
JSS Journal of Statistical Software
December 2014, Volume 62, Issue 5. http://www.jstatsoft.org/

c060: Extended Inference with Lasso and

Elastic-Net Regularized Cox and Generalized

Linear Models

Martin Sill
German Cancer Research Center

Thomas Hielscher
German Cancer Research Center

Natalia Becker
German Cancer Research Center

Manuela Zucknick
German Cancer Research Center

Abstract

We have developed the R package c060 with the aim of improving R software func-
tionality for high-dimensional risk prediction modeling, e.g., for prognostic modeling of
survival data using high-throughput genomic data. Penalized regression models provide a
statistically appealing way of building risk prediction models from high-dimensional data.
The popular CRAN package glmnet implements an efficient algorithm for fitting penalized
Cox and generalized linear models. However, in practical applications the data analysis
will typically not stop at the point where the model has been fitted. One is for example
often interested in the stability of selected features and in assessing the prediction per-
formance of a model and we provide functions to deal with both of these tasks. Our R
functions are computationally efficient and offer the possibility of speeding up computing
time through parallel computing. Another feature which can drastically reduce computing
time is an efficient interval-search algorithm, which we have implemented for selecting the
optimal parameter combination for elastic net penalties. These functions have been useful
in our daily work at the Biostatistics department (C060) of the German Cancer Research
Center where prognostic modeling of patient survival data is of particular interest. Al-
though we focus on a survival data application of penalized Cox models in this article,
the functions in our R package are in general applicable to all types of regression models
implemented in the glmnet package, with the exception of prediction error curves, which
are specific to time-to-event data.

Keywords: glmnet, penalized log-likelihood method, stability selection, interval search, pre-
diction error.

http://www.jstatsoft.org/

2 c060: Extended Inference with Regularized Cox and Generalized Linear Models

1. Introduction

Penalized regression models provide a statistically appealing method to build prediction mod-
els from high-dimensional data sources, where it is the aim to simultaneously select features
and to fit the model (Fan and Lv 2010; Benner, Zucknick, Hielscher, Ittrich, and Mansmann
2010). Since the introduction of the lasso for linear regression models (Tibshirani 1996), the
methodology has been extended to generalized linear regression models and time-to-event
endpoints (Tibshirani 1997) among others. In addition to the well-known L1-norm (lasso)
and L2-norm (ridge) penalty functions, various other penalties have been proposed in recent
years to select features and/or estimate their effects. In particular, we will use the elastic
net penalty function (Zou and Hastie 2005), which is a linear combination of the L1- and
L2-norms.

With ever increasing data, the properties of the algorithm used for fitting the model have
become almost as important as the statistical model itself. Friedman, Hastie, and Tibshi-
rani (2010) proposed a coordinate descent algorithm for generalized linear regression models,
which has since then been extended to penalized Cox proportional hazards (PH) regression
models (Simon, Friedman, Hastie, and Tibshirani 2011). Due to its efficiency this algorithm
is considered one of the state-of-the-art approaches to estimate penalized regression models
with lasso, ridge or elastic net penalty terms, especially in high-dimensional data scenarios.
First references about coordinate descent algorithms date back to Fu (1998).

This algorithm has been implemented in R (R Core Team 2014) in the glmnet package (Fried-
man, Hastie, and Tibshirani 2013). The package provides functions to tune and fit regression
models, plot the results, and make predictions. However, in practical applications, where
often an independent validation data set is lacking, some additional features and routines
are desirable as part of a complete data analysis. We have assembled some functions that
enhance the existing functionality of the glmnet package or allow to use it within the frame-
work of other existing R packages. These functions have been useful in our daily work at
the Biostatistics department (C060) of the German Cancer Research Center where prognostic
modeling of patient survival data is of particular interest. Therefore, we focus on penalized
Cox PH regression models in this article to illustrate the application of the package. But
the R functions are generally applicable to all types of regression models implemented in the
glmnet package.

Computational efficiency is an important requirement on software to make applications fea-
sible for real-life data analysis tasks in fields such as molecular oncology, where one aims at
developing sparse risk prediction models based on very large numbers of molecular features
measured with high-throughput technologies such as microarrays or next-generation sequenc-
ing. Therefore, we provide functionality to speed up computations, in particular through
parallel computing.

We provide R functions to perform stability selection (Meinshausen and Bühlmann 2010) in a
computationally efficient way which allows to select the most stable features at a given type
I error level. We have also implemented an approach to select the optimal parameter combi-
nation (α, λ) for elastic net penalties using an interval-search algorithm (Froehlich and Zell
2005) which is often faster and more accurate than a standard grid search (Jones, Schonlau,
and Welch 1998). Another very useful addition for real-life applications of glmnet for build-
ing risk-prediction models is the provision of wrapper functions to allow the computation of
resampling-based prediction errors within the framework of the R package peperr (Porzelius,

Journal of Statistical Software 3

Binder, and Schumacher 2009). The peperr package makes it computationally feasible to as-
sess the predictive accuracy of a penalized regression model via resampling methods even for
very large-scale applications by employing parallel computing. We also provide the possibility
to speed up stability selection by parallel computing using the functionality of the R package
parallel (R Core Team 2014), which has been a base package since R version 2.14.0.

Stability selection and interval search are currently defined for Gaussian, binomial, Poisson,
multinomial and Cox models, prediction error curves for Cox models and classification errors
for binomial models. Since all functions are basically wrapped around the glmnet fitting
or cross-validation function calls, the type of response is always specified by the family

argument.

The software is available as R package c060 (Sill, Hielscher, Becker, and Zucknick 2014) at the
Comprehensive R Archive Network (CRAN; http://CRAN.R-project.org/package=c060/)
and on R-Forge (https://R-Forge.R-project.org/projects/c060/).

2. Methods and algorithms

2.1. Penalized generalized linear models and Cox models

An efficient implementation for fitting generalized linear models and Cox proportional hazards
models with regularization by the lasso or elastic net penalty terms is provided by the R
package glmnet. This implementation uses a coordinate descent algorithm for fitting the
models for specified values of penalty parameters λ > 0 and α ∈ (0, 1]. The computation
of an entire regularization path across a range of values Λ = {λ1, λ2, . . . , λK} at fixed α
with glmnet is generally very fast, because previously computed solutions for {λ1, . . . , λk−1}
are used as ’hot’ starting values for the computation of λk. This implies that it is often
more efficient to compute the models for the entire regularization path of Λ rather than just
individual models. We use this feature in all of our implemented algorithms to make the most
use of the computational speed of glmnet.

