicate the likelihood ratio test comparing this model to the previous one (Hedeker
and Nordgren 2013, p. 27) by using Stata’s 1rtest command.

. lrtest modell model2

Likelihood-ratio test LR chi2(3)
(Assumption: modell nested in model2) Prob > chi2

9.36
0.0249

We see that there is evidence of a significant interaction between gender and whether subjects
are alone on positive mood (x3 = 9.36, p = 0.03). However, examining the individual param-
eters shows that only the mean function interaction is individually significant (33 = —0.14,
p < 0.05). The nature of this interaction is that there is no gender difference in positivity
when subjects are with others (Bz = —0.12, p = 0.26) but a gender difference becomes ap-
parent when subjects are alone with females exhibiting significantly lower mood than males
(Bg + By =—-027,p= 0.02). We calculated the p value for this result using the lincom com-
mand which computes point estimates, standard errors, z statistics, p values, and confidence
intervals for linear combinations of model parameters. We refer to the estimated parameters
Bg and Bg by their internal Stata parameter names.

. lincom _b[Mean:genderf] + _b[Mean:algenf]

( 1) [Mean]genderf + [Mean]algenf = 0

posmood | Coef. Std. Err. z P>zl [95% Conf. Intervall
_____________ +_______________________________________________________________
(1) | -.2664096 .1152927 -2.31 0.021 -.492379 -.0404401

6.4. Model 3

The third and final model Hedeker and Nordgren (2013, p. 28) specify allows for a quadratic
relationship between the log of a subject’s WS variance and their random-location effect.
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Such functionality will better capture the suspected ceiling effect in these data. Their model
can be written as

posmoodw»=:ﬁo%—ﬁlalone”~+»52genderfi+—ﬁ3algenfm~+»avw91i%-GU,

log (03U> ::0@-+-a1alonem'+—a2genderfi+—a3algenfw,

log (Uéj) ::70—k71alone@j%—7Qgenderfi%—73a1genfﬁ-+’n91iﬂ-759%i+-0w92h

01; NN(O, 1),
02; NN(O, 1),

€ij ~ N ((),cr2 ) )

EU

31
32

(31)
(32)
(33)
(34)
(35)
(36)

To fit the model we simply add the association(quadratic) option to the previous call of

runmixregls.

. runmixregls posmood alone genderf algenf, between(alone genderf algenf)

> within(alone genderf algenf) association(quadratic)

runmixregls - Run MIXREGLS from within Stata

Mixed-effects location scale model
Group variable: subject

Run time (seconds) =
Integration points =

Log Likelihoo

d

= -34

263.606
11
118.125

Number of obs
Number of groups
Obs per group: min

avg
max

17514
515

34.0
58

alone
genderf
algenf
_cons

Between
alone
genderf
algenf
_cons

Within

alone
genderf
algenf

[95% Conf.

Intervall

-.2946179
-.0542027
-.1371417

6.93622

.0374313
.1034123
.0503696
.0784818

-.3679818
-.256887
-.2358644
6.782399

-.221254
.1484816
-.0384191
7.090042

.0923244
.0354973
-.0100287
.2775077

.0485541

.127691
.0713295
.0958697

-.0028399
-.2147725
-.149832
.0896065

.1874886
.2857671
.1297746
.4654088

.10084
.2099701
-.0323819

.0385214
.0650992
.0502295

.02563394
.0823781
-.1308299

.1763406
.3375621
.066066
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_cons | .891142 .0534163 16.68 0.000 .7864479 .995836
_____________ +_______________________________________________________________
Association |
linear | -.2270055 .0318638 -7.12 0.000 -.2894573 -.1645536
quadratic | -.127156 .0214849 -5.92 0.000 -.1692656 -.0850464
_____________ +_______________________________________________________________
Scale |
sigma | .5708147 .0219499 26.01 0.000 .5277936 .6138358
We store the estimation results, naming then model3.
. estimates store model3
We then perform a likelihood ratio test to compare this model to the previous model.
. Irtest model2 model3
Likelihood-ratio test LR chi2(1) = 38.31
(Assumption: model2 nested in model3) Prob > chi2 = 0.0000

We see that the current model, which includes the quadratic effect of the random-location
effects on the WS variance, fits the data significantly better than the previous model which
only allows for a linear effect (x3 = 38.31, p < 0.05).

