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Abstract

dglars is a publicly available R package that implements the method proposed in Au-
gugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized
linear model. This method, called dgLARS, is based on a differential geometrical ex-
tension of the least angle regression method proposed in Efron, Hastie, Johnstone, and
Tibshirani (2004). The core of the dglars package consists of two algorithms implemented
in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm,
proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed
in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is signifi-
cantly faster than the predictor-corrector algorithm. For comparison purposes, we have
implemented both algorithms.

Keywords: differential geometry, generalized linear models, dgLARS, predictor-corrector al-
gorithm, cyclic coordinate descent algorithm, sparse models, variable selection.

1. Introduction

Nowadays, high-dimensional datasets, in which the number of predictors, say p, is larger
than the sample size N , are becoming more and more common. Routine monitoring, e.g.,
of web traffic or satellite surveyance, and high-throughput screening methods in biology and
chemistry, raise the tantalizing prospect of being able to explain and predict a wide range
of phenomena. What makes high-dimensional statistical inference possible is the assumption
that the regression function lies in a low-dimensional manifold (Fan and Lv 2010). In a
regression setting, this means that the coefficient parameter vector has a sparse structure.
Modern statistical methods developed to cope with this problem are usually based on the idea
of using a penalty function to estimate a sparse solution curve embedded in the parameter
space and then to find the point that represents the best compromise between sparsity and
fit of the model. Recent statistical literature has a great number of contributions devoted to
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this problem: some important examples are the L1-penalty method, originally proposed in
Tibshirani (1996), the SCAD method (Fan and Li 2001), the Dantzig selector (Candes and
Tao 2007), which was extended to generalized linear models (GLMs) in James and Radchenko
(2009), and the MC+ penalty function introduced in Zhang (2010), among others.

Differently from the methods cited above, Augugliaro et al. (2013) propose a new approach
based on the differential geometrical representation of a GLM. The method does not re-
quire an explicit penalty function, because it introduces sparsity more directly: it defines the
sparsest continuous solution path with a pointwise maximum likelihood estimate (MLE). It
has been called differential geometric LARS (dgLARS) because it generalizes the geometrical
ideas underlying least angle regression (LARS) proposed in Efron et al. (2004). As empha-
sized in Augugliaro et al. (2013), LARS is not only “an important contribution to statistical
computing”, as suggested in Madigan and Ridgeway (2004), but is a proper likelihood method
in its own right: it can be generalized to any model and its success does not depend on the
arbitrary match of the constraint and the objective function, as is the case in penalized infer-
ence methods. In particular, using the differential geometric characterization of the classical
signed Rao’s score test statistic, dgLARS gains important theoretical properties that are not
shared by other methods.

From a computational point of view, the dgLARS method consists essentially in computing
the implicitly defined solution curve. In Augugliaro et al. (2013) this problem is satisfactorily
solved by using a predictor-corrector (PC) algorithm, that however has the drawback of
becoming intractable when working with thousands of predictors, since in the predictor step
of this algorithm the number of arithmetic operations scales as the cube of the number of
predictors. To overcome this problem, Augugliaro et al. (2012) propose a much more efficient
cyclic coordinate descend (CCD) algorithm, which connects the original dgLARS problem
with an iterative reweighted least squares (IRLS) algorithm.

In this paper we present the R (R Core Team 2014) dglars package (Augugliaro 2014), that
implements both the algorithms to compute the solution curve implicitly defined by dgLARS.
In this version of the package only the Poisson and binomial family are implemented, other
families will be added in future versions of the package. The implemented functions return an
object inheriting from an S3 class for which suitable methods have been implemented. The
package dglars is available under the general public license (GPL ≥ 2) from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=dglars.

The paper is organized as follows. In Section 2 we give some methodological background of
the proposed method. More specifically, in Section 2.1 we introduce the dgLARS method
by giving some essential clues to the theory underlying a GLM from a differential geometric
point of view. In Section 2.2 we give a description of the implemented algorithms and in
Section 2.3 we describe the notion of generalized degrees of freedom. Section 3 is devoted
to the description of the main functions implemented in the dglars package. In Section 4
we compare the behavior of the proposed method with the L1-penalized MLE by simulation
studies and in Section 5 we use the functions implemented in our package to study two real
data sets. Finally, in Section 6 we draw some conclusions.

2. Methodological background

In this section we give a rough overview of the method. The reader interested in more of
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the differential geometric details of this method is referred to Augugliaro et al. (2013). The
dgLARS method defines a continuous solution path for a GLM, with on one extreme of the
path the MLE and on the other extreme the intercept-only estimate. The aim of the method
is to define the most efficient model – in likelihood terms – that uses the fewest variables.
In order to describe the method, we introduce the GLM and its dgLARS solution path in
Section 2.1. The computational aspects are given in Section 2.2.

2.1. Description of the dgLARS method

Let Y be a scalar random variable with probability density function belonging to the expo-
nential family, i.e.,

p(y; θi, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)},
where θ ∈ Θ ⊆ R is the canonical parameter, φ ∈ Φ ⊆ R+ the dispersion parameter and
a(·), b(·) and c(·, ·) are specific given functions. The expected value of Y is related to the
canonical parameter by the mean value mapping, namely

E(Y) = µ = ∂b(θ)/∂θ,

similarly, the variance of Y is related to its expected value by the identity VAR(Y) = a(φ)V (µ),
where V (µ) is called variance function. In the following we shall assume that the dispersion
parameter is fixed, in this case, without loss of generality we can set φ = 1. Let X be the
p-dimensional vector of random predictors. A GLM is based on the assumption that the
conditional expected value of Y given X = x is specified by the link function h(·), namely

h(E(Y|X = x)) = β0 +

p∑
m=1

xmβm.

This means that the probability density function of Y is defined with respect to the mean
value µ(β) = h−1(x>β), where x0 = 1. Under the assumption that we are working with
N independent copies of the pair (Y,X ) the conditional probability density function can
be written as p(y;µ(β)) =

∏N
i=1 p(yi;µi(β)). In the following of this paper we shall use

`(β; y) = log p(y;µ(β)) as notation for the conditional log-likelihood function.

The mth score function, measuring the likelihood increase in the mth direction is given as

∂m`(β;y) = ∂ log p(y;µ(β))/∂βm.

To measure the scale of this change, relative to the size of the mth predictor, we scale the
score function by the square root of the conditional Fisher information, i.e.,

Im(β) = E(∂m`(β;Y)2),

to obtain the conditional Rao’s score statistic,

rum(β) =
∂m`(β; y)√
Im(β)

.

At the MLE β = β̂, the Rao’s score statistics are equal to zero, since the derivatives of the
likelihood are zero. On the other hand, for the minimal model with only the MLE of the
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intercept β̂0 = (β̂0, 0, . . . , 0), we define γmax to be the largest absolute value of the Rao’s
score statistic at β̂0, i.e.,

γmax = max
m=1,...,p

|rum(β̂0)|.

This value points out the best instantaneous “normalized” contribution to the likelihood of
a single variable. This variable would make an excellent candidate for being included in the
model. With these definitions in hand, we can now define the dgLARS estimator.

Definition 1 Let γ ∈ [0, γmax] be a fixed value. The dgLARS estimator of a given GLM,
denoted by β̂(γ) ∈ Rp, is such that the following conditions are satisfied:

|rum(β̂(γ))| = γ, ∀m ∈ A(γ), (1)

|rum(β̂(γ))| < γ, ∀m /∈ A(γ). (2)

where A(γ) = {m : β̂m(γ) 6= 0} is called active set.

Here we have defined the dgLARS estimator in terms of the Rao’s score statistic. Augugliaro
et al. (2013) show that Definition 1 follows naturally from a differential geometric interpre-
tation of a GLM that allows us to generalize the LARS method introduced in Efron et al.
(2004). The dgLARS method generalizes the geometric description of LARS and is based on
the following simple differential geometric identity

rum(β) = cos ρm(β) · ‖rβ(Y)‖p(µ(β)),

where ρm(β) is the angle between ∂m`(β;Y) and the tangent residual vector rβ(Y) while
‖rβ(Y)‖p(µ(β)) is the length of this vector – which, crucially, does not depend on variable m.
Using Figure 1 the dgLARS method can be described in the following way. First the method
selects the predictor, say Xa1 , whose basis vector ∂a1`(β̂(γmax);Y) has the smallest angle
with the tangent residual vector, and includes it in the active set A(γ(1)) = {a0, a1}, where a0
stands for the intercept and γ(1) = γmax. The solution curve β̂(γ) = (β̂a0(γ), β̂a1(γ), 0, . . . , 0)>

is chosen in such a way that the tangent residual vector is always orthogonal to the basis
∂a0`(β̂(γ);Y), while the direction of the curve β̂(γ) is defined by the projection of the tangent
residual vector onto the basis vector ∂a1`(β̂(γ);Y). The curve β̂(γ) continues as defined above
until γ = γ(2), for which there exists a new predictor, say Xa2 , that satisfies the equiangularity
condition, namely

ρa1(β̂(γ(2))) = ρa2(β̂(γ(2))). (3)

At this point Xa2 is included inA(γ(2)) and the curve β̂(γ) = (βa0(γ), βa1(γ), βa2(γ), 0, . . . , 0)>

continues, such that the tangent residual vector is always orthogonal to the basis vector
∂a0`(β̂(γ);Y) and with direction defined by the tangent vector that bisects the angle between
∂a1`(β̂(γ);Y) and ∂a2`(β̂(γ);Y), as shown on the right side of Figure 1.

Efron et al. (2004) show that the LASSO solution curve can be obtained by a simple modifica-
tion of the LARS method. Let β̂(γ) be the solution of a GLM penalized using the L1-penalty
function, then it is easy to show that the sign of any non-zero coefficient has to agree with
the sign of the score function, namely

sign(∂m`(β̂(γ); y)) = sign(β̂m(γ)).
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Figure 1: Differential geometrical description of the dgLARS method for a GLM with two
covariates; in the left side the first predictor Xa1 is found and included in the active set; in
the right side the generalized equiangularity condition (Equation 3) is satisfied for Xa1 and
Xa2 .