Models are fitted by maximizing the penalized log-likelihood function for generalized linear
models and the penalized partial log-likelihood for Cox models. The penalized (partial) log-
likelihood function is given by

ln(β)−
p∑
j=1

pα,λ(|βj |), (1)

where ln(β) denotes the (partial) log-likelihood given n observations. The dimension of the
parameter vector β is p and pα,λ(| · |) is the penalty function with tuning parameters λ and
α.

Cross-validation can be performed to decide which model, i.e., which penalty parameter val-
ues, to choose by using the negative cross-validated penalized (partial) log-likelihood as the
loss function. Actually, within the glmnet package, the penalized (partial) log-likelihood de-
viance is used as the loss function rather than the log-likelihood function itself. The deviance
is equal to −2 times the log-likelihood ratio of the model of interest compared to the saturated
model, which has one free parameter per observation. Obviously, both versions will result in
the same optimization result.

http://CRAN.R-project.org/package=c060/
https://R-Forge.R-project.org/projects/c060/

4 c060: Extended Inference with Regularized Cox and Generalized Linear Models

2.2. L2-penalized Cox regression

Penalized maximum likelihood estimation in Cox regression with the ridge penalty

pλ(|βj |) = λβ2
j (2)

was introduced by Verweij and van Houwelingen (1994). The ridge penalty results in parame-
ter estimates that are biased towards zero, but does not set values exactly to zero, and hence
does not perform feature selection. On the other hand, it has been found to produce models
with good prediction performance in high-dimensional genomic applications (e.g., Bøvelstad
et al. 2007), in particular if predictors are highly correlated.

2.3. L1-penalized Cox regression

Tibshirani (1997) proposed to use an L1-penalized Cox model with

pλ(|βj |) = λ|βj | (3)

and described a technique, called the lasso for “least absolute shrinkage and selection oper-
ator”, for parameter estimation. The L1-penalty has the advantage over the L2-penalty of
shrinking some of the coefficients to zero, i.e., it performs automatic feature selection.

2.4. The elastic net

Zou and Hastie (2005) introduced the elastic net, which employs a combination of the L1-
and L2-penalty. Like lasso the elastic net performs automatic feature selection by setting
some coefficient estimates to zero. But the additional L2-penalty term distributes the weight
to more features, so that the elastic net tends to select more features than the lasso. This is
especially the case in situations with high correlation, since the lasso would select only one
feature of a set of perfectly correlated features, while the ridge penalty would give them equal
weight.

Throughout this manuscript we use the same parametrization of the elastic net penalty func-
tion as in the glmnet package:

pα,λ(|βj |) = λ×
(
α|βj |+ (1− α)

1

2
β2
j

)
. (4)

Here, α ∈ (0, 1] determines the influence of the L1 penalty relative to the L2 penalty. Small α
values will result in models with many features, getting closer to the non-sparse ridge solution
as α tends to zero.

The interval-search algorithm to select the optimal elastic net parameter combination

The elastic net penalty function contains two tuning parameters which are data-dependent
and hence cannot be set to some a priori values. The challenge is to find a set of tuning
parameters (α, λ), for which the k-fold cross-validated loss function of the model is minimal.

The commonly used fixed grid search has the major disadvantage that it needs to systemat-
ically compute the penalized log-likelihood deviance at each point of the grid, which implies
that the grid density affects the accuracy and the time complexity of the algorithm. Further-
more, the choice of the grid is highly arbitrary and the solution depends on the choice of grid
as well as on grid density.

Journal of Statistical Software 5

Froehlich and Zell (2005) proposed an efficient algorithm for finding a global optimum on the
tuning parameter space called efficient parameter selection via global optimization (EPSGO).
The main idea of the algorithm is to treat the task of finding the optimal tuning parameter
values as a global optimization problem. For that purpose one learns a Gaussian process
model of the loss function surface in parameter space and samples systematically at points
where the so-called expected improvement criterion reaches the maximum.

The interval search can be divided into two phases. In the initial phase, a set of uniformly
distributed points is randomly selected throughout the parameter space. Then, in the iteration
phase, the algorithm learns the Gaussian process model from the points which have already
been visited. By adding new points one updates the Gaussian process model. New points in
the parameter space are sampled by using the expected improvement criterion as described
by Jones et al. (1998). The EPSGO algorithm stops when one of the stopping criteria is met,
i.e., if either convergence of the algorithm has been reached or if there was no change in the
solution during the last ten iterations.

Froehlich and Zell (2005) showed that the algorithm is robust against local minima. One
can observe an immense improvement in the training time for the Gaussian process model
compared to more commonly used fixed grid search methods (Froehlich and Zell 2005). This
is because the number of training points for the Gaussian process (and hence the number
of evaluations of the loss function surface of the regression model) mainly depends on the
dimensionality of the tuning parameter space, which is very small compared to the number
of training points on the grid.

Summing up, the EPSGO algorithm provides two main advantages when compared to grid
search methods:

� Robustness against starting values: EPSGO solutions are not dependent on an arbitrary
choice of a grid.

� Scalability of accuracy improvements: The accuracy of EPSGO solutions can be easily
improved without the need for a massive increase in computing time implied by an
increase in the grid density.

2.5. Stability selection

The penalized regression models that we have described above are typically used to find sparse
models with good predictive performance. In contrast, the stability selection proposed by
Meinshausen and Bühlmann (2010) aims to find stable features which show strong association
with the outcome. The stability selection is a general approach that combines feature selection
methods such as L1 penalized models with resampling. By applying the corresponding feature
selection method to subsamples that were drawn without replacement, selection probabilities
for each feature can be estimated as the proportion of subsamples where the feature is included
in the fitted model. These selection probabilities are used to define a set of stable features.
Meinshausen and Bühlmann (2010) provide a theoretical framework for controlling type I
error rates of falsely assigning features to the estimated set of stable features. The selection
probability of each feature along the regularization path, e.g., along the range of possible
penalization parameters Λ = {λ1, λ2, . . . , λK}, is called stability path. Given an arbitrary
threshold πthr ∈ (0.5, 1) and the set of penalization parameters Λ, the set of stable features

6 c060: Extended Inference with Regularized Cox and Generalized Linear Models

estimated with the stability selection is:

Ŝstableβ =

{
j : max

λk∈Λ
Π̂λk
j ≥ πthr

}
, (5)

where Π̂λk
j denotes the estimated selection probability of the jth feature at λk. Then according

to Theorem 1 in Meinshausen and Bühlmann (2010), the expected number of falsely selected
features E(V) will be bounded by:

