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Abstract

Structured additive regression (STAR) models provide a flexible framework for model-
ing possible nonlinear effects of covariates: They contain the well established frameworks
of generalized linear models and generalized additive models as special cases but also allow
a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specifi-
cation of complex and realistic models. BayesX is standalone software package providing
software for fitting general class of STAR models. Based on a comprehensive open-source
regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR
models based on Markov chain Monte Carlo simulation techniques, a mixed model rep-
resentation of STAR models, or stepwise regression techniques combining penalized least
squares estimation with model selection. BayesX not only covers models for responses
from univariate exponential families, but also models from less-standard regression sit-
uations such as models for multi-categorical responses with either ordered or unordered
categories, continuous time survival data, or continuous time multi-state models. This
paper presents a new fully interactive R interface to BayesX: the R package R2BayesX.
With the new package, STAR models can be conveniently specified using R’s formula lan-
guage (with some extended terms), fitted using the BayesX binary, represented in R with
objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX
much more accessible to users familiar with R and adds extensive graphics capabilities
for visualizing fitted STAR models. Furthermore, R2BayesX complements the already
impressive capabilities for semiparametric regression in R by a comprehensive toolbox
comprising in particular more complex response types and alternative inferential proce-
dures such as simulation-based Bayesian inference.
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1. Introduction

The free software BayesX (see Brezger, Kneib, and Lang 2005) is a standalone program
(current version 2.1, Belitz, Brezger, Kneib, and Lang 2012) comprising powerful tools for
Bayesian, mixed-model-based and stepwise inference in complex semiparametric regression
models with structured additive predictor. Besides exponential family regression, BayesX
also supports models for multi-categorical responses, hazard regression for continuous survival
times, and continuous time multi-state models. The software is written in C++, utilizing
numerically efficient (sparse) matrix architectures.

To facilitate usage of results from BayesX in subsequent analyses, specifically in explorations
and visualizations of the fitted models, Kneib, Heinzl, Brezger, Bove, and Klein (2014) provide
a package for R (R Core Team 2014), also called BayesX, that can read and process output files
from BayesX. However, in this approach the users still have to read their data into BayesX,
fit the models of interest and obtain the corresponding output files. To alleviate this task, we
introduce a new R package R2BayesX that provides a fully interactive R interface to BayesX
that has the usual R modeling “look & feel” and obviates the tedious exercise of manually
exporting data and fitting models in BayesX. Within the new package, users are now provided
with the typical R modeling workflow namely:

� Specification and estimation of STAR models using bayesx(formula, data, ...)

(which internally calls BayesX and reads its results).

� Methods and extractor functions for fitted“bayesx”model objects, e.g., producing high-
level graphics of estimated effects, model diagnostic plots, summary statistics etc.

In addition, users can leverage the underlying infrastructure, i.e.:

� Run already existing BayesX input program files from R via run.bayesx().

� Automatically import BayesX output files into R via read.bayesx.output().

The formula interface of the bayesx() function uses the special model term constructor func-
tion sx() for structured predictors (such as smooth, spatial, or random effects). Internally this
leverages smooth term functionality from the mgcv package (Wood 2014, 2006), facilitating
a consistent way to translate R syntax into BayesX-interpretable commands.

The functionality is made available in package R2BayesX, available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=R2BayesX. It depends
on the companion package BayesXsrc (also available from CRAN, see Adler, Kneib, Lang,
Umlauf, and Zeileis 2014) that ships the BayesX C++ sources along with flexible Makefiles so
that upon installation of the R package a suitable BayesX binary is produced on all platforms.

The remainder of this paper is as follows. Section 2 gives a first motivating example of an
R session applying R2BayesX to a dataset on childhood malnutrition in Zambia. Subse-
quently, Sections 3–5 introduce the underlying methodological and computational building
blocks before Section 6 returns to more advanced illustrations of using R2BayesX in prac-
tice (for the childhood malnutrition data and a dataset on forest health in Germany). More
specifically, Section 3 briefly discusses the methodological background of structured additive
regression models, Section 4 covers the interface design and implementation details, and Sec-
tion 5 describes the user interface. These three sections are written in a modular style so that

http://CRAN.R-project.org/package=R2BayesX
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they can be easily skipped (or read at a later time) by readers that are less interested in the
underlying methodological/computational details (especially the interface design in Section 4)
and more interested in applying R2BayesX in practice. Section 7 concludes the paper and
further technical details are provided in Appendices A, B, and C.

2. Motivating example

To give an introductory example of the various features of the interface, we estimate a Bayesian
geoadditive regression model for the childhood malnutrition dataset in Zambia (see Kandala,
Lang, Klasen, and Fahrmeir 2001 and also Section 6.1) using Markov chain Monte Carlo
(MCMC) simulation.