6.5. Additional analyses extending that presented in Hedeker and Nordgren
(2013)

The Association section of the above estimates table shows that both the linear and quadratic
effects of the random-location effects are negative and individually significant. We can aid
our interpretation of these coefficients by plotting the WS variance function for each of the
four subject groups as a function of these random-location effects where we integrate out the
random-scale effects to simplify the plot. The resulting WS variance function is given by

aij = exp <7'0 + T1alone;; + Tagendert, + t3algent,; + 161, + qui- + ;03) . (37)
To plot this function separately for each of the four subject groups, we use the following twoway
command with four separate function plots. The plottype function plots mathematical
functions of the form y = f(x), where f(z) is some function of x. Here x represents the
standardized random-location effect, 61;, and so we use the range() option to restrict its
range to be from -3 to 3. We refer to all parameters by their internal Stata parameter names.
We use the ytitle() and xtitle() options to specify the titles to appear next to the axes.
We use the legend() option with the order() suboption to specify the text for the legend
key.

. twoway ///
>  (function exp(_b[Within:_cons]
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WS variance
2
L

O —
T T T T T
-4 -2 0 2 4
Random-location effect
Male, not alone —  Male, alone
Female, not alone Female, alone

Figure 5: Predicted WS variance functions plotted against random-location effect, separately
for each subject group.

*

+ _b[Association:linear] * x + _b[Association:quadratic] * x72
+ 0.5 * (_b[Scale:sigma]"~2)), range(-3 3))
(function exp(_b[Within:_cons] + _b[Within:alone]
+ _b[Association:linear] * x + _b[Association:quadratic]
+ 0.5 * (_b[Scale:sigma]"~2)), range(-3 3))
(function exp(_b[Within:_cons] + _b[Within:genderf]
+ _b[Association:linear] * x + _b[Association:quadratic]
+ 0.5 * (_b[Scale:sigma]~2)), range(-3 3))
(function exp(_b[Within:_cons] + _b[Within:alone]
+ _b[Within:genderf] + _b[Within:algenf]
+ _b[Association:1linear] * x + _b[Association:quadratic]
+ 0.5 * (_b[Scale:sigmal~2)), range(-3 3)),
ytitle(WS variance)
xtitle (Random-location effect)
legend(order(1 "Male, not alone"
2 "Male, alone"
3 "Female, not alone"
4 "Female, alone"))

*

x"2

*

x"2

*

x"2

VVVVVVVVVVVVVVVVVYV

Figure 5 shows females exhibit higher mood variability than males as do subjects of both
genders when they are alone, relative to when they are with others. The negative linear and
quadratic influences of the random-location effects give the variance functions their curved
shapes and suggest subjects with more extreme location effects (particularly very high location
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effects) exhibit less within-subject variation compared to those with less extreme location
effects. This pattern reflects the floor and especially ceiling effects in the positive mood scale.

7. Simulation study

Most standard software can fit a limited version of the mixed-effects location scale model that
allows heterogeneity in the WS variance across a limited number of sub groups. More special-
ized mixed-effects software such as HLM, MLwiN and SAS PROC MIXED can model the WS
variance as a function of covariates. However, none of these packages allow users to addition-
ally include random-scale effects in these functions. Ignoring unexplained subject differences
in response dispersion will lead the resulting WS regression coefficients to be estimated with
spurious precision, especially regression coeflficients relating to subject-level predictors. This
issue is analogous to the well known problem of ignoring clustering in standard mixed-effects
models where omitting the random-location effects leads the mean function regression coef-
ficients to be estimated with spurious precision. Despite this, we are not aware of this issue
being discussed in the context of WS variance functions. Researchers ignoring unexplained
subject variation in the residual error variance therefore run the risk of making type I errors
of inference and of drawing misleading research conclusions regarding the factors which in-
fluence response dispersion. In Section 5 we showed using the Reisby data that ignoring the
random-scale effects increased the apparent precision of the group difference in WS variance.
In this section we present a simple parameter recovery simulation study to show that such
increases in precision are entirely spurious.