E(V) ≤ 1

(2πthr − 1)

q2
Λ

p
, (6)

where qΛ is the average of the number of non-zero coefficients with respect to the drawn
subsamples. Equation 6 shows that the bound on expected number of falsely selected features
can be decreased by either reducing the average number of selected features qΛ or by increasing
the threshold πthr. Suppose that πthr is fixed, then E(V) can be controlled by limiting qΛ by
the length of the regularization path Λ. In multiple testing the expected number of falsely
selected features is also known as the per-family error rate (PFER) and if divided by the total
number of features p will become the per-comparison error rate (PCER; Dudoit, Shaffer, and
Boldrick 2003). The stability selection allows to control these type I error rates. For instance,
suppose the threshold πthr = 0.8 is fixed, then choosing Λ such that qΛ ≤

√
0.6p will control

E(V) ≤ 1. Moreover, choosing Λ so that qΛ ≤
√

0.6pα will control the family-wise error
rate (FWER) at level α, P(V > 0) ≤ α. As mentioned before, according to Friedman et al.
(2010) the coordinate descent algorithm implemented in the glmnet package is most efficient
regarding the computational time, when used to calculate the full regularization path. To
utilize this property our algorithm calculates the stability path by first generating subsets
by subsampling and then calculating for each subsample the regularization path using the
coordinate descent algorithm. The resulting regularization paths are then averaged to form
the stability path. Furthermore, since the calculations of the regularization paths for each
subset are independent of each other, the algorithm can easily be parallelized using the package
parallel.

2.6. Prediction error curves for survival models

The time-dependent Brier score (Graf, Schmoor, Sauerbrei, and Schumacher 1999) can be
used to assess and compare the prediction accuracy of prognostic models for time-to-event
endpoints. The Brier score at time point t is a weighted mean squared error between predicted
survival probability and observed survival status. Weighting depends on the estimated cen-
soring distribution to account for the observations under risk (Gerds and Schumacher 2006).
Computing the error for each time point over the entire follow-up horizon yields a predic-
tion error curve. As a reference we use prediction errors based on the Kaplan-Meier curves
estimated without any covariate information.

The empirical time-dependent Brier score BS(t) is defined as a function of time t > 0 by

BS(t) =
1

n

n∑
i=1

[
Ŝ(t|xi)2I(ti ≤ t ∧ δi = 1)

Ĝ(ti)
+

(1− Ŝ(t|xi))2I(ti > t)

Ĝ(t)

]
,

with individual survival time ti, censoring indicator δi and estimated survival probability
Ŝ(t|xi) at time t based on the prognostic model given covariate values xi for subject i out

Journal of Statistical Software 7

of n patients (Graf et al. 1999). Ĝ(t) denotes the Kaplan-Meier estimate of the censoring
distribution at time t, which is based on the observations (ti; 1− δi), i = 1, . . . , n. I signifies
the indicator function.

In case no independent validation data are available, resampling-based prediction error curves
are used to adequately assess the model’s prediction accuracy. The .632+ bootstrap estima-
tor (Efron and Tibshirani 1997) is commonly used for these applications, which is a weighted
mean of the apparent error and the average out-of-bag bootstrap error. For the apparent
error the same data is used to develop the prognostic model and assess its performance. Due
to overfitting, this error is far too optimistic, particularly with high-dimensional data. The
average out-of-bag bootstrap error is too conservative since only a proportion of the entire
data is used to develop the prognostic model in each bootstrap run. The .632+ estimator
balances both estimators, and additionally accounts for the relative overfitting based on the
no-information error rate. Further, in our application the .632+ bootstrap estimator is calcu-
lated based on subsampling (without replacement) rather than classical bootstrap sampling
with replacement, as that has been demonstrated to lead to more accurate estimates in a
high-dimensional context (Binder and Schumacher 2008).

3. Application and demonstration of software

3.1. Data set

In the following we will demonstrate the use of the functions provided in the c060 package in an
application to a gene expression data set and corresponding clinical data of cytogenetically
normal acute myeloid leukemia (AML) patients (Metzeler et al. 2008). The data can be
accessed from the Gene Expression Omnibus (GEO) data repository (http://www.ncbi.
nlm.nih.gov/geo/) by the National Center for Biotechnology Information (NCBI). We find
the data set under GEO accession number GSE12417. To simulate the typical situation that
only one data set is available for model training and evaluation, we only use the data set that
was used as validation data in the original publication. This data set contains gene expression
data for 79 patient samples measured with Affymetrix HG-U133 Plus 2.0 microarrays. The
median survival time of these patients was 17.6 months with a censoring rate of 40%.

For the sake of convenience we reduce the total number of 54675 gene expression features that
have been measured with the Affymetrix HG-U133 Plus 2.0 microarray technology to the top
10000 features with largest variance across all 79 samples. For all computations the data set is
stored as an ‘ExpressionSet’ (from Bioconductor package Biobase; Gentleman, Carey, Bates,
and others 2004) called eset. The gene expression data matrix can be accessed through the
call exprs(eset) and overall survival data and other patient-specific data (e.g., patient age)
are stored within the phenoData object obtained by pData(eset). Overall survival times are
stored in the variable os, the corresponding survival status variable is called os_status and
the patient age variable is age.

3.2. Starting off: Fitting the lasso-penalized Cox model

Our goal is to develop a prognostic model for patient overall survival based on the gene
expression data. The purpose of this modeling exercise is not just to fit a prognostic model

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/

8 c060: Extended Inference with Regularized Cox and Generalized Linear Models

−5 −4 −3 −2 −1

50
10

0
15

0
20

0

log(Lambda)

P
ar

tia
l L

ik
el

ih
oo

d
D

ev
ia

nc
e

73 74 75 74 71 72 71 71 54 48 26 12 2

Figure 1: Cross-validated partial log-likelihood deviance, including upper and lower standard
deviations, as a function of log λ for the AML data set. The dotted vertical lines indicate
the λ values with minimal deviance (left) and with the largest λ value within one standard
deviation of the minimal deviance (right).

that is capable of predicting overall survival rates, but we also want to find out which gene
expression features are most relevant for this task. Traditionally, this problem is solved by
feature selection methods and we start our data analysis exercise by fitting the lasso-penalized
Cox model, which provides automatic feature selection.

We can apply the glmnet function to fit a lasso-penalized Cox model to the AML data set.
The function call with default penalty parameter settings will fit the lasso model for 100 λ
values within a data-derived range of values:

R> fit <- glmnet(y = Surv(pData(eset)$os, pData(eset)$os_status),

+ x = t(exprs(eset)), family = "cox")

In order to determine the optimal lasso penalty parameter value, we perform 10-fold cross-
validation using the cv.glmnet function.