When this condition is violated the corresponding predictor is removed from the active set.
Like the original LARS method, also the dgLARS method can be easily modified to compute
a differential geometric extension of the LASSO solution curve, called the dgLASSO solution
curve.

Definition 2 Let γ ∈ [0, γmax] be a fixed value. The dgLASSO estimator of a GLM is given
by Condition 1 and Condition 2, such that also the following restrictions on the signs of the
non-zero coefficients are satisfied

sign(rum(β̂(γ))) = sign(β̂m(γ))), ∀m ∈ A(γ).

The dgLASSO method computes the dgLASSO solution curve in the same way as the dgLARS
method, but it removes a predictor from the active set when the sign of the corresponding
estimate is not in agreement with the sign of the Rao’s score test statistic. Like for the
LASSO and SCAD estimator also for dgLARS and dgLASSO estimator the problem of how
to estimate the dispersion parameter φ is still an open question and theoretical results are not
available. More details about the dgLASSO method will be given in the following section.

2.2. Computational aspects

From a computational point of view, the problem of how to estimate the dgLARS solution
curve can be formalized in this way: we want to find a decreasing sequence of p values of the
tuning parameter γ, say

0 ≤ γ(p) ≤ . . . ≤ γ(2) ≤ γ(1)
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such that for any γ ∈ (γ(k+1); γ(k)] the dgLARS estimator satisfies the following conditions:

A(γ) = {a1, a2, . . . , ak},
|ruai(β̂(γ))| = |ruaj (β̂(γ))|, ∀ ai, aj ∈ A(γ), (4)

|ruach(β̂(γ))| < |ruai(β̂(γ))|, ∀ ach ∈ Ac(γ) and ∀ ai ∈ A(γ),

where Ac(γ) is the complement of the active set. The new predictor is included in the active
set at γ = γ(k+1) where the following condition is satisfied

∃ ach ∈ Ac(γ(k+1)) : |ruach(β̂(γ(k+1)))| = |ruai(β̂(γ(k+1)))|, ∀ai ∈ A(γ(k+1)).

When we want to estimate the dgLASSO solution curve it is also necessary to add the following
condition

∃ ai ∈ A(γ(k+1)) : β̂ai(γ
(k+1)) = 0. (5)

Since for any ai ∈ A(γ) the sign of the ruai(β̂(γ)) does not change, it is easy to see that

Equation 5 identifies a value of the tuning parameter such that for any γ < γ(k+1) we have
that sign(ruai(β̂(γ))) 6= sign(β̂ai(γ)) which means that the predictor ai must be removed from
the active set.

Augugliaro et al. (2013) propose to use a predictor-corrector (PC) method to compute the
dgLARS/dgLASSO solution curve. From a computational point of view, the main problem
of using the PC algorithm is related to the number of arithmetic operations needed to com-
pute the Euler predictor that is involved in the computation and that requires the inversion
of an adequate Jacobian matrix. In the actual implementation of the PC algorithm, the
prediction step has complexity O(|A(γ)|3) but it can be improved to O(|A(γ)|2.376) using
the Coppersmith-Winograd algorithm. In any case, these results make such an algorithm
cumbersome in a high-dimensional setting. To overcome this problem, Augugliaro et al.
(2012) propose a cyclic coordinate descent (CCD) method, which can be defined relating the
original dgLARS problem to a sequence of penalized weighted least squares problems. In a
high-dimensional setting, this method is computationally more efficient than the predictor-
corrector algorithm to compute the dgLARS solution curve. In the following we describe both
algorithms that we have implemented in the dglars package.

Predictor-corrector (PC) algorithm

In order to make this paper self-contained, we briefly review the PC algorithm originally
proposed to compute the dgLARS/dgLASSO solution curve. For more details the interested
reader is referred to Augugliaro et al. (2013). The basic idea underlying the PC algorithm
(Allgower and Georg 2003) is to trace a curve implicitly defined by a system of non-linear
equations. The curve is obtained by generating a sequence of points satisfying a chosen
tolerance criterion.

Let γ ∈ (γ(k+1); γ(k)] be a fixed value of the tuning parameter, such that k predictors are
included in the active set, i.e., A(γ) = {a1, a2, . . . , ak}. The corresponding point of the
solution curve will be denoted by β̂A(γ) = (β̂a0(γ), β̂a1(γ), . . . , β̂ak(γ))>. Using Equation 4,
the solution path satisfies the relationship

|rua1(β̂A(γ))| = |rua2(β̂A(γ))| = . . . = |ruak(β̂A(γ))|,
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which means that β̂A(γ) solves the following system of k + 1 non-linear equations
∂a0`(β̂A(γ); y) = 0,

rua1(β̂A(γ)) = va1 · γ,
...

...

ruak(β̂A(γ)) = vak · γ,

(6)

where vai = sign(ruai(β̂A(γ(k)))). In order to simplify our notation, we define ϕ̃A(γ) = ϕA(γ)−
vAγ, where ϕA(γ) = (∂a0`(β̂A(γ); y), rua1(β̂A(γ)), . . . , ruak(β̂A(γ)))> and vA = (0, va1 , . . . ,

vak)>. By differentiating ϕ̃A(γ) with respect to γ, we can locally approximate the solution
curve at γ −∆γ by the following expression,

β̂A(γ −∆γ) ≈ β̃A(γ −∆γ) = β̂A(γ)−∆γ ·
[
∂ϕA(γ)

∂β̂A(γ)

]−1
vA, (7)

where ∆γ ∈ [0; γ− γ(k+1)] and ∂ϕA(γ)/∂β̂A(γ) is the Jacobian matrix of the vector function
ϕA(γ) evaluated at β̂A(γ). To approximate the point that lies on the dgLARS solution curve,
in Augugliaro et al. (2013) the step size ∆γ is approximated by the following expression

∆γin = min
ach∈Ac(γ)

+


γ − ruach(β̂A(γ))

1−
dru

ac
h
(β̂A(γ))

dγ

;
γ + ruach

(β̂A(γ))

1 +
dru

ac
h
(β̂A(γ))

dγ

 , (8)

where “min+” indicates that the minimum is taken over only positive components within each
choice of ach. Approximation 8 generalizes the step size proposed for the LARS method (Efron
et al. 2004) and approximates the step size corresponding to the inclusion of a new predictor
in the active set. Equation 7 with step size given by Equation 8 is used for the predictor step
of the PC algorithm. In the corrector step, β̃A(γ − ∆γin) is used as starting point for the
Newton-Raphson algorithm that is used to solve System 6.

When we want to estimate the dgLASSO solution curve it is necessary to adjust the step size
given by Equation 8 in order to consider Equation 5. Using Equation 7, it is easy to see that
the first sign change will, approximately, occur at

∆γout = min
ai∈A
{βai(γ(k))/dai(γ(k))}, (9)

where d(γ(k)) = (∂ϕA(γ(k))/∂β̂A(γ(k)))−1vA. The predictor step of the PC algorithm de-
veloped to estimate the dgLASSO solution curve is based on Equation 7 with step size
∆γ = min{∆γ,∆γout}. A schematic overview of the PC algorithm is given in Table 1.
Since the optimal step size is based on a local approximation, we also include an exclusion
step for removing incorrectly included variables in the model. When an incorrect variable is
included in the model after the corrector step, we have that there exists a non-active variable
such that the absolute value of the corresponding Rao’s score test statistic is greater than γ.
Checking this is trivial. To overcome this drawback, the “optimal” step size from the previous
step is reduced using a contractor factor cf .
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Step Algorithm

1 compute β̂a0
2 A ← arg maxacj∈Ac |ruacj (β̂a0)| and γ ← |rua1(β̂a0)|
3 repeat
4 use Equation 8 to compute ∆γin and set ∆γ ← ∆γin

5 if method = “dgLASSO” then
6 use Equation 9 to compute ∆γout and set ∆γ ← min{∆γin,∆γout}
7 set γ ← γ −∆γ

8 use Equation 7 to compute β̃A(γ) (predictor step)

9 use β̃A(γ) as starting point to solve System 6 (corrector step)

10 ∀ ach ∈ Ac compute ruach
(β̂A(γ))

11 if ∃ ach ∈ Ac such that |ruach(β̂A(γ))| > γ then

12 γ ← γ · cf , with cf a small positive constant, and go to 8
13 update A
14 until convergence criterion is met

Table 1: Pseudo-code of the predictor-corrector algorithm to compute the dgLARS/dgLASSO
solution curve.

Cyclic coordinate descent (CCD) algorithm

In order to simplify our notation, in this subsection we drop the dependence of the estimate
on the tuning parameter γ. Assume that β̂ is the point of the solution curve defined at
γ ∈ (γ(k+1); γ(k)] by the dgLARS method. Considering System 6, it is easy to see that β̂ can
be equivalently defined as solution of the following system of non-linear equations

∂a0`(β̂; y) = 0

∂a1`(β̂; y) = γ · I1/2a1 (β̂)va1
...

...

∂ak`(β̂; y) = γ · I1/2ak (β̂)vak ,

where vai = sign(β̂ai). When we consider a predictor that is not included in the active set,
say ach ∈ Ac(γ), we have

|∂ach`(β̂; y)| < γ · I1/2ach
(β̂).