We analyze 1000 replications of 250 subjects, with 10 observations per subject. On each
replication, we generate subjects’ responses, y,;, according to the following “true” mixed-
effects location scale model

Vij = Bo + Bixij + B2z + 0,01 + €5, (38)
log (012]) = ap, (39)
log (aij) = To + T1Xij + T2Zi + 0,02, (40)
01, ~ N (0,1), (41)
095 ~ N (0,1), (42)

2
€ij ~ N <O,U€ij> s (43)

where the predictors, x;; and z;, are standard normal variates defined at the observation and
subject levels, respectively. For simplicity we assume a homogeneous BS variance and no
subject-level association between the unobserved location and scale heterogeneity. The true
values for the parameters are: 5y = 0, 81 = 0.5, 5o = 0.2, a9 = —2.3, 19 = —0.61, ; = 0.1,
75 = 0.1, and o, = 0.45. We then fit a mixed-effects location scale model to each simulated
dataset which matches the true model specification presented above. We save the results of
each stage 2 model (which ignores the random-scale effects) and each stage 3 model (which
includes the random-scale effects). Lastly we compare the two sets of model results, averaging
over the 1000 replications.

We start by clearing any existing data from memory and by specifying an initial value for the
random-number seed should we wish to replicate our simulation study at a later date.
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clear
. set seed 21561561

We then use the forvalues command to execute the commands enclosed within its braces
1000 times.

. forvalues r = 1/1000 {

2. display "Replication = "r'"

3. clear

4. set obs 250

5. generate subject = _n

6. generate z = rnormal(0, 1)

7. generate thetal = rnormal(0, 1)

8. generate theta2 = rnormal(0, 1)

9. expand 10

10. bysort subject: generate obs = _n

11.  generate x = rnormal(0, 1)

12.  generate sigma_v = sqrt(exp(-2.3))

13. generate sigma_w = 0.45

14. generate sigma2_e = exp(-0.61 + 0.1 * x + 0.1 * z + sigma_w * theta2)
15.  generate e = rnormal(0, sqrt(sigma2_e))

16. generate y = 0 + 0.5 ¥ x + 0.2 * z + sigma_v * thetal + e
17. xtset subject

18.  runmixregls y x z, within(x z) association(none)

19. clear

20. set obs 8

21. generate byte parameter = _n

22. matrix b_2 = e(b_2)"'

23. matrix V_2 = e(V_2)

24. matrix b_3 = e(b_3)'

25. matrix V_3 = e(V_3)

26. matrix se_2 = vecdiag(cholesky(diag(vecdiag(V_2))))'
27. matrix se_3 = vecdiag(cholesky(diag(vecdiag(V_3))))"'
28. svmat b_2

29. svmat se_2

30. svmat b_3

31. svmat se_3

32.  rename (*1) (*)

33. format 74.3f b_2 se_2 b_3 se_3

34. list, abbreviate(9) separator(0)

35. save "rep_'r'.dta", replace

36. }

(output omitted)

Line 2 of the loop displays the current replication number so that the user can see how far
the simulation study has progressed. Line 3 clears any existing data from memory. Line 4
specifies that the new dataset will have 250 records, one for each subject. Line 5 generates a
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new variable to index the subjects. Line 6 generates the single subject-level covariate. Lines
7 and 8 generate the standardized random-location and random-scale effects, respectively.
Line 9 expands the data from one record per subject to ten records per subject, one for
each observation. Line 10 generates a new variable to index these observations within each
subject. Line 11 generates the single observation-level covariate. Lines 12 and 13 generate the
BS standard deviations of the random-location and random-scale effects, respectively. Line
14 generates the WS variance. Line 15 generates the residual errors. Line 16 generates the
response variable. Line 17 declares the data to be a panel. Line 18 fits the mixed-effects
location scale model to the simulated data. Line 19 clears the data from memory. Line
20 changes the number of records in the dataset to eight, one for each parameter. Line 21
generates a new variable to index these parameters. Lines 22 through 25 create copies of
the stage 2 and stage 3 coefficient vectors and their associated variance-covariance matrices.
Lines 26 and 27 create column vectors of the stage 2 and stage 3 parameter standard errors
as the square roots of the leading diagonals of their variance-covariance matrices. Lines 28
through 31 take the stage 2 and stage 3 column vectors of parameter estimates and standard
errors and stores their values as four new variables. Line 32 removes the suffix 1 which is
automatically added to the names of the four new variables. Line 33 sets the display precision
of the four newly created variables to three decimal places. Line 34 lists the dataset of stage 2
and 3 model results. Line 35 saves these model results to disk, saving the replication number
in the filename. Line 36 closes the loop.