R> set.seed(1234)

R> cvres <- cv.glmnet(y = Surv(pData(eset)$os, pData(eset)$os_status),

+ x = t(exprs(eset)), family = "cox", nfolds = 10)

R> res <- cvres$glmnet.fit

R> plot(cvres)

The loss function, i.e., the cross-validated partial log-likelihood deviance, is shown in Figure 1
including upper and lower standard deviations as a function of log λ for the AML data set.
The penalty parameter value minimizing the loss function is λ = 0.265 (log λ = −1.329) and
corresponds to a final lasso model with the following 5 selected features and corresponding
lasso regression coefficient estimates:

203640_at 204419_x_at 222462_s_at 226169_at 233371_at

-0.1134 -0.0166 0.2742 0.0430 -0.0122

Journal of Statistical Software 9

−5 −4 −3 −2 −1

−
6

−
4

−
2

0
2

Log Lambda

C
oe

ffi
ci

en
ts

74 71 71 34 074 71 71 34 0

−5 −4 −3 −2 −1

−
0.

8
−

0.
4

0.
0

0.
2

Log Lambda
C

oe
ffi

ci
en

ts

74 71 71 34 0

0 20 40 60 80 100

−
6

−
4

−
2

0
2

L1 Norm

C
oe

ffi
ci

en
ts

0 70 71 72 74 730 70 71 72 74 73

0.0 0.2 0.4 0.6 0.8

−
6

−
4

−
2

0
2

Fraction Deviance Explained

C
oe

ffi
ci

en
ts

0 34 54 70 730 34 54 70 73

Figure 2: Coefficient paths for lasso-penalized Cox PH regression models applied to the AML
data set. The features with highlighted paths have non-zero coefficients in the model with
the optimal λ value as determined by ten-fold cross-validation. The top plots show the
coefficient path scaled to reflect log(λ) on the x-axis (top left: full path, top right: zoomed in
to only show the selected features). The bottom plots show the coefficient paths relative to
the L1-norms of the estimated coefficient vector (left) and to the fraction of the null partial
log-likelihood deviance explained (right). The dotted vertical lines indicate the λ values with
minimal deviance and with the largest λ value within one standard deviation of the minimal
deviance.

The selected features are highlighted as red lines in the coefficient paths shown in Figure 2,
which illustrate the development of the regression coefficient estimates with increasing regu-
larization. While the selected 5 features are the only features selected at the optimal λ value,

10 c060: Extended Inference with Regularized Cox and Generalized Linear Models

they do not remain among the features with largest effect sizes when the penalty is reduced
and thus more and more coefficients start to enter the model. In fact, for 4 out of the 5
features the coefficient estimates go back down to zero for small values of log λ, indicating
that these features get replaced by other gene expression features in very large models.

R> cof <- coef(res, s = cvres$lambda.min)

R> Plot.coef.glmnet(cvfit = cvres, betas = rownames(cof)[which(cof != 0)])

3.3. Prediction performance using resampling-based prediction errors

Once the final prognostic model is selected, the next task is to assess its prediction accuracy
for future patients, where one is often particularly interested in a comparison with established
clinico-pathological prognostic markers. In many applications no independent validation data
set is available, and thus the same data set needs to be used to both develop and assess the
prognostic model. This is especially problematic for high-dimensional data, where the risk
of overfitting is very high. Resampling-based methods can be used to unbiasedly estimate
the predictive accuracy of the prognostic model in this situation. This is also called internal
validation.

For this purpose the R package peperr (Porzelius et al. 2009; Porzelius and Binder 2013)
provides a modular framework for survival and binary endpoints. Wrapper functions for new
or customized prediction model algorithms can be defined and passed to the generic function
peperr. In case of prognostic models for survival endpoints, algorithm-specific wrapper func-
tions are required for model fitting, tuning and prediction. Wrapper functions for selected
machine learning approaches are already implemented, but not yet for the glmnet package.

With the peperr package prediction accuracy of survival models is by default assessed with
prediction error curves based on the time-dependent Brier score, but it is also possible to de-
fine and use customized accuracy measures. We have implemented additional wrapper func-
tions for the glmnet algorithm for fitting (fit.glmnet) and tuning (complexity.glmnet)
the model, and predicting survival probabilities (predictProb method for class ‘glmnet’)
based on the fitted model and the estimated baseline hazard from the training data using
the Breslow estimator. We here want to assess the prognostic value of the L1-penalized Cox
PH regression model fitted in the previous section. The .632+ subsampling-based bootstrap
estimator is calculated using 1000 bootstrap samples. The peperr package is designed for
high-dimensional covariates data and allows for various parallel computation setups. Also,
additional arguments can be passed directly to the glmnet call by specifying additional ar-
guments for the corresponding fitting and/or tuning procedure. Here, we include patient age
as a mandatory feature, i.e., age is not subject to penalization, and run the calculation on 3
CPUs in parallel using a socket cluster setup.

R> obj <- peperr(response = Surv(pData(eset)$os, pData(eset)$os_status),

+ x = data.frame(eset$age, t(exprs(eset))), fit.fun = fit.glmnet,

+ args.fit = list(standardize = FALSE, family = "cox",

+ penalty.factor = rep(0:1, times = c(1, dim(eset)[1]))),

+ complexity = complexity.glmnet,

+ args.complexity = list(standardize = FALSE, nfolds = 10,

+ family = "cox", penalty.factor = rep(0:1, times = c(1,dim(eset)[1]))),

Journal of Statistical Software 11

+ RNG = "fixed", seed = 0815, cpus = 3, parallel = TRUE,

+ clustertype = "SOCK", load.list = list(packages = "c060"),

+ indices = resample.indices(n = dim(eset)[2], sample.n = 1000,

+ method = "sub632"))

Bootstrap results can be visualized with the plot method for class ‘peperr’ from the peperr
package showing the selected complexity parameters, out-of-bag prediction error curves as well
as the prediction error integrated over time, and the predictive partial log-likelihood (PLL)
values. In order to calculate the predictive PLL values again, an algorithm-specific wrapper
(here PLL method for class ‘coxnet’) needs to be provided. In addition, we provide a slightly
modified version of the prediction error curves plot function from the peperr package, which
allows the display of the numbers of samples still at risk and pointwise bootstrap quantiles
(Plot.peperr.curves) as shown in Figure 3. By default, the .632+ bootstrap estimate is
calculated and displayed. Optionally, one can additionally display the .632 estimator, the
no-information error rate and the average out-of-bag bootstrap error in Plot.peperr.curves

by setting the option allErrors = TRUE.