Suppose that we want to compute the value of the solution curve at γ′ = γ − ∆γ, where
∆γ > 0. If ∆γ is small enough, we can approximate the gradient of the log-likelihood
function as follows

∇`(β; y)
.
= ∇`(β̂; y)− I(β̂)(β − β̂) = X>W(β̂)(z−Xβ), (10)

where zi = η̂i + ∂η(µ̂i)/∂µ(yi−µ(η̂i)) is the well-known working response variable and W(β̂)
is a diagonal matrix with ith element wi(β̂) = (∂µ(η̂i)/∂ηi)

2V −1(µ(η̂i)). Approximation 10
is the basic step to relate the Fisher scoring algorithm with the iterative reweighted least
squares (IRLS) algorithm. On the other hand, if ∆γ is small enough, the Fisher information
matrix can be considered approximately constant. Then, as a consequence of the Karush-
Kuhn-Tucker conditions, the value of the solution curve at γ′ can be approximated by the



Journal of Statistical Software 9

solution of the following constrained optimization problem,

min
β

1

2

N∑
i=1

wi(β̂)
(
zi − x>i β

)2
− γ′

p∑
m=1

I1/2m (β̂)|βm|.

The previous expression suggests that, at the step t1, β̂(γ′) can be updated by the following
iterative rule

β̂
(t1+1)

= arg min
β

1

2

N∑
i=1

wi(β̂
(t1)

)
(
z
(t1)
i − x>i β

)2
− γ′

p∑
m=1

I1/2m (β̂
(t1)

)|βm|. (11)

Problem 11 can be efficiently solved using the same approach as proposed in Friedman, Hastie,
and Tibshirani (2010). Suppose that we have estimated βn, with n 6= m; in this case a
coordinate descent step for solving Problem 11 is obtained by the solution of the following
problem

min
βm

1

2

N∑
i=1

wi(β̂
(t1)

)
(
r
(t1)
i,m − ximβm

)2
− γ′I1/2m (β̂

(t1)
)|βm| − γ′

p∑
n6=m

I1/2n (β̂
(t1)

)|βn|,

where r
(t1)
i,m = z

(t1)
i −∑p

n6=m xinβ̂
(t1)
n is the partial residual for fitting βm. It is easy to see that,

at the step t2, the coordinate-wise updating rule has the following form

β̂(t1,t2+1)
m =

S
(∑N

i=1wi(β̂
(t1)

)r
(t1)
i,m xim; γ′ · I1/2m (β̂

(t1)
)
)

∑N
i=1wi(β̂

(t1)
)x2im

,

where S(x;λ) = sign(x)(|x| − λ)+ is the soft-thresholding operator. The pseudo-code of the
proposed CCD algorithm is reported in Table 2. In order to reduce the computational burden,
in our algorithm we initially cycle only through the predictors that are included in the current
active set A and then, when the convergence is met, we check if the active set is changed.

2.3. Generalized degrees of freedom

The behavior of the dgLARS method is closely related to the way of selecting the optimal
value of the tuning parameter γ. For the LASSO estimator, Zou, Hastie, and Tibshirani
(2007) developed an adaptive model selection criterion to select the regularization parameter
based on a rigorous definition of the degrees of freedom.

In order to define an adaptive model selection criterion, Augugliaro et al. (2013) propose
the notion of generalized degrees of freedom (GDF) for the dgLARS method. This notion
comes from a differential geometric approach to the covariance penalty theory (Efron 2004),
which defines the degrees of freedom for a general modeling procedure. When it is possible to
compute the MLE of the considered GLM, the authors also propose a possible estimator of
the GDF that is implemented in the package by the function gdf() discussed in Section 3.2.
When we work with a logistic regression model, it has been shown by a simulation study that
the proposed estimator is better than the number of non-zero estimated coefficients. On the
other hand, simulation studies show that for a Poisson regression model the number of non-
zero estimated coefficients can be considered a good estimator of the GDF. See Augugliaro
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Step Algorithm

1 β̂
(t1) ← β̂(γ)

2 t1 ← 1 and flag ← 0
3 repeat

4 compute W(β̂
(t1)

), z(t1) and Im(β̂
(t1)

)
5 t2 ← 0
6 repeat
7 t2 ← t2 + 1
8 do m = 1 to |A|
9 ai ← A(m)

10 compute r
(t1)
i,ai

and
∑N

i=1wi(β̂
(t1)

)r
(t1)
i,ai

xiai

11 β̂
(t1,t2)
ai ← S

(∑N
i=1wi(β̂

(t1)
)r

(t1)
i,ai

xiai ; γ
′ · I1/2ai (β̂

(t1)
)
)/∑N

i=1wi(β̂
(t1)

)x2iai
12 end do
13 until convergence is met

14 t1 ← t1 + 1 and β̂
(t1) ← β̂

(t1,t2)

15 until convergence is met
16 do m = 1 to |Ac|
17 ach ← Ac(m)

18 compute ruach
(β̂

(t1)
)

19 if |ruach(β̂
(t1)

)| ≥ γ′ then

20 A ← ach and flag ← 1
21 end if
22 end do
23 if flag = 1 then go to step 2

24 else β̂(γ′)← β̂
(t1)

25 end if

Table 2: Pseudo-code of the CCD method proposed to compute the solution curve implicitly
defined by the dgLARS method.

et al. (2013) for more details. However, the derivation of an estimator of the generalized
degrees of freedom in a high-dimensional setting GLM is still an open question and subject
of further research.

3. The dglars package

The dglars package is an R package containing a collection of tools related to the dgLARS
method. In the following of this section we describe the functions available with this package.

3.1. Description of the dglars() and dglars.fit() functions

The main functions of this package are dglars() and dglars.fit(). The first one
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dglars(formula, family = c("binomial", "poisson"), data, subset,

contrast = NULL, control = list())

is a wrapper function implemented to handle the formula interface usually used in R to
create the N × p-dimensional design matrix X and the N -dimensional response vector y.
These objects, together with the arguments family and control, are passed to the function
dglars.fit()

dglars.fit(X, y, family = c("binomial", "poisson"), control = list())

which is the R function used to compute the dgLARS/dgLASSO solution curve. Although
in R the formula interface is the more familiar way to specify the linear predictor in a GLM,
in a high dimensional setting this management of the involved model variables can be ineffi-
cient from a computational point of view. For this reason we recommend using the function
dglars.fit() directly for simulation studies and real applications in the cases where p is
very large.

The argument control is a named list of control parameters passed to the two algorithms
described in Section 2.2. In order to reduce the computational time needed to compute the
dgLARS/dgLASSO solution curve, the two algorithms are written in Fortran 90 and handled
by two specific R wrapper functions called dglars_pc() and dglars_ccd(). These two
functions are not user-intended and for this reason they are not described in this paper. By
default, control argument is defined as follows

control = list(algorithm = "pc", method = "dgLASSO", np = NULL,

g0 = NULL, eps = 1.0e-05, nv = NULL, dg_max = 0, nNR = 50,

NReps = 1.0e-06, ncrct = 50, cf = 0.5, nccd = 1.0e+05)

Using the control parameter algorithm it is possible to select the algorithm used to fit the
dgLARS solution curve, i.e., setting algorithm = "pc" the default PC algorithm is used,
whereas the CCD algorithm is used when algorithm = "ccd" is selected. The group of
control parameters method, np, g0 and eps, is composed of those elements that are shared by
the two algorithms. The argument method is used to choose between the dgLASSO solution
curve (method = "dgLASSO") and the dgLARS solution curve (method = "dgLARS"), while np
is used to define the maximum number of points on the solution curve. As seen in Section 2.2,
since the PC algorithm can compute the step size by a local approximation, the number of
effective points of the solution curve can be significantly smaller than np. In contrast, the
CCD algorithm fits the dgLARS solution curve using a multiplicative grid of np values of the
tuning parameter. The g0 control parameter is used to define the smallest value of the tuning
parameter. By default this parameter is set to 1.0e-04 when p > N and to 0.05 otherwise.
Finally, eps is used to assess the convergence of the two algorithms. When the PC algorithm
is used, eps is also used to identify a predictor that will be included in the active set, namely
when the absolute value of the corresponding Rao’s score test statistic belongs to [γ−eps;
γ+eps].

The group composed by nv, dg_max, nNR, NReps, ncrct and cf contains the control parameters
specific to the PC algorithm. nv is used to define the maximum number of predictors included
in the model, while dg_max is used to fix the step size. When setting dg_max = 0 (default) the
PC algorithm uses the local approximation to compute the γ value to evaluate the inclusion or
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exclusion of a predictor from the active set. The control parameters nNR and NReps are used
to set the number of steps and to define the convergence of the Newton-Raphson algorithm
used in the corrector step. When the Newton-Raphson algorithm does not converge or when
there exists a predictor such that the absolute value of the corresponding Rao’s score test
statistic is greater than γ+eps, the step size is reduced by the contractor factor cf, i.e.,
∆γ = ∆γ·cf, and then the corrector step is repeated. The control parameter ncrct sets the
maximum number of attempts for the corrector step.

Finally, the control parameter nccd is used to define the maximum number of steps of the
CCD algorithm.

An example of a simulated logistic regression model

To gain more insight on how to use the dglars() function we consider a simulated data set.
First we load the dglars package in the R session by the code

R> library("dglars")

then we simulate a data set from a logistic regression model with sample size equal to 100
and p = 4 predictors. We also assume that only the first two predictors influence the response
variable. The used R code is given by:

R> set.seed(321)

R> n <- 100

R> p <- 4

R> s <- 2

R> X <- matrix(rnorm(n * p), n, p)

R> bs <- rep(1, s)

R> Xs <- X[, 1:s]

R> eta <- drop(1 + drop(Xs %*% bs))

R> mu <- binomial()$linkinv(eta)

R> y <- rbinom(n, 1, mu)

R> dataset <- data.frame(y = y, X = X)

R> out_dglasso_pc <- dglars(y ~ ., family = "binomial", data = dataset)

The last command of the previous code stands, as usual, for

R> out_dglasso_pc <- dglars(y ~ X.1 + X.2 + X.3 + X.4, family = "binomial",

+ data = dataset)

dglars() and dglars.fit() return an object of S3 class ‘dglars’.