Next we clear the data and generate a new variable called rep which will store the replication
number.

clear
. generate rep = .

We then append the 1000 datasets of model results stored on disk together.
. forvalues r = 1/1000 {
2. append using "rep_'r'"
3. replace rep = ‘r' if rep==.
4. }
(output omitted) Line 2 appends the dataset corresponding to the current replication

number. Line 3 replaces missing values of rep with the current replication number in order
to index the appended results. Line 4 closes the loop.

Next we generate a new variable called truevalue which holds the true value associated with
each parameter

. generate truevalue = .
(8000 missing values generated)
. replace truevalue = 0.5 if parameter==1

(1000 real changes made)
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. replace truevalue = 0.2 if parameter==
(1000 real changes made)

. replace truevalue = 0.0 if parameter==3
(1000 real changes made)

. replace truevalue = -2.3 1if parameter==4
(1000 real changes made)

. replace truevalue = 0.1 1if parameter==5
(1000 real changes made)

. replace truevalue = 0.1 1if parameter==
(1000 real changes made)

. replace truevalue = -0.61 if parameter==7
(1000 real changes made)

. replace truevalue = 0.45 if parameter==8
(1000 real changes made)

Then we generate the percentage bias for each parameter making sure its display precision is
to the nearest percentage point.

. generate b_2_bias = 100 * (b_2 - truevalue)/truevalue
(2000 missing values generated)

. generate b_3_bias = 100 * (b_3 - truevalue)/truevalue
(1000 missing values generated)

. format 73.0f b_2_bias b_3_bias

Then we generate a coverage indicator which equals 100 if the 95% confidence interval contains
the true value, 0 otherwise. We use the inrange(z, a, b) function to return 1 if it is known
that a < z < b; otherwise, the function returns 0.
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. generate b_2_cov = 100 * (inrange(truevalue, b_2 - invnorm(0.975) * se_2,
> b_2 + invnorm(0.975) * se_2))
. generate b_3_cov = 100 * (inrange(truevalue, b_3 - invnorm(0.975) * se_3,
> b_3 + invnorm(0.975) * se_3))

3

. format /,3.0f b_2_cov b_3_cov

Next we use the collapse command to average the results for each parameter over the 1000
replications.

collapse (mean) b_2 se_2 b_3 se_3 b_2_bias b_3_bias b_2_cov b_3_cov,
> by (parameter truevalue)

We then define the value label parlabel and assign it to the variable parameter.

. label define parlabel 1 "beta_1" 2 "beta_2" 3 "beta_0" 4 "alpha_ 0"
> 5 "tau_1" 6 "tau_2" 7 "tau_0" 8 "sigma_w"
. label values parameter parlabel

Finally we can display the results. First we list the averaged parameter estimates and their
percentage biases. Note that the percentage bias for 8y will be missing as its true value is
ZEro.

. list parameter truevalue b_2 b_3 b_2_bias b_3_bias, noobs abbreviate(9)
> separator (0)

o +
| parameter truevalue b_2 b_3 b_2_bias b_3_bias |
|- |
| beta_1 5 0.500 0.500 0 0 |
I beta_2 .2 0.199 0.199 -0 -0 |
| beta_0 0 -0.001 -0.001 |
| alpha_0O -2.3 -2.319 -2.319 1 1
| tau_1 1 0.101 0.101 1 1]
| tau_2 .1 0.101 0.101 1 1]
| tau_0 -.61 -0.508 -0.607 -17 -0 |
|  sigma_w .45 . 0.444 . -1 |
e e +

The stage 3 averaged parameter estimates (stored in b_3) lie very close to their true values
(truevalue) and this is confirmed by their small percentage biases (b_3_bias). The stage
2 averaged parameter estimates (b_2) also lie very close to their true values, except for the
intercept of the WS variance function, 79, which is biased downwards by 17%. Recall that
To is expected to be lower in the stage 2 model as in that model 7y corresponds to the
population-averaged intercept while in the stage 3 model 79 corresponds to the population-
median intercept.