R> Plot.peperr.curves(obj, at.risk = TRUE, allErrors = FALSE,

+ bootRuns = FALSE, bootQuants = TRUE, bootQuants.level = 0.95,

+ leg.cex = 0.7)

0 200 400 600 800 1000 1200

0.0

0.1

0.2

0.3

Prediction error curves

Evaluation time points

P
re

di
ct

io
n

er
ro

r

Null model
.632+ estimate
Full apparent

79 58 44 34 30 26 14
at

risk

Figure 3: Prediction error curves based on time-dependent Brier score for the lasso-penalized
Cox PH regression model applied to the AML data set (evaluation time points reflect days).
The gray area indicates the pointwise 2.5% and 97.5% quantiles of the 1000 out-of-bag boot-
strap samples. The other lines show the prediction error curves of the null model (estimated
by the Kaplan-Meier estimator without covariate information), the full apparent error esti-
mates (i.e., the errors as estimated when applying the model to the entire training data set),
and the .632+ bootstrap error estimates.

12 c060: Extended Inference with Regularized Cox and Generalized Linear Models

For classification models for binary endpoints, both tuning and fitting of the model are done
with the same wrapper functions as used for the Cox regression. Model performance mea-
sures for classification tasks that are shipped with the peperr package are the misclassification
rate and the Brier score. The predicted class probability is calculated within each generic
performance function by calling the algorithm-specific predict function. Whenever a new algo-
rithm/method is applied, the generic performance/aggregation function needs to be adapted
accordingly. Therefore for binary responses, the peperr package does not provide quite the
same modular flexibility as for time-to-event endpoints where prediction and performance
assessment are done in separate functions. We have extended the functionality of the peperr
functions for calculating the Brier score (aggregation.brier) and the misclassification rate
(aggregation.misclass) to allow their use with the algorithm from package glmnet. In
addition, we have implemented the area under the receiver operating characteristic (ROC)
curve (AUC) (aggregation.auc) as an alternative performance measure for binary response
classifications. An example is included in the corresponding help file. For classification mod-
els, there are numerous alternative R and Bioconductor packages available to assess models
fitted with glmnet. A good starting point is the package caret (Kuhn 2008, 2014).

An alternative implementation of the time-dependent Brier score for assessing the prognostic
performance of prognostic models for time-to-event endpoints can be found in the package
pec (Mogensen, Ishwaran, and Gerds 2012). The basic approach is similar to peperr, i.e.,
one has to define a wrapper for each fitting procedure in order to determine the estimated
survival probabilities. Just as for peperr, no wrapper for glmnet is available yet with the
pec package. The main difference of peperr compared to pec is that the tuning of the hyper-
parameter and the fitting procedure are done in two separate steps, which reflects the usual
workflow for high-dimensional data analysis better. While pec provides additional prediction
accuracy measures for survival models, such as the time-dependent c-index, it cannot be used
to assess classification models for binary endpoints. One strong point of the implementations
of both peperr and pec is their easy-to-use setup for using resampling methods for internal
validation. In addition to the use of prediction error curves and time-dependent Brier scores,
another popular approach for assessing the prediction accuracy of survival models is the use
of time-dependent ROC and AUC curves, for which many implementations exist, for example
in R packages timeROC (Blanche 2013), survivalROC (Heagerty and Saha-Chaudhuri 2013)
and risksetROC (Heagerty and Saha-Chaudhuri 2012).

3.4. Stability selection

So far implementations of stability selection can be found in the packages s4vd (Sill and
Kaiser 2011; Sill, Kaiser, Benner, and Kopp-Schneider 2011), mboost (Bühlmann and Hothorn
2007; Hothorn et al. 2014), lol (Yuan 2011) and BioMark (Wehrens and Franceschi 2012,
2014). While in the package s4vd the stability selection is applied to sparse singular value
decomposition in the context of biclustering, the mboost package offers stability selection
for model based boosting. The implementation in the lol package is based on penalized
generalized linear models and penalized Cox models available through the package penalized
(Goeman 2010; Goeman, Meijer, and Chaturvedi 2012). As both the penalized and the glmnet
packages offer penalized models for survival, Poisson, binary and Gaussian response variables,
the stability selection in lol is comparable to our implementation. Due to the computational
efficiency of the coordinate descent algorithm in glmnet it is more appropriate for complex
resampling methods like stability selection. Moreover, the code for the stability selection

Journal of Statistical Software 13

in the lol package is not yet parallelized and does not offer the possibility to compute the
whole stability path. The BioMark package offers an implementation of stability selection for
partial least squares (PLS), principal component regression (PCR), variable importance of
projection (VIP) and logistic and Gaussian glmnet models. Until now the BioMark package
allows only to calculate selection frequencies and does not provide type I error control nor
the ’randomized lasso’ as described in Meinshausen and Bühlmann (2010).

Here we use stability selection to identify prognostic features, which have a relevant influence
on the survival times of the patients in the AML data set, while controlling type I errors to
ensure that the features identified are truly associated with the survival times. To calculate
the stability path for the L1-penalized Cox regression we use the function stabpath from
our R package. Via the weakness argument of the function stabpath it is possible to induce
additional randomization by reweighting the penalization of each feature. In brief, in each
subsampling step the individual penalization of each feature is randomized such that it lies
in the range of [λ, λ/κ], where κ is represented by the weakness parameter which indicates
the amount of this additional randomization. The weights wi, . . . , wp to replace each λi by
λi/wi are generated by sampling from a uniform distribution, i.e., wi ∼ U(κ, 1). Meinshausen
and Bühlmann (2010) call this additional randomization ’randomized lasso’ and showed that
it greatly improves the variable selection performance of the stability selection. The func-
tion stabpath draws subsets and calculates in parallel the stability path, e.g., the selection
probabilities of each feature along the range of possible penalization parameter values. For
parallelization we use the package parallel. On Unix-like systems the parallelization is done
by forking via the function mclapply whereas under Windows systems socket clusters are
used.

R> y <- cbind(time = pData(eset)$os, status = pData(eset)$os_status)

R> set.seed(1234)

R> spath <- stabpath(y = y, x = t(exprs(eset)), mc.cores = 2,

+ family = "cox", weakness = .8)

After calculating the stability path, the function stabsel can be called to estimate the stable
set of features. Controlling a PFER of 1, e.g., expecting one falsely selected feature, the
estimated set of stable features comprises a single feature (with Π̂ > 0.6).