R> class(out_dglasso_pc)

[1] "dglars"

which is a list containing a matrix named beta used to store the estimated points of the
solution curve, the vector dev of deviances, the vector g containing the sequence of the used
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values of the tuning parameter and the vector df containing the number of non-zero estimated
coefficients including the intercept.

By default, dglars() computes the dgLASSO solution curve; the dgLARS solution curve can
be computed using the control parameter method, i.e.,

R> out_dglars_pc <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(method = "dgLARS"))

The print() method for the ‘dglars’ object can be used to print the basic information, i.e.,
the call that produced the ‘dglars’ object with a five-column table showing the names of
predictors included or excluded from the active set, the sequence of γ values used to compute
the dgLARS solution curve and the corresponding deviance and fraction of explained deviance,
respectively. The number of non-zero estimated coefficients is also reported.

By printing the ‘dglars’ object out_dglasso_pc for our simulated data set, we can see
that the dgLASSO method first finds the true predictors and then includes the other false
predictors.

R> out_dglasso_pc

Call: dglars(formula = y ~ ., family = "binomial", data = dataset)

Sequence g Dev %Dev df

3.6372 122.17 0.00000 1

+X.2

3.4263 120.70 0.01203 2

3.3221 120.00 0.01779 2

3.2703 119.66 0.02060 2

3.2445 119.49 0.02199 2

3.2316 119.40 0.02268 2

3.2187 119.32 0.02337 2

+X.1

2.0552 107.17 0.12278 3

1.4839 102.78 0.15872 3

1.2050 101.08 0.17262 3

1.0677 100.36 0.17851 3

0.9996 100.04 0.18120 3

0.9657 99.88 0.18247 3

0.9488 99.80 0.18309 3

0.9319 99.73 0.18370 3

+X.4

0.8109 98.93 0.19022 4

0.8109 98.93 0.19022 4

+X.3

0.0001 95.70 0.21667 5

Algorithm pc ( method = dgLASSO ) with exit = 0
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To be more specific, at γ(1) = 3.6372, i.e., the starting value of the Rao’s score test statistic,
the predictor X.2 has the smallest angle with the tangent residual vector and is then included
in the active set. The predictor X.1 is included in the active set at γ(2) = 3.2187, this means
that for any γ ∈ [γ(2); γ(1)) only the intercept term and the regression coefficient β̂2(γ) are
different from zero and the number of non-zero estimates is equal to 2. The third predictor
is included at γ(3) = 0.9319, which means that for any γ ∈ [γ(3); γ(2)) the number of non-
zero estimates is equal to 3, i.e the intercept term and the regression coefficients β̂1(γ) and
β̂2(γ). This process continues until γ is equal to the control argument g0. The estimated
coefficient path can be extracted using the coef() method available for the ‘dglars’ object.
For example, with the following R code we can see the sequence of the first ten values of the
tuning parameter γ with the corresponding estimated points.

R> g <- out_dglasso_pc$g

R> coef_path <- coef(out_dglasso_pc)

R> path <- rbind(g, coef_path)[, 1:10]

R> print(path, digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

g 3.637 3.4263 3.3221 3.2703 3.2445 3.2316 3.2187 2.055 1.484 1.205

Int. 0.847 0.8478 0.8483 0.8487 0.8489 0.8490 0.8491 0.885 0.927 0.954

X.1 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.261 0.405 0.480

X.2 0.000 0.0498 0.0748 0.0873 0.0935 0.0967 0.0998 0.387 0.547 0.630

X.3 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000

X.4 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000

More information about the estimated sequence of models can be obtained using the summary()
method for the ‘dglars’ object, i.e.,

summary.dglars(object, k = c("BIC", "AIC"), complexity = c("df", "gdf"),

digits = max(3, getOption("digits") - 3), ...)

where object is a fitted ‘dglars’ object. To choose the best solution point, the summary()

method computes the measure of goodness of fit

residual deviance + k × complexity, (12)

where k is a non-negative value used to weight the complexity of the fitted model. Using the
argument complexity the user can choose between two different definitions of complexity of
a fitted model, i.e., the well known number of estimated non-zero coefficients (complexity
= "df") and the notion of generalized degrees of freedom (complexity = "gdf"). More
details about the notion of generalized degrees of freedom are given in Sections 2.3 and 3.2.
Setting k = "BIC" and complexity = "df", which are the default values, Definition 12 shows
that the summary method for ‘dglars’ objects reports the Bayesian information criterion
(BIC; Schwarz 1978). The Akaike information criterion (AIC; Akaike 1973) can be easily
computed setting k = "AIC" and complexity = "df". The user can also define own measures
of goodness of fit setting k as any non-negative value.

The following R code shows that the output printed by the summary() method is divided in
two different sections.
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R> summary(out_dglasso_pc, k = "BIC", complexity = "df")

Call: dglars(formula = y ~ ., family = "binomial", data = dataset)

Sequence g Dev df BIC Rank

3.6372 122.17 1 126.8 12

+X.2

3.4263 120.70 2 129.9 18

3.3221 120.00 2 129.2 17

3.2703 119.66 2 128.9 16

3.2445 119.49 2 128.7 15

3.2316 119.40 2 128.6 14

3.2187 119.32 2 128.5 13

+X.1

2.0552 107.17 3 121.0 11

1.4839 102.78 3 116.6 7

1.2050 101.08 3 114.9 6

1.0677 100.36 3 114.2 5

0.9996 100.04 3 113.9 4

0.9657 99.88 3 113.7 3

0.9488 99.80 3 113.6 2

0.9319 99.73 3 113.5 1 <-

+X.4

0.8109 98.93 4 117.4 9

0.8109 98.93 4 117.4 8

+X.3

0.0001 95.70 5 118.7 10

==============================================

Best model identified by BIC criterion ( k = 4.60517 and complexity = df ):

y ~ X.1 + X.2

Coefficients:

Int. X.1 X.2

0.9854 0.5571 0.7157

BIC : 113.5

===

Algorithm pc ( method = dgLASSO ) with exit = 0

The first section completes the basic information printed out by the default print() method
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showing the BIC. The ranking of the estimated models obtained by this measure of goodness
of fit is also shown and the corresponding best model is identified by an arrow on the right.
The second section shows the formula of the identified best model and the corresponding
estimated coefficients. From the previous output we can see that the best model identified by
the BIC criterion is that one with only the predictors X.1 and X.2, which are the two true
predictors that influence the response variable in our simulated model.

The following R code shows the results given by the summary() method when the AIC is used
as measure of goodness of fit.

R> summary(out_dglasso_pc, k = "AIC", complexity = "df")

Call: dglars(formula = y ~ ., family = "binomial", data = dataset)

Sequence g Dev df AIC Rank

3.6372 122.17 1 124.2 17

+X.2

3.4263 120.70 2 124.7 18

3.3221 120.00 2 124.0 16

3.2703 119.66 2 123.7 15

3.2445 119.49 2 123.5 14

3.2316 119.40 2 123.4 13

3.2187 119.32 2 123.3 12

+X.1

2.0552 107.17 3 113.2 11

1.4839 102.78 3 108.8 10

1.2050 101.08 3 107.1 9

1.0677 100.36 3 106.4 6

0.9996 100.04 3 106.0 5

0.9657 99.88 3 105.9 4

0.9488 99.80 3 105.8 3

0.9319 99.73 3 105.7 2

+X.4

0.8109 98.93 4 106.9 8

0.8109 98.93 4 106.9 7

+X.3

0.0001 95.70 5 105.7 1 <-

==============================================

Best model identified by AIC criterion ( k = 2 and complexity = df ):

y ~ X.1 + X.2 + X.3 + X.4

Coefficients:

Int. X.1 X.2 X.3 X.4

1.1959 0.8573 1.1008 -0.1764 -0.2847
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AIC : 105.7

===

Algorithm pc ( method = dgLASSO ) with exit = 0

In this case we can see that the best model contains all the considered predictors, even if the
second best model is the same model identified by using the BIC criterion.

The user can plot the output from the dglars() function using the plot() method for the
‘dglars’ object, i.e.,

plot(x, k = c("BIC", "AIC"), complexity = c("df", "gdf"),

g.gof = NULL, ...)

where x is a fitted ‘dglars’ object while the arguments k and complexity are equal to the
arguments of the summary method for ‘dglars’ objects. With the following R code

R> out_dglasso_pc2 <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(dg_max = 0.1))

R> par(mfrow = c(2, 3))

R> plot(out_dglasso_pc2, k = "BIC", complexity = "df")

R> plot(out_dglasso_pc2, k = "AIC", complexity = "df")

we first reduce the step size setting the control parameter dg_max = 0.1 and then we plot
the output from the dglars() function. As we have done for the summary() method, we first
use the BIC criterion to select the best model and then we use the AIC criterion. As shown in
Figure 2, when we fit the dgLARS solution curve using the PC algorithm, the plot() method
produces three different plots, namely the plots showing the sequence of the BIC (first row)
or AIC (second row) as function of γ and the plots showing the paths of the coefficients and of
the Rao’s score test statistics. The last plot is not available when the dgLARS solution curve
is fitted using the CCD algorithm. The values of the tuning parameter corresponding to a
change in the active set are identified by vertical dashed gray lines, while the optimal value
of the tuning parameter γ, according to the BIC or AIC, is identified by a red dashed line.
Using the argument g.gof the user can specify a value of the tuning parameter to identify
different best models. Finally the argument ... can be used to specify additional graphical
parameters.

Comparison between PC and CCD algorithm

As we have seen in the previous section, the dglars package implements two different algo-
rithms to compute the dgLARS solution curve., i.e., a PC method and a CCD algorithm.
Although the two algorithms compute the same solution curve the results can look different.
To gain more insight we consider the following R code

R> set.seed(321)

R> n <- 100
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Figure 2: Plot of the path of the coefficients, of the Rao’s score test statistics and the computed
values of BIC and AIC for the simulated logistic regression model.