Second, we list the averaged standard errors.

. list parameter truevalue se_2 se_3, noobs abbreviate(9) separator(0)
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- +
| parameter truevalue se_2 se_3 |
| ————mm o I
I beta_1 5 0.016 0.015 |
I beta_2 .2 0.025 0.025 |
I beta_0 0 0.025 0.025 |
|  alpha_0 -2.3 0.146 0.144 |
I tau_1 1 0.030 0.032 |
I tau_2 .1 0.030 0.042 |
I tau_0 -.61 0.030 0.042 |
| sigma_w .45 0.044 |
- +

The stage 2 averaged standard errors (stored in se_2) are very similar to the stage 3 averaged
standard errors (se_3) for the mean function and the BS variance function parameters, but
are smaller for the WS variance function parameters, especially for the coefficient of the
subject-level covariate, 7o.

Finally, we examine the coverage rates.

. list parameter truevalue b_2_cov b_3_cov, noobs abbreviate(9) separator(0)

| beta_1 5 96 96 |
I beta_2 .2 94 94 |
| beta_0 0 96 96 |
|  alpha_0 -2.3 96 97 |
| tau_1 1 92 95 |
| tau_2 .1 82 95 |
| tau_0 -.61 17 95 |
| sigma_w .45 100 96 |
o +

The stage 3 coverage rates (stored in b_3_cov) show good coverage for all parameters; the
95% confidence intervals include the true value approximately 95% of the time. The stage
2 coverage rates (b_2_cov) show good coverage for the mean and BS variance functions
parameters, but poor coverage for the WS variance function parameters. The coverage rate
for the WS variance function intercept, 79, is just 17% and is driven by the substantial
downwards bias already described for this parameter. The coverage rate for the coefficient
of the observation-level covariate, 71, is 92%, while for the coefficient of the subject-level
covariate, 1o, it is just 82%. Given that the corresponding averaged estimates show almost
no bias for these two parameters, the low coverage rates shows that the standard errors
in the stage 2 model are too small. In sum, ignoring the random-scale effect in the WS
variance function leads the regression coefficients in this function to be estimated with spurious
precision, especially the regression coefficients of subject-level covariates.
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8. Conclusions

We have presented runmixregls, a command to run the MIXREGLS software for fitting
mixed-effects location scale models seamlessly from within Stata. There are notable advan-
tages of running MIXREGLS in this way. First, runmixregls provides a simple and intuitive
command syntax to allow users to specify the full range of modeling and estimation options
implemented in MIXREGLS. Second, prior to fitting a particular model, users can take ad-
vantage of Stata’s excellent statistics, graphics and data management commands to prepare
and descriptively analyze their data. Third, after fitting the model, users can apply Stata’s
comprehensive hypothesis testing, model comparison, prediction and plotting facilities to in-
terpret their models and to communicate their results. Last, all analyses can be reproduced
and documented for publication and review by typing all these commands into a file and
running them all at once. We illustrated all this functionality by replicating and extending
the two example analyses presented by Hedeker and Nordgren (2013). We also performed a
simulation study, using runmixregls, to demonstrate a new and important research finding.
Namely, that ignoring the random-scale effect in the WS variance function will lead to the
regression coefficients in this function to be estimated with spurious precision, especially the
regression coefficients of subject-level covariates.

The annotated Stata do-file which accompanies this article allows readers to replicate the
presented analyses. A complete description of the command syntax and all modeling and
estimation options is provided in the help file (Leckie 2013). Further information and resources
can be found on the runmixregls web site (http://www.bristol.ac.uk/cmm/software/
runmixregls/).
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