R> stabsel(spath, error = 1, type = "pfer", pi_thr = 0.6)$stable

206932_at

2823

Alternatively, the stabsel function allows to control the PCER and FWER. In addition,
we provide a plot function to visualize the stability path. This function calls stabsel to
estimate stable features and indicates them in the plot (Figure 4).

3.5. Parameter tuning for the elastic net Cox model

In the previous sections we have seen that the lasso-penalized Cox model does not seem to
perform very well in terms of predicting overall survival for the AML data set. The lasso
model identified as the optimal model by 10-fold cross-validation is very sparse and contains

14 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Figure 4: Coefficient and stability paths for the lasso penalized Cox PH regression model
applied to the AML data set. The feature with highlighted path is the only stable feature
found by stability selection with PFER = 1 and Π̂ > 0.6.

only 5 features. Furthermore, we have observed that these features are not very stable and 4
of them do not even remain in the set of selected features when the amount of regularization
is decreased and more features start to enter the model.

In this section we fit an elastic net model instead of lasso to the same data set. As outlined
above, fitting an elastic net model requires the simultaneous tuning of two parameters α and λ.
For this computationally challenging task, we use the interval search algorithm in an efficient
implementation in the R function EPSGO. The EPSGO algorithm was originally implemented
for support vector machines in the R package penalizedSVM (Becker, Werft, Toedt, Lichter,
and Benner 2009; Becker, Werft, and Benner 2012). Here we provide a version for glmnet

and in addition summary and plot functions to illustrate the interval search results.

The following code specifies the required objects and parameter values for optimizing the
tuning parameters of the elastic net Cox model. The balancedFolds function splits the data
into balanced folds for 10-fold cross-validation.

R> x <- t(exprs(eset))

R> y <- cbind(time = pData(eset)$os, status = pData(eset)$os_status)

R> bounds <- t(data.frame(alpha = c(0, 1)))

Journal of Statistical Software 15

R> colnames(bounds) <- c("lower", "upper")

R> nfolds <- 10

R> set.seed(1234)

R> foldid <- balancedFolds(class.column.factor = y[, 2],

+ cross.outer = nfolds)

Usually, the task is to find a setting of tuning parameter values (α, λ), for which the 10-fold
cross-validated penalized (partial) log-likelihood deviance of the model is minimal. Here,
however, the optimal λ is chosen as the largest value of λ such that the loss function is within
one standard error of the minimum, which will result in a smaller model (a strategy suggested
by the authors of the glmnet package). That is, for each given α an optimal λ is found via the
computation of the entire regularization path with the glmnet function with option type.min

= "lambda.1se".

The wrapper function tune.glmnet.interval calculates the (partial) log-likelihood deviance
of a model with given tuning parameter setting (α, λ).

R> fit <- epsgo(Q.func = "tune.glmnet.interval", bounds = bounds,

+ parms.coding = "none", seed = 1234, fminlower = -100, x = x, y = y,

+ family = "cox", foldid = foldid, type.min = "lambda.1se",

+ type.measure = "deviance")

Summary information can be extracted from the object fit using the summary function.

R> sumint <- summary(fit, verbose = TRUE)

Summary interval search

show the first 5 out of 37 entries

alpha lambda deviance n.features

1 0.67605 0.4939544 9.711522 1

2 0.17194 1.5391420 9.662976 19

3 0.81895 0.4077635 9.708716 1

4 0.31188 0.9756053 9.699170 4

5 0.61671 0.5168716 9.700599 2

..............................

Optimal parameters found are:

alpha = 0.013 lambda = 14.722 deviance = 9.6329

At the initial step we sample 21 points in the parameter space for α as suggested for the
original algorithm by Froehlich and Zell (2005). Those points are randomly distributed and
uniformly cover the whole interval (0, 1]. A Gaussian process model is trained based on these
initial points. Then, iteratively, new points are added to the Gaussian process model in order
to find an optimal combination of tuning parameter values. In total, 37 iterations were needed
to reach the optimum.

16 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Cross−validated partial log likelihood deviance

α

lo
g

λ

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

1

19

1

4

2

2
2

2

59

24

1
1

1

8
2 0

1

13

232

2

1

41

2220

2221

223
142

60574561

249

332
391

61
66

9.64 9.65 9.66 9.67 9.68 9.69 9.70 9.71 9.72

Figure 5: Cross-validated partial log-likelihood deviance as a function of both tuning param-
eters α and log λ when fitting the elastic net Cox model to the AML data set. For each
evaluated point in the parameter space the number of selected features in the corresponding
model is printed next to the data point symbol. Rectangles correspond to initially selected
α values. The solid red lines highlight the final solution where the loss function is within one
standard error of the minimum.

The final elastic net model contains 220 selected features, which obviously reflects much
less sparsity than the final lasso model. The results are consistent in the sense, that the
features contained in the final lasso model are also contained in the elastic net model. Also,
the individual feature selected by the stability algorithm is in the set of selected elastic net
features.

R> plot(sumint)

Figure 5 illustrates the relationship between both tuning parameters α and λ for the ’visited’
points in the parameter space. The partial log-likelihood deviance is color-coded with black for
small values and gray for large values. The number of features selected in the corresponding
model is written near each point. To distinguish between initial and iteration points, the
initial points are plotted as squares and iteration points as circles. One can observe that the

Journal of Statistical Software 17

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

α

Ite
ra

tio
n

Figure 6: The distribution of initial and visited points of the interval search plotted in chrono-
logical order. The interval search is employed to identify the optimal parameter value combi-
nation (α, λ) for the elastic net Cox model fitted to the AML data set.

iteration points were chosen in the regions with lower deviance values.

The distribution of initial points (iteration = 0) and visited points (iteration > 0) in the pa-
rameter space is plotted in Figure 6. This plot shows nicely that the interval search algorithm
does not sequentially cover the entire parameter space, but rather quickly finds promising re-
gions and draws new samples there. The optimal model with minimal log-likelihood deviance
is found for α = 0.013 and log λ = 2.689 which is highlighted as a vertical line.

R> plot(sumint, type = "points")

To our knowledge, the interval search algorithm has not yet been applied for the purpose of
optimizing the tuning parameters of elastic net models fitted with the glmnet package. The
only previous R implementation of this approach was in the R package penalizedSVM, which
implements classification and simultaneous feature selection with support vector machines.