R> p <- 5

R> X <- matrix(rnorm(n * p), n, p)

R> b <- 1:2

R> eta <- b[1] + X[, 1] * b[2]

R> mu <- binomial()$linkinv(eta)

R> y <- rbinom(n, 1, mu)

R> dataset <- data.frame(y = y, X = X)

where we simulate a logistic regression model with sample size equal to 100 and 5 predictors;
only the first two predictors affect the response variable. By the following code
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Figure 3: Paths of the BIC values computed using the PC algorithm (black dashed lines) and
the CCD method (red dashed lines). The left panel is obtained using the default values of
the two algorithms, while the right panel is obtained using a finer grid for the γ values.

R> out_dglasso_pc <- dglars(y ~ ., family = "binomial", data = dataset)

R> out_dglasso_ccd <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(algorithm = "ccd"))

we estimate the dgLASSO solution curve using the PC and the CCD algorithm, respectively.
The left panel of Figure 3, obtained by the following code, shows the path of the BIC values
computed using the PC algorithm (black dashed line) and the CCD algorithm (red dashed
line).

R> bic_pc <- out_dglasso_pc$dev + log(n) * out_dglasso_pc$df

R> g_pc <- out_dglasso_pc$g

R> bic_ccd <- out_dglasso_ccd$dev + log(n) * out_dglasso_ccd$df

R> g_ccd <- out_dglasso_ccd$g

R> plot(g_pc, bic_pc, type = "o", pch = 20, lty = 2, ylim = c(110, 145),

+ xlab = expression(gamma), ylab = "BIC",

+ main = "Model Selection Criterion")

R> points(g_ccd, bic_ccd, type = "o", pch = 20, lty = 2, col = 2)

R> legend(x = 0, y = 145, legend = c("PC algorithm", "ccd algorithm"),

+ col = c(1, 2), lty = 2)

We can clearly see that the two paths seem to be quite different. This difference is simply due
to the method used to compute the γ values, i.e., the PC algorithm approximates the γ value
corresponding to a change in the active set, while the CCD algorithm uses an equispaced
sequence of log(γ) values. This means that we can remove the difference observed in the left
panel of Figure 3 simply by using a finer grid of γ values. As shown by the following code,
this can be done using the control parameters dg_max and np, i.e.,
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R> out_dglasso_pc <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(dg_max = 1.0e-03, np = 1.0e+04))

R> out_dglasso_ccd <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(algorithm = "ccd", np = 1.0e+04))

The right panel of Figure 3, obtained by the code

R> bic_pc <- out_dglasso_pc$dev + log(n) * out_dglasso_pc$df

R> g_pc <- out_dglasso_pc$g

R> bic_ccd <- out_dglasso_ccd$dev + log(n) * out_dglasso_ccd$df

R> g_ccd <- out_dglasso_ccd$g

R> plot(g_pc, bic_pc, type = "l", pch = 20, lty = 2, ylim = c(110, 145),

+ xlab = expression(gamma), ylab = "BIC",

+ main = "Model Selection Criterion")

R> points(g_ccd, bic_ccd, type = "l", pch = 1, lty = 2, col = 2)

R> legend(x = 0, y = 145, legend = c("PC algorithm", "ccd algorithm"),

+ col = c(1, 2), lty = 2)

shows that the difference previously observed between the two paths is now removed. The
same difference can be observed in coefficient path estimated by the two algorithms, but
also in this case this difference can be removed using a finer grid for the γ values. From a
computational point of view, the main consequence of using a finer grid is an increase in the
run times needed to compute the two solution curves.

As we have previously said, the main problem of the PC algorithm is related to the number
of arithmetic operations needed to compute the Euler predictor, which requires the inversion
of an adequate Jacobian matrix. The effects stemming from this problem can be shown by
the following R code

R> set.seed(321)

R> n <- 100

R> p <- c(10, 100)

R> s <- 2

R> X <- matrix(rnorm(n * p[2]), n, p[2])

R> bs <- rep(2, s)

R> Xs <- X[, 1:s]

R> eta <- drop(1 + drop(Xs %*% bs))

R> mu <- binomial()$linkinv(eta)

R> y <- rbinom(n, 1, mu)

R> results.time <- array(0, dim = c(2, 3, 2),

+ dimnames = list(algorithm = c("pc", "ccd"),

+ time = c("user", "system", "elapsed"), p = p))

R> results.time["pc", , "10"] <- system.time(dglars.fit(X = X[, 1:p[1]],

+ y = y, family = "binomial",

+ control = list(algorithm = "pc", eps = 1e-3, g0 = 0.1)))[1:3]

R> results.time["ccd", , "10"] <- system.time(dglars(X = X[, 1:p[1]],

+ y = y, family = "binomial",

+ control = list(algorithm = "ccd", eps = 1e-3, g0 = 0.1)))[1:3]
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R> results.time["pc", , "100"] <- system.time(dglars.fit(X = X[, 1:p[2]],

+ y = y, family = "binomial",

+ control = list(algorithm = "pc", eps = 1e-3, g0 = 0.1)))[1:3]

R> results.time["ccd", , "100"] <- system.time(dglars.fit(X = X[, 1:p[2]],

+ y = y, family = "binomial",

+ control = list(algorithm = "ccd", eps = 1e-3, g0 = 0.1)))[1:3]

R> results.time

, , p = 10

time

algorithm user system elapsed

pc 0.012 0.001 0.013

ccd 0.010 0.000 0.010

, , p = 100

time

algorithm user system elapsed

pc 0.267 0.039 0.305

ccd 0.052 0.002 0.053

where we use the control parameter algorithm of the dglars.fit() function to choose
between the algorithms described in Tables 1 and 2. The values of the control parameters
g0 and eps are chosen in order to remove the instability coming from the link function in a
high-dimensional setting.

In order to better understand the effects of the number of predictors on the run times of the
two algorithms, we use a simple simulation study based on a logistic regression model with
sample size equal to N = (100, 200, 300) and p = (25, 50, 100, 200, 400, 600, 800, 1000). The
design matrix is obtained as follows

(a) X1,X2, . . . ,Xp sampled from a N(0; Σ), where the diagonal and off-diagonal elements
of Σ are 1 and 0, respectively;

(b) the same of (a) but with COR(Xi;Xj) = ρ|i−j| with ρ = 0.9.

To simulate the binary response vector we use a model with intercept and with only three
predictors; the corresponding non-zero coefficients were chosen equal to 2. In Table 3 we
report the average CPU times in seconds coming from 100 simulation runs. All timings
reported were carried out on a personal computer with AMD Athlon II X2 250 dual-core
processor. We clearly see that the proposed CCD algorithm is always significantly faster than
the PC algorithm. The difference between the two algorithms is greater when we consider
the scenario with high correlation among the predictors. In this case the PC algorithm
dramatically increases its computational time, while the CCD algorithm slows down just a
little in this scenario. In Figure 4 we show the average CPU times of the considered algorithms
for N = 300 for both scenarios (a) and (b).
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Figure 4: CPU times in seconds for the CCD algorithm and the PC algorithm recorded in
scenario (a) and (b) with sample size N = 300.

3.2. Description of the gdf() function

As we have discussed in Section 2.3, the behavior of the dgLARS method, as a variable
selection method, is closely related to the way we define the complexity of a model. When
we have a Poisson regression model, the number of non-zero estimated coefficients can be
considered a good approximation of the GDF, but when we have a logistic regression model,
Augugliaro et al. (2013) propose another possible estimator of the GDF. In the same paper
the authors show how the proposed GDF has a better behavior than using the number of
non-zero estimated coefficients.

The proposed estimator is implemented by the function gdf() with argument

gdf(object)

where object is a fitted ‘dglars’ object. gdf() is called by the summary method for ‘dglars’
objects

summary(object, k = c("BIC", "AIC"), complexity = c("df", "gdf"),

digits = max(3, getOption("digits") - 3), ...)

when the argument complexity is set to "gdf".

As shown in Augugliaro et al. (2013), the proposed estimator of the GDF requires the dgLARS
estimates and the MLE of the GLM specified using all the predictors which, in some cases,
cannot be computed. For this reason we prefer to use the number of non-zero estimated
coefficients as default value for the argument complexity.

An example of use for a simulated logistic regression model: Continued

To gain more insight about the main differences between the proposed GDF estimator and
the number of non-zero estimated coefficients, we consider the simulated logistic regression
model used in Section 3.1. The following R code is used to show the first ten estimates given
by the proposed estimator (gdf) and by the number of non-zero estimated coefficients (df).
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N
100 200 300

Scenario p CCD PC CCD PC CCD PC

(a)

1000 0.254 2.091 0.618 8.284 1.206 21.513
(0.051) (0.510) (0.083) (1.504) (0.128) (3.794)

800 0.249 1.922 0.584 7.148 1.140 17.409
(0.040) (0.380) (0.067) (1.240) (0.118) (3.229)

600 0.200 1.238 0.612 5.917 0.997 11.840
(0.034) (0.232) (0.079) (1.003) (0.122) (2.319)

400 0.153 0.712 0.459 3.265 0.875 7.485
(0.030) (0.146) (0.057) (0.570) (0.089) (1.433)

200 0.144 0.389 0.387 1.524 0.671 3.038
(0.025) (0.087) (0.046) (0.326) (0.067) (0.634)

100 0.102 0.192 0.272 0.602 0.461 1.390
(0.019) (0.042) (0.031) (0.134) (0.071) (0.231)

50 0.078 0.071 0.133 0.189 0.148 0.246
(0.009) (0.018) (0.037) (0.034) (0.038) (0.043)

25 0.037 0.026 0.053 0.040 0.071 0.052
(0.010) (0.005) (0.013) (0.008) (0.013) (0.009)

(b)

1000 0.284 1.394 0.833 6.801 1.469 13.786
(0.081) (0.357) (0.173) (1.562) (0.295) (3.390)

800 0.274 1.224 0.736 4.841 1.387 11.124
(0.075) (0.302) (0.146) (1.319) (0.300) (2.638)

600 0.225 0.637 0.707 3.785 1.292 7.906
(0.072) (0.182) (0.155) (0.813) (0.310) (1.853)

400 0.191 0.485 0.580 2.213 1.006 4.384
(0.056) (0.137) (0.149) (0.455) (0.204) (0.977)

200 0.178 0.281 0.344 0.693 0.816 1.949
(0.059) (0.069) (0.094) (0.162) (0.148) (0.412)

100 0.123 0.142 0.291 0.354 0.463 0.563
(0.040) (0.025) (0.054) (0.063) (0.105) (0.109)

50 0.083 0.037 0.151 0.086 0.205 0.123
(0.024) (0.009) (0.046) (0.020) (0.055) (0.026)

25 0.046 0.014 0.071 0.025 0.097 0.034
(0.012) (0.003) (0.015) (0.006) (0.022) (0.008)

Table 3: Average CPU times in seconds to compute the solution curve using the CCD algo-
rithm and the PC algorithm. Standard deviations are reported in parentheses.

R> out_dglasso_pc <- dglars(y ~ ., family = "binomial", data = dataset,

+ control = list(g0 = 0))

R> df <- out_dglasso_pc$df

R> bh <- coef(out_dglasso_pc)

R> gdfh <- gdf(out_dglasso_pc)

R> complexity <- rbind(df, gdfh)

R> rownames(complexity) <- c("df", "gdf")
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R> print(complexity[, 1:10], digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

df 1.000 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00

gdf 0.749 1.35 1.34 1.34 1.34 1.34 1.34 2.09 2.20 2.28

We can see that the main difference is that the estimates of the gdf are always smaller than
df. This behavior finds a theoretical justification by the results given in Efron (1986), in
other words, the number of non-zero estimated coefficients is equal to the gdf only when we
are evaluating the complexity of a model on a point that is estimated by using the maximum
likelihood method. When we set the argument complexity = "gdf", the summary() method
uses the proposed estimator of the GDF to define the BIC or AIC values.

Coming back to our simulated logistic regression model, the following R code

R> summary(out_dglasso_pc, k = "AIC", complexity = "gdf")

Call: dglars(formula = y ~ ., family = "binomial", data = dataset,

control = list(g0 = 0))

Sequence g Dev gdf AIC Rank

3.637e+00 122.17 0.7487 123.7 18

+X.2

3.426e+00 120.70 1.3480 123.4 17

3.322e+00 120.00 1.3449 122.7 16

3.270e+00 119.66 1.3436 122.3 15

3.245e+00 119.49 1.3430 122.2 14

3.232e+00 119.40 1.3427 122.1 13

3.219e+00 119.32 1.3424 122.0 12

+X.1

2.055e+00 107.17 2.0856 111.3 11

1.484e+00 102.78 2.1957 107.2 10

1.205e+00 101.08 2.2758 105.6 8

1.068e+00 100.36 2.3224 105.0 5

9.996e-01 100.04 2.3473 104.7 4

9.657e-01 99.88 2.3602 104.6 3

9.488e-01 99.80 2.3667 104.5 2

9.319e-01 99.73 2.3734 104.5 1 <-

+X.4

8.109e-01 98.93 3.2726 105.5 7

8.109e-01 98.93 3.2726 105.5 6

+X.3

3.212e-13 95.70 5.0000 105.7 9

==============================================

Best model identified by AIC criterion ( k = 2 and complexity = gdf ):
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y ~ X.1 + X.2

Coefficients:

Int. X.1 X.2

0.9854 0.5571 0.7157

AIC : 104.5

===

Algorithm pc ( method = dgLASSO ) with exit = 0

shows that the AIC, defined using the estimates of the GDF, selects the logistic regression
model with the true predictors. This result is in contrast to what we have previously obtained,
since in the first application of the summary() method, the AIC identified a logistic regression
model with four predictors. The true logistic regression model is also identified if we use the
BIC based on the GDF. This result is not reported for sake of brevity. However, we point
out that BIC defined using the estimator of GDF tends usually to select sparser models than
AIC defined also with the estimator of GDF.

3.3. Description of the cvdglars() and cvdglars.fit() functions

In the previous section we have seen that we can use the summary method for ‘dglars’ objects
to select the optimal value of the tuning parameter γ by using an information criterion, such
as the BIC or AIC. When the user has enough data, another possible way to estimate the
solution point of the dgLARS solution curve is by k-fold cross-validation (Hastie, Tibshirani,
and Friedman 2009).

In the dglars package, the k-fold cross-validation is implemented by the functions cvdglars()
and cvdglars.fit(). The first one can be used with arguments

cvdglars(formula, family = c("binomial", "poisson"), data,

contrast = NULL, subset, control = list())

As we have done for dglars(), this function is a wrapper function of the more efficient
function cvdglars.fit(). It is implemented only to handle the classical R formula interface
but it can be computational inefficient in a high-dimensional setting. For this reason, in this
setting we suggest to use the function cvdglars.fit() with arguments

cvdglars.fit(X, y, family = c("binomial", "poisson"), control = list())

where X is the design matrix of dimension N × p, y is the N -dimensional response vector
and family is the error distribution used in the model. Like for the dglars.fit() function,
control is a named list of control parameters with the following elements

control = list(algorithm = "pc", method = "dgLASSO", nfold = 10,

foldid = NULL, ng = 100, np = NULL, g0 = NULL, eps = 1.0e-05,
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nv = NULL, dg_max = 0, nNR = 50, NReps = 1.0e-06, ncrct = 50,

cf = 0.5, nccd = 1.0e+05)

The control parameter nfold is used to set the number of folds used for the cross-validation.
By default cvdglars.fit() uses a ten-fold cross-validation and the prediction error is mea-
sured by the deviance. When nfold is equal to the sample size, the solution point is estimated
by the leave-one-out cross-validation. The optional control parameter foldid can be used to
pass to the algorithm a N -dimensional vector of non-negative integers used to identify the
folds.

From a computational point of view, cvdglars.fit() splits the data into nfold parts and
estimates the dgLARS solution curve using nfold−1 parts of the data. To estimate the
prediction behavior of the fitted model, the algorithm uses the remaining part of the data and
a sequence of ng equispaced points of the estimated solution curve to compute the deviance
of the model. These steps are repeated nfold times and then the mean deviance is computed
for each of the ng points. The optimal value of the tuning parameter, denoted by γ̂, is
defined as minimum of the mean cross-validation deviance. Finally, using the whole data set,
cvdglars.fit() runs the adequate subroutine written in Fortran 90 to compute the dgLARS
solution curve with control parameter g0 fixed to γ̂.

The remaining control parameters of the cvdglars.fit() function have the same meaning
as those seen in Section 3.1 for the dglars.fit() function.

An example of use for a simulated Poisson regression model

To gain more insight about the use of the cvdglars.fit() function, we have simulated a
data set from a Poisson regression model. Like for the previous example, we assume that only
the first two predictors influence the response variable. The corresponding R code is

R> set.seed(321)

R> n <- 100

R> p <- 100

R> s <- 2

R> X <- matrix(rnorm(n * p), n, p)

R> bs <- rep(0.5, s)

R> Xs <- X[, 1:s]

R> eta <- drop(0.5 + drop(Xs %*% bs))

R> mu <- poisson()$linkinv(eta)

R> y <- rpois(n, mu)

R> dataset <- data.frame(y = y, X = X)

R> out_cvdglasso_pc <- cvdglars(y ~ ., family = "poisson", data = dataset,

+ control = list(g0 = 0.1, eps = 1.0e-03))

Also in this case the values of the control parameters g0 and eps are chosen in order to
remove the instability coming from the link function in a high-dimensional setting. The
function cvdglars.fit() returns an object of class ‘cvdglars’

R> class(out_cvdglasso_pc)

[1] "cvdglars"
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Figure 5: Plot of the ‘cvdglars’ object for the simulated data set.

namely a list containing, among the other, the p + 1 dimensional vector of the coefficients
estimated by k-fold cross-validation, called beta, the ng dimensional vector of the mean
deviance, called dev_m, and the estimate of the tuning parameter γ scaled on the interval
[0; 1], called g_hat.

As for the ‘dglars’ object, specific method functions are developed to simplify the study of
the output coming from cvdglars.fit(). For example, the print() and coef() methods
can be used to print out the basic information stored in the ‘cvdglars’ object and to extract
the estimated coefficients. Finally, with the plot() method for the ‘cvdglars’ object it is
possible to plot the mean cross-validation deviance as function of the tuning parameter. The
optimal value of the tuning parameter is visualized by a vertical red dashed line and the
number of estimated non-zero coefficients is also reported. The confidence band for the mean
deviance is computed. Figure 5 shows the plot for the results of the model based on our
simulated data set. We see that the 10-fold cross-validation method allows us to select a
Poisson regression model with only five predictors.

R> out_cvdglasso_pc

Call: cvdglars(formula = y ~ ., family = "poisson", data = dataset,

control = list(g0 = 0.1, eps = 0.001))

Int. X.1 X.2 X.24 X.61 X.78

0.582782 0.343475 0.249042 0.005463 -0.007751 0.044192
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Cross-validation deviance = 12.43 ( n. fold = 10 )

Algorithm pc ( method = dgLASSO ) with exit = 0

As we can see, the two true predictors are included in the estimated optimal solution point.

4. Simulation studies

In this section we compare by simulation studies the behavior of the dgLARS method with
the L1-penalized GLM. To compute the LASSO solution curve we use the R package glm-
net (Friedman, Hastie, and Tibshirani 2013), which implements the cyclical coordinate descent
algorithm proposed in Friedman et al. (2010) and the R package glmpath (Park and Hastie
2013) which uses the PC algorithm developed by Park and Hastie (2007) to estimate the
solution curve.