4. Conclusions and outlook

The programming language and statistical computing environment R provides a highly useful
framework for statistical data analysis and modeling. It is the dominating statistical software

18 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Function Description

Plot.coef.glmnet Plot the glmnet coefficient path and highlight the path of a pre-
specified set of variables

PLL S3 method for the predictive partial log-likelihood of glmnet Cox
PH model fits of class ‘coxnet’

aggregation.auc Determine the area under the ROC curve for a fitted model
complexity.glmnet Interface for determination of penalty lambda in ‘glmnet’ models

via cross-validation
fit.glmnet Interface function for fitting a penalized regression model with

glmnet

Plot.peperr.curves Plot method for prediction error curves of a ‘peperr’ object
predictProb S3 method to extract predicted survival probabilities from

‘coxnet’ and ‘glmnet’ objects

stabpath Calculate the stability path for Gaussian, binomial, Poisson,
multinomial and Cox glmnet models

stabsel Estimate a stable set of variables and allows to control the PFER,
PCER or FWER

plot method for class
‘stabpath’

Display stability path and indicates estimated stable features

epsgo Efficient parameter selection via global optimization
summary method for
class ‘intsearch’

Summary method for interval search models

tune.glmnet.interval Wrapper function to apply epsgo to ‘glmnet’ objects
plot method for class
‘sum.intsearch’

Plot ‘sum.intsearch’ objects generated by the summary method
for ‘intsearch’ objects

Table 1: Overview of available functions in the c060 package.

in many areas, for example in molecular biology and molecular medicine, which is largely due
to the highly successful Bioconductor project (Gentleman et al. 2004), which provides tools
for the analysis and interpretation of high-throughput genomic data. Due to the open-source
nature of R and Bioconductor, many useful software packages have been developed by R
users and made available for the R community. One example is the glmnet package, which
implements an efficient state-of-the-art algorithm for fitting penalized Cox and generalized
linear models with lasso, ridge or elastic net penalties.

We have presented our R package c060, which provides extensions to glmnet and additional
features, which are essential for a complete data analysis in real-life applications, including
stability selection, estimation of prediction error (curves) and an efficient interval search
algorithm for finding the optimal elastic net tuning parameter combination. These extensions
have proved useful in our daily work, in particular for the task of performing prognostic
modeling of patient survival data based on high-dimensional molecular biology data. Table 1
lists all functions that are available as part of the c060 package.

The c060 package will be kept updated in the future to include new developments in the field
of penalized regression methodology for feature selection and risk prediction modeling with
high-dimensional input data. One example are developments for the estimation of standard
errors, confidence intervals and the determination of p values in high-dimensional regular-

Journal of Statistical Software 19

ized regression models, e.g., through subsampling methods similar to the approach taken by
Wasserman and Roeder (2009) and Meinshausen, Meier, and Bühlmann (2009).

Acknowledgments

This work was partially funded by the Virtual Helmholtz Institute VH-VI-404.

References

Becker N, Werft W, Benner A (2012). penalizedSVM: Feature Selection SVM Using
Penalty Functions. R package version 1.1, URL http://CRAN.R-project.org/package=

penalizedSVM.

Becker N, Werft W, Toedt G, Lichter P, Benner A (2009). “penalizedSVM: A R-package for
Feature Selection SVM Classification.” Bioinformatics, 25(13), 1711–1712.

Benner A, Zucknick M, Hielscher T, Ittrich C, Mansmann U (2010). “High-Dimensional
Cox Models: The Choice of Penalty as Part of the Model Building Process.” Biometrical
Journal, 52(10), 50–69.

Binder H, Schumacher M (2008). “Adapting Prediction Error Estimates for Biased Complexity
Selection in High-Dimensional Bootstrap Samples.” Statistical Applications in Genetics and
Molecular Biology, 7(1), 1–28. Article 12.

Blanche P (2013). timeROC: Time-Dependent ROC Curve and AUC for Censored Survival
Data. R package version 0.2, URL http://CRAN.R-project.org/package=timeROC.

Bøvelstad HM, Nyg̊ard S, Størvold HL, Aldrin M, Borgan Ø, Frigessi A, Lingjærde OC
(2007). “Predicting Survival from Microarray Data – A Comparative Study.” Bioinformat-
ics, 23(16), 2080–2087.

Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and Model
Fitting.” Statistical Science, 22(4), 477–505.

Dudoit S, Shaffer JP, Boldrick JC (2003). “Multiple Hypothesis Testing in Microarray Ex-
periments.” Statistical Science, 18(1), 71–103.

Efron B, Tibshirani R (1997). “Improvements on Cross-Validation: The .632+ Bootstrap
Method.” Journal of the American Statistical Association, 92(438), 548–560.

Fan J, Lv J (2010). “A Selective Overview of Variable Selection in High-Dimensional Feature
Space.” Statistica Sinica, 20(1), 101–148.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL http:

//www.jstatsoft.org/v33/i01/.

Friedman J, Hastie T, Tibshirani R (2013). glmnet: Lasso and Elastic-Net Regularized
Generalized Linear Models. R package version 1.9-5, URL http://CRAN.R-project.org/

package=glmnet.

http://CRAN.R-project.org/package=penalizedSVM
http://CRAN.R-project.org/package=penalizedSVM
http://CRAN.R-project.org/package=timeROC
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=glmnet

20 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Froehlich H, Zell A (2005). “Efficient Parameter Selection for Support Vector Machines in
Classification and Regression via Model-Based Global Optimization.” In Proceedings of the
International Joint Conference of Neural Networks, pp. 1431–1438.

Fu WJ (1998). “Penalized Regressions: The Bridge versus the Lasso.” Journal of Computa-
tional and Graphical Statistics, 7(3), 397–416.

Gentleman RC, Carey VJ, Bates DM, others (2004). “Bioconductor: Open Software Devel-
opment for Computational Biology and Bioinformatics.” Genome Biology, 5, R80. URL
http://genomebiology.com/2004/5/10/R80.

Gerds TA, Schumacher M (2006). “Consistent Estimation of the Expected Brier Score in
General Survival Models with Right-Censored Event Times.” Biometrical Journal, 48(6),
1029–1040.

Goeman JJ (2010). “L1 Penalized Estimation in the Cox Proportional Hazards Model.”
Biometrical Journal, 52(1), 70–84.

Goeman JJ, Meijer R, Chaturvedi N (2012). penalized: L1 (Lasso and Fused Lasso) and L2
(Ridge) Penalized Estimation in GLMs and in the Cox Model. R package version 0.9-42,
URL http://CRAN.R-project.org/package=penalized.