Our simulation studies are based on a logistic regression model with four scenarios corre-
sponding to four different configurations of the design matrix. The details of the considered
scenarios are the following:

(a) X1,X2, . . . ,Xp sampled from a N(0; Σ), where the diagonal and off-diagonal elements
of Σ are 1 and 0, respectively;

(b) the same as (a) but with COR(Xi;Xj) = ρ|i−j|; in our study we use ρ = 0.9;

(c) the same as (a) with Σ a block diagonal matrix, namely, Σ = diag(Σ1,Σ2, . . . ,Σk) where
Σi is a 10×10 matrix with diagonal elements equal to 1 and off-diagonal elements equal
to 0.5;

(d) in this scenario we use as design matrix the gene expression matrix provided by Alon
et al. (1999). The sample size is equal to 66 and the number of genes p is equal to 2000.

For scenarios (a), (b) and (c) the sample size is equal to one hundred while three different
values of p are used, i.e., p ∈ (100, 500, 1000). In these scenarios only the first five predictors
are used to simulate the binary response variable while in scenario (d) the response variable
is simulated using five genes randomly selected. The intercept term is equal to one and the
non-zero coefficients are equal to two. For each scenario we simulated 500 data sets and a
ten-fold cross-validation deviance is used to select the tuning parameter for the L1-penalized
MLE and the parameter γ of the dgLARS method. To make the results comparable, for
each data set the same folds were used to determine the value of the tuning parameters of
dgLARS/dgLASSO, glmnet and glmpath, respectively.

In Tables 4 and 5 we report the summary measures used to evaluate the behavior of the
considered methods i.e., the total number of variables included in the final model, the false
discovery rate, the false positive rate, the false negative rate and the deviance, which was
computed using an independent test set.

These results show that the behavior of the dgLARS method is closely related with the
covariance structure among the predictors. When we consider scenario (a), dgLARS and
dgLASSO exhibit a similar behavior to the L1-penalized MLE. When the relevant predictors
are highly correlated, scenario (b), or when there exists an unknown group structure of the
predictors, scenario (c), the results show that the dgLASSO method selects sparser models
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Scenario p dgLASSO dgLARS glmnet glmpath

(a)

1000

Size 26.530 (0.586) 28.278 (0.539) 28.216 (0.553) 29.268 (0.538)
FDR 0.796 (0.006) 0.796 (0.006) 0.798 (0.005) 0.808 (0.005)
FPR 0.022 (0.001) 0.024 (0.001) 0.024 (0.001) 0.025 (0.001)
FNR 0.143 (0.011) 0.089 (0.005) 0.103 (0.005) 0.100 (0.005)
Dev. 87.555 (0.841) 85.023 (0.655) 85.343 (0.595) 84.750 (0.602)

500

Size 26.922 (0.549) 27.734 (0.528) 28.450 (0.511) 29.114 (0.534)
FDR 0.796 (0.006) 0.800 (0.006) 0.810 (0.005) 0.813 (0.005)
FPR 0.046 (0.001) 0.047 (0.001) 0.049 (0.001) 0.050 (0.001)
FNR 0.144 (0.009) 0.126 (0.007) 0.136 (0.007) 0.140 (0.007)
Dev. 82.800 (0.673) 81.536 (0.586) 81.666 (0.556) 82.398 (0.619)

100

Size 20.704 (0.281) 21.076 (0.291) 21.740 (0.293) 25.374 (0.248)
FDR 0.732 (0.004) 0.737 (0.004) 0.746 (0.004) 0.793 (0.002)
FPR 0.165 (0.003) 0.169 (0.003) 0.176 (0.003) 0.214 (0.003)
FNR 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Dev. 60.674 (0.510) 60.969 (0.497) 61.582 (0.580) 62.261 (0.614)

(b)

1000

Size 14.650 (0.299) 15.340 (0.302) 23.764 (0.337) 24.940 (0.410)
FDR 0.656 (0.009) 0.650 (0.008) 0.793 (0.005) 0.802 (0.004)
FPR 0.011 (0.000) 0.011 (0.000) 0.020 (0.000) 0.021 (0.000)
FNR 0.185 (0.009) 0.133 (0.006) 0.148 (0.007) 0.144 (0.007)
Dev. 43.804 (0.903) 41.001 (0.580) 44.400 (0.519) 48.497 (1.263)

500

Size 11.258 (0.218) 11.474 (0.224) 20.060 (0.240) 21.364 (0.306)
FDR 0.625 (0.009) 0.610 (0.009) 0.801 (0.004) 0.809 (0.004)
FPR 0.016 (0.000) 0.016 (0.000) 0.033 (0.000) 0.036 (0.001)
FNR 0.296 (0.008) 0.258 (0.007) 0.266 (0.006) 0.265 (0.006)
Dev. 34.622 (0.809) 32.508 (0.499) 34.373 (0.459) 39.663 (0.997)

100

Size 8.900 (0.154) 9.182 (0.160) 12.856 (0.183) 15.006 (0.282)
FDR 0.510 (0.009) 0.502 (0.009) 0.638 (0.006) 0.695 (0.004)
FPR 0.053 (0.002) 0.054 (0.002) 0.091 (0.002) 0.114 (0.003)
FNR 0.230 (0.008) 0.198 (0.007) 0.167 (0.006) 0.162 (0.006)
Dev. 41.756 (0.602) 41.151 (0.494) 43.116 (0.558) 44.947 (0.897)

Table 4: Results from the simulation studies (a) and (b); for each scenario we report the
mean number of variables included in the final model (Size), the mean false discovery rate
(FDR), the mean false positive rate (FPR), the mean false negative rate (FNR), and the mean
residual deviance (Dev). Standard errors are in parentheses.

than the L1-penalized GLM. Also when a design matrix based on real data is used to simulate
the response variable (scenario (d)) the dgLASSO method tends to select sparser models.

To end this section, we recall that in general dgLARS is based on a theory completely different
from the L1-penalized MLE implemented in the glmnet and glmpath packages since dgLARS
does not use explicitly a penalized function (see Augugliaro et al. 2013, for more details).



30 dglars: Estimate Sparse GLMs in R

Scenario p dgLASSO dgLARS glmnet glmpath

(c)

1000

Size 23.702 (0.421) 24.406 (0.421) 27.656 (0.451) 28.266 (0.478)
FDR 0.755 (0.006) 0.752 (0.006) 0.787 (0.005) 0.791 (0.005)
FPR 0.019 (0.000) 0.020 (0.000) 0.023 (0.000) 0.023 (0.000)
FNR 0.028 (0.006) 0.007 (0.002) 0.014 (0.002) 0.014 (0.002)
Dev. 56.172 (0.784) 54.353 (0.596) 57.064 (0.552) 58.233 (0.795)

500

Size 21.350 (0.356) 21.712 (0.365) 25.210 (0.391) 26.710 (0.472)
FDR 0.747 (0.005) 0.744 (0.005) 0.782 (0.005) 0.795 (0.005)
FPR 0.034 (0.001) 0.034 (0.001) 0.042 (0.001) 0.045 (0.001)
FNR 0.071 (0.007) 0.056 (0.005) 0.074 (0.005) 0.071 (0.005)
Dev. 57.914 (0.715) 56.661 (0.571) 59.130 (0.577) 62.137 (1.270)

100

Size 13.078 (0.211) 13.352 (0.224) 15.882 (0.247) 17.910 (0.216)
FDR 0.568 (0.007) 0.573 (0.008) 0.645 (0.006) 0.701 (0.004)
FPR 0.086 (0.002) 0.089 (0.002) 0.115 (0.003) 0.137 (0.002)
FNR 0.014 (0.002) 0.013 (0.002) 0.014 (0.002) 0.013 (0.002)
Dev. 43.294 (0.467) 43.193 (0.465) 45.652 (0.604) 45.664 (0.658)

(d)

Size 11.794 (0.202) 12.344 (0.229) 15.314 (0.260) 15.620 (0.254)
FDR 0.932 (0.003) 0.932 (0.003) 0.936 (0.002) 0.938 (0.002)
FPR 0.006 (0.000) 0.006 (0.000) 0.007 (0.000) 0.007 (0.000)
FNR 0.863 (0.005) 0.854 (0.005) 0.831 (0.005) 0.831 (0.005)
Dev. 57.175 (0.360) 57.329 (0.347) 57.616 (0.383) 57.604 (0.398)

Table 5: Results from the simulation studies (c) and (d); for each scenario we report the
mean number of variables included in the final model (Size), the mean false discovery rate
(FDR), the mean false positive rate (FPR), the mean false negative rate (FNR), and the mean
residual deviance (Dev). Standard errors are in parentheses.

5. Application to real data sets

5.1. Breast cancer data set

In this section we use the functions available in the dglars package to study the sparse
structure of a logistic regression model applied to a subset of the breast cancer gene dele-
tion/amplification data set obtained by John Bartlett at the Royal Infirmary, Glasgow (Wit
and McClure 2004). The aim of the study is to identify which genes play a crucial role in the
severity of the disease, defined as whether or not the patient dies as a result of breast cancer.
The data set contains 52 samples, 29 of which are labeled as deceased due to breast cancer.
For each sample, 287 gene deletion/amplification measurements are available. A few missing
values are imputed using the method proposed by Troyanskaya et al. (2001).

To study the considered data set, we first load the data in the R session

R> data("breast", package = "dglars")

In this example, we estimate the optimal value of the tuning parameter by the 10-fold cross-
validation method by using the cvdglars() function, i.e.,
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Figure 6: Plot of the 10-fold cross-validation deviance computed for the breast cancer data
set. Vertical red dashed line shows that the dgLASSO method finds a logistic regression model
with only four non-zero estimated coefficients.

R> breast_cvdglasso <- cvdglars(status ~ ., family = "binomial",

+ data = breast, control = list(g0 = 1, eps = 1e-3))

R> breast_cvdglasso

Call: cvdglars(formula = status ~ ., family = "binomial", data = breast,

control = list(g0 = 1, eps = 0.001))

Int. PTGS2.COX2. SHGC4.207 WI.2389.D10S1260

0.2176 0.6565 -4.7278 0.1197

Cross-validation deviance = 5.796 ( n. fold = 10 )

Algorithm pc ( method = dgLASSO ) with exit = 0

The plot of the 10-fold cross-validation deviance, shown in Figure 6, has been obtained with
this R command

R> plot(breast_dglasso)

The print() output shows that the dgLASSO method selects a logistic regression model with
a high level of sparsity since only three genes are found to influence the response variable.
Even if the model selected by the 10-fold cross-validation deviance has few variables, we try
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to see if it is possible to further reduce the number of genes included in the active set. Then,
we first use the function dglars(), with design matrix defined using only the genes previously
identified, and then we analyze the obtained sequence of logistic regression models with the
summary() method. Since the MLE of the logistic regression model specified by the subset
of identified genes can be computed, we set the argument complexity = "gdf" to use the
estimator of the generalized degrees of freedom previously described. Using the formula of
the model estimated by 10-fold cross-validation deviance, i.e.,

R> breast_cvdglasso$formula_cv

status ~ PTGS2.COX2. + SHGC4.207 + WI.2389.D10S1260

the following R code confirms the subset of genes previously selected with the cvdglars()

function:

R> breast_dglasso <- dglars(breast_cvdglasso$formula_cv, family = "binomial",

+ data = breast, control = list(g0 = 0))

R> summary(breast_dglasso, k = "BIC", complexity = "gdf")

Call: dglars(formula = breast_cvdglasso$formula_cv, family = "binomial",

data = breast, control = list(g0 = 0))

Sequence g Dev gdf BIC Rank

3.519e+00 71.39 0.5876 73.72 13

+SHGC4.207

2.755e+00 64.51 0.7323 67.40 12

2.329e+00 60.17 0.8116 63.37 11

2.168e+00 58.78 0.8499 62.14 8

2.103e+00 58.27 0.8664 61.69 7

2.072e+00 58.04 0.8743 61.49 5

2.057e+00 57.92 0.8782 61.39 4

2.049e+00 57.87 0.8801 61.35 3

2.042e+00 57.82 0.8820 61.30 2

+WI.2389.D10S1260

1.975e+00 57.18 1.4328 62.84 10

1.974e+00 57.17 1.4332 62.83 9

+PTGS2.COX2.

3.857e-02 45.81 3.9120 61.27 1 <-

5.350e-09 45.81 4.0000 61.61 6

==============================================

Best model identified by BIC criterion ( k = 3.951244 and complexity = gdf ):

status ~ PTGS2.COX2. + SHGC4.207 + WI.2389.D10S1260

Coefficients:
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Int. PTGS2.COX2. SHGC4.207 WI.2389.D10S1260

0.01191 3.29593 -9.89851 0.61014

BIC : 61.27

===

Algorithm pc ( method = dgLASSO ) with exit = 0

Then, we can say that the genes selected by the dgLARS method are PTGS2(COX-2),
WI.2389.D10S1260 and SHGC4-207. Interestingly, it is known that the expression of COX-2
is upregulated in many cancers. It has been reported in Menter, Schilsky, and Dubois (2010)
that inhibiting COX-2 may have benefit in the prevention and treatment of these types of
cancer. About SHGC4-207 and WI-2389-D10S1260 much less is known and they could be
interesting candidates for further follow-up.

5.2. Duke breast cancer data set

This data set contains 46 of the original 49 patients with primary breast cancer that compose
the Duke breast cancer data set studied in West et al. (2001). The considered samples can
be classified in two groups of the same size, namely the group with estrogen receptor-positive
(ER+) and the group with estrogen receptor-negative (ER−). For each sample the gene
expression measure of 7129 genes is measured by human HuGeneFL microarray. Aim of
this study is to identify a small subset of genes that can be used as prognostic or predictive
markers.

As done for the analysis of the previous data set, we first load the data in the R session and
then we estimate the optimal value of the tuning parameter by means of the 10-fold cross
validation, i.e.,

R> data("duke", package = "dglars")

R> duke_cvdglasso <- cvdglars(y ~ ., family = "binomial", data = duke,

+ control = list(g0 = 0.01))

The value of the control argument g0 was chosen after a preliminary study. By the R code

R> plot(duke_dglasso)

we can see the plot of the 10-fold cross-validation deviance (Figure 7) which shows that the
dgLASSO method estimates a logistic regression model with ten parameters, i.e., the intercept
term plus the regression coefficients corresponding to a subset of nine genes. To map each
manufacturer ID with the corresponding gene name we used the R package hu6800.db (Carlson
2013). However, for three genes this mapping is not available. Table 6 shows the basic
information about the remaining six identified genes.

The identified set contains several genes that play a central role in breast caner. In a recent
study Kristiansen et al. (2003) show that CD24 is a new prognostic marker in breast cancer.



34 dglars: Estimate Sparse GLMs in R

Figure 7: Plot of the 10-fold cross-validation deviance computed for the Duke breast cancer
data set.

Manufacturer ID Symbol Name

J00116 s at COL2A1 Collagen, type II, alpha 1
L22524 s at MMP-7 Matrix metallopeptidase 7 (matrilysin, uterine)
L33930 s at CD24 CD24 molecule
V00572 at PGK1 Phosphoglycerate kinase 1
X03635 at ESR1 Estrogen receptor 1
X17059 s at NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase)

Table 6: Subset of genes identified by the 10-fold cross-validation deviance.

The authors confirm the results previously obtained in Fogel et al. (1999) who were the first
to describe CD24 expression in breast cancer in an immunohistochemistry study. Previous
works have focused on the role of MMP-7 in breast cancer (Bertram and Hass 2008; Bucan,
Reimers, Choi, Eddy, and Vogt 2010), while the over-expression of PGK1 has been observed
in breast and pancreatic carcinoma and multi-drug resistant ovarian cancer (Duan et al. 2002;
Zhang et al. 2005). Several microarray and proteomic studies indicate that NAT1 is highly
expressed in estrogen receptor positive breast cancer (Wakefield et al. 2008). Human NAT1
is also a target of cisplatin, one of the most important chemotherapeutic compounds used in
the management of various human malignancies (Ragunathan et al. 2009). Finally, in recent
years ESR1 is shown to be frequently expressed in breast cancer (Holst et al. 2007). Several
studies showed statistically significant associations between ESR1 polymorphisms and breast
cancer, see for example Gold et al. (2004) and Wang et al. (2007).
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As a consequence of the complete data separation, the MLE of the logistic regression model
specified using only the subset of genes previously identified cannot be computed (Albert and
Anderson 1984), then we use the BIC, with complexity defined by the number of non-zero
estimated coefficients, to try to see if it is possible to identify a smaller subset. For this reason,
we first estimate the dgLASSO solution curve by the code

R> duke_dglasso <- dglars(duke_cvdglasso$formula_cv, family = "binomial",

+ data = duke)

and then, from the summary() output

R> summary(duke_dglasso)

Call: dglars(formula = duke_cvdglasso$formula_cv, family = "binomial",

data = duke)

Sequence g Dev df BIC Rank

7.719e-01 6.377e+01 0 63.77 22

+X03635_at

2.569e-01 2.740e+01 2 35.06 2

2.545e-01 2.725e+01 2 34.91 1 <-

+M34516_at

2.393e-01 2.623e+01 3 37.72 4

2.392e-01 2.623e+01 3 37.72 3

+X17059_s_at

2.059e-01 2.368e+01 4 38.99 10

2.054e-01 2.364e+01 4 38.96 9

+L22524_s_at

2.042e-01 2.354e+01 5 42.69 16

+M59815_at

1.901e-01 2.220e+01 6 45.17 18

1.900e-01 2.218e+01 6 45.15 17

+HG3431.HT3616_s_at

1.870e-01 2.184e+01 7 48.64 21

1.855e-01 2.167e+01 7 48.47 20

1.840e-01 2.150e+01 7 48.30 19

+J00116_s_at

1.033e-01 9.476e+00 8 40.11 13

1.014e-01 9.221e+00 8 39.85 11

+V00572_at

7.994e-02 6.265e+00 9 40.72 15

7.858e-02 6.091e+00 9 40.55 14

+L33930_s_at

3.934e-02 1.805e+00 10 40.09 12

1.972e-02 4.954e-01 10 38.78 8

9.911e-03 1.311e-01 10 38.42 7

5.005e-03 3.435e-02 10 38.32 6

9.997e-05 1.458e-05 10 38.29 5
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==============================================

Best model identified by BIC criterion ( k = 3.828641 and complexity = df ):

y ~ X03635_at

Coefficients:

Int. X03635_at

-12.269 1.353

BIC : 34.91

===

Algorithm pc ( method = dgLASSO ) with exit = 0

we see that we can identify a logistic regression model specified using only ESR1 as predictor.

6. Summary

In this paper we have described the R package dglars. This package implements the differ-
ential geometric extension of the LARS method proposed in Augugliaro et al. (2013) and
called dgLARS. The core of the package are two functions implementing a predictor-corrector
algorithm and a cyclic coordinate descent algorithm to compute the dgLARS solution curve.
In order to implement these two algorithms in an efficient way, the main code is written in
Fortran 90 and handled in R by specific wrapper functions. This package also provides a
function to estimate the generalized degrees of freedom proposed in Augugliaro et al. (2013).
When we have the MLEs of the GLM specified by all the considered predictors, it is possible
to use a more accurate measure of goodness of fit than the number of non-zero estimated
coefficients to select the optimal points of the solution curve. The use of these functions is
shown by means of simulated data sets and application to real data sets. The output of the
functions are presented in a way that is easy to interpret for people familiar with standard
lm(), glm() or gam() output.

The package dglars is available under the general public license (GPL ≥ 2) from the Com-
prehensive R Archive Network at http://CRAN.R-project.org/package=dglars. In future
versions of the package we are going to implement other distribution families such as gamma
and inverse Gaussian distributions.
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