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999). “Assessment and Comparison of
Prognostic Classification Schemes for Survival Data.” Statistics in Medicine, 18(17–18),
2529–2545.

Heagerty PJ, Saha-Chaudhuri P (2012). risksetROC: Riskset ROC Curve Estimation From
Censored Survival Data. R package version 1.0.4, URL http://CRAN.R-project.org/

package=risksetROC.

Heagerty PJ, Saha-Chaudhuri P (2013). survivalROC: Time-Dependent ROC Curve Es-
timation From Censored Survival Data. R package version 1.0.3, URL http://CRAN.

R-project.org/package=survivalROC.

Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B, Sobotka F, Scheipl F (2014).
mboost: Model-Based Boosting. R package version 2.4-0, URL http://CRAN.R-project.

org/package=mboost.

Jones D, Schonlau M, Welch W (1998). “Efficient Global Optimization of Expensive Black-Box
Functions.” Journal of Global Optimization, 13(4), 455–492.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of
Statistical Software, 28(5), 1–26. URL http://www.jstatsoft.org/v28/i05/.

Kuhn M (2014). caret: Classification and Regression Training. R package version 6.0-37,
URL http://CRAN.R-project.org/package=caret.

Meinshausen N, Bühlmann P (2010). “Stability Selection.” Journal of the Royal Statistical
Society B, 72(4), 417–473.

Meinshausen N, Meier L, Bühlmann P (2009). “P-Values for High-Dimensional Regression.”
Journal of the American Statistical Association, 104(488), 1671–1681.

http://genomebiology.com/2004/5/10/R80
http://CRAN.R-project.org/package=penalized
http://CRAN.R-project.org/package=risksetROC
http://CRAN.R-project.org/package=risksetROC
http://CRAN.R-project.org/package=survivalROC
http://CRAN.R-project.org/package=survivalROC
http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=mboost
http://www.jstatsoft.org/v28/i05/
http://CRAN.R-project.org/package=caret

Journal of Statistical Software 21

Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC, Heinecke
A, Radmacher M, Marcucci G, Whitman SP, Maharry K, Paschka P, Larson RA, Berdel
WE, Buchner T, Wormann B, Mansmann U, Hiddemann W, Bohlander SK, Buske C (2008).
“An 86 Probe Set Gene Expression Signature Predicts Survival in Cytogenetically Normal
Acute Myeloid Leukemia.” Blood, 112(10), 4193–4201.

Mogensen UB, Ishwaran H, Gerds TA (2012). “Evaluating Random Forests for Survival
Analysis Using Prediction Error Curves.” Journal of Statistical Software, 50(11), 1–23.
URL http://www.jstatsoft.org/v50/i11/.

Porzelius C, Binder H (2013). peperr: Parallelised Estimation of Prediction Error. R package
version 1.1-7, URL http://CRAN.R-project.org/package=peperr.

Porzelius C, Binder H, Schumacher M (2009). “Parallelized Prediction Error Estimation for
Evaluation of High-Dimensional Models.” Bioinformatics, 25(6), 827–829.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Sill M, Hielscher T, Becker N, Zucknick M (2014). c060: Extended Inference for Lasso and
Elastic-Net Regularized Cox and Generalized Linear Models. R package version 0.2-4, URL
http://CRAN.R-project.org/package=c060.

Sill M, Kaiser S (2011). s4vd: Biclustering via Sparse Singular Value Decomposition Incor-
porating Stability Selection Models. R package version 1.0, URL http://CRAN.R-project.

org/package=s4vd.

Sill M, Kaiser S, Benner A, Kopp-Schneider A (2011). “Robust Biclustering by Sparse Singular
Value Decomposition Incorporating Stability Selection.” Bioinformatics, 27(15), 2089–
2097.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). “Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent.” Journal of Statistical Software, 39(5),
1–13. URL http://www.jstatsoft.org/v39/i05/.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, 58(1), 267–288.

Tibshirani R (1997). “The Lasso Method for Variable Selection in the Cox Model.” Statistics
in Medicine, 16(4), 385–395.

Verweij PJM, van Houwelingen HC (1994). “Penalized Likelihood in Cox Regression.” Statis-
tics in Medicine, 13(23–24), 2427–2436.

Wasserman L, Roeder K (2009). “High Dimensional Variable Selection.” The Annals of
Statistics, 37(5A), 2178–2201.

Wehrens R, Franceschi P (2012). “Meta-Statistics for Variable Selection: The R Package
BioMark.” Journal of Statistical Software, 51(10), 1–18. URL http://www.jstatsoft.

org/v51/i10/.

http://www.jstatsoft.org/v50/i11/
http://CRAN.R-project.org/package=peperr
http://www.R-project.org/
http://CRAN.R-project.org/package=c060
http://CRAN.R-project.org/package=s4vd
http://CRAN.R-project.org/package=s4vd
http://www.jstatsoft.org/v39/i05/
http://www.jstatsoft.org/v51/i10/
http://www.jstatsoft.org/v51/i10/

22 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Wehrens R, Franceschi P (2014). BioMark: Find Biomarkers in Two-Class Discrimination
Problems. R package version 0.4.2, URL http://CRAN.R-project.org/package=BioMark.

Yuan Y (2011). lol: Lots Of Lasso. R package version 1.14.0, URL http://www.

bioconductor.org/packages/release/bioc/html/lol.html.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal
of the Royal Statistical Society B, 67(2), 301–320.

Affiliation:

Martin Sill
Division of Biostatistics
DKFZ – German Cancer Research Center
69120 Heidelberg, Germany
E-mail: m.sill@dkfz.de
URL: http://www.dkfz.de/en/biostatistics/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 62, Issue 5 Submitted: 2013-03-04
December 2014 Accepted: 2014-07-11

http://CRAN.R-project.org/package=BioMark
http://www.bioconductor.org/packages/release/bioc/html/lol.html
http://www.bioconductor.org/packages/release/bioc/html/lol.html
mailto:m.sill@dkfz.de
http://www.dkfz.de/en/biostatistics/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methods and algorithms
	Penalized generalized linear models and Cox models
	L2-penalized Cox regression
	L1-penalized Cox regression
	The elastic net
	The interval-search algorithm to select the optimal elastic net parameter combination

	Stability selection
	Prediction error curves for survival models

	Application and demonstration of software
	Data set
	Starting off: Fitting the lasso-penalized Cox model
	Prediction performance using resampling-based prediction errors
	Stability selection
	Parameter tuning for the elastic net Cox model

	Conclusions and outlook