The data consists of 4847 observations including 8 variables, both continuous and categorical.
In this analysis, the main interest is assessment of the determinats of stunting (stunting),
represented by anthropometric indicators of newborn children. Covariates include the age of
the children (agechild), the body mass index (BMI) of the mother (mbmi) and the district
the children live in (district). The model is given by

stuntingi = γ0 + f1(agechildi) + f2(mbmii) + fspat(districti) + εi, εi ∼ N(0, σ2),

where the functions f1 and f2 of continuous covariates agechild and mbmi have possible
nonlinear effects on stunting and are modeled nonparametrically using P(enalized)-splines.
Here, the spatially correlated effect fspat of locational covariate district is modeled using
kriging based on centroid coordinates (geokriging) of the districts in Zambia. To estimate
the model with BayesX from R, the data together with a map of the districts in Zambia (see
Section 5.2 for details of the map format) is loaded with

R> data("ZambiaNutrition", "ZambiaBnd", package = "R2BayesX")

Then, the model can be fitted to a suitable formula with the main model-fitting function
bayesx()

R> b <- bayesx(stunting ~ sx(agechild) + sx(mbmi) +

+ sx(district, bs = "gk", map = ZambiaBnd),

+ family = "gaussian", method = "MCMC", data = ZambiaNutrition)

The model summary is displayed by calling

R> summary(b)

Call:

bayesx(formula = stunting ~ sx(agechild) + sx(mbmi) + sx(district,

bs = "gk", map = ZambiaBnd), data = ZambiaNutrition, family = "gaussian",

method = "MCMC")

Fixed effects estimation results:

Parametric coefficients:
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Mean Sd 2.5% 50% 97.5%

(Intercept) 0.0310 0.0427 -0.0507 0.0323 0.1128

Smooth terms variances:

Mean Sd 2.5% 50% 97.5% Min Max

sx(agechild) 0.0066 0.0063 0.0012 0.0045 0.0244 0.0004 0.0657

sx(district) 0.0451 0.0185 0.0214 0.0413 0.0952 0.0148 0.1511

sx(mbmi) 0.0022 0.0034 0.0003 0.0012 0.0098 0.0002 0.0549

Scale estimate:

Mean Sd 2.5% 50% 97.5%

Sigma2 0.8197 0.0172 0.7870 0.8194 0.8555

N = 4847 burnin = 2000 DIC = 4876.806 pd = 32.308

method = MCMC family = gaussian iterations = 12000 step = 10

A plot of the estimated effect for covariate mbmi may then be produced by typing

R> plot(b, term = "sx(mbmi)")

and for covariate agechild including partial residuals by

R> plot(b, term = "sx(agechild)", residuals = TRUE)

The estimated effect of the correlated spatial effect of the districts in Zambia may e.g., be
visualized using a map effect plot generated by

R> plot(b, term = "sx(district)", map = ZambiaBnd)

The plots are shown in Figure 1, depicting the centered additive effects (i.e., each of the
additive effects is zero on average). The map effect plot indicates pronounced stunting (i.e.,
low values of the response) in the northern parts of Zambia. Furthermore, stunting effects
are lower (i.e., the response is higher) for children younger than 20 months of age, while the
agechild effect is almost constant for ages above 20 months. Finally, the response increases
almost linearly with increasing mother’s BMI. In comparison, the effects of mbmi and the
spatial effect seem to have a quite similar influence in absolute magnitude (indicated by the
ranges of the respective axes), while the strongest driver of stunting appears to be covariate
agechild. Extended analyses of the data are discussed in Sections 6.1 and 6.3.

3. STAR models

The STAR model class supported by R2BayesX is based on the framework of Bayesian gen-
eralized linear models (GLMs, see e.g., McCullagh and Nelder 1989 and Fahrmeir and Tutz
2001). GLMs assume that, given covariates x and unknown parameters γ, the distribution of
the response variable y belongs to an exponential family with mean µ = E(y|x,γ) linked to
a linear predictor η by

µ = h−1(η), η = x>γ,
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Figure 1: Visualization examples: Estimated effect for covariate mbmi (black line) together
with 95% and 80% credible intervals (upper left panel). The upper right panel shows the
estimated effect of agechild. The lower panel illustrates visualization of the estimated spatial
effect for covariate district using a map effect plot (regions with vertical lines represent areas
with no observations).

where h is a known link function and γ are unknown regression coefficients. In STAR models
(Fahrmeir, Kneib, and Lang 2004; Brezger and Lang 2006), the linear predictor is replaced
by a more general and flexible, structured additive predictor

η = f1(z) + . . .+ fp(z) + x>γ, (1)

with µ = E(y|x, z,γ,θ) and z represents a generic vector of all nonlinear modeled covariates.
The vector θ comprises all parameters of the functions f1, . . . , fp. The functions fj are possibly
smooth functions encompassing various types of effects, e.g.:

� Nonlinear effects of continuous covariates: fj(z) = f(z1).

� Two-dimensional surfaces: fj(z) = f(z1, z2).

� Spatially correlated effects: fj(z) = fspat(zs).

� Varying coefficients: fj(z) = z1f(z2).
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� Spatially varying effects: fj(z) = z1fspat(zs) or fj(z) = z1f(z2, z3).

� Random intercepts with cluster index c: fj(z) = βc.

� Random slopes with cluster index c: fj(z) = z1βc.

STAR models cover a number of well known model classes as special cases, including gen-
eralized additive models (GAM, Hastie and Tibshirani 1990), generalized additive mixed
models (GAMM, Lin and Zhang 1999), geoadditive models (Kamman and Wand 2003), vary-
ing coefficient models (Hastie and Tibshirani 1993), and geographically weighted regression
(Fotheringham, Brunsdon, and Charlton 2002).

The unified representation of a STAR predictor arises from the fact that all functions fj in
(1) may be specified by a basis function approach, where the vector of function evaluations
fj = (fj(z1), . . . , fj(zn))> of the i = 1, . . . , n observations can be written in matrix notation

fj = Zjβj ,

where the design matrix Zj depends on the specific term structure chosen for fj and βj are
unknown regression coefficients to be estimated. Hence, the predictor (1) may be rewritten
as

η = Z1β1 + . . .+ Zpβp + Xγ,

where X corresponds to the usual design matrix for the linear effects.

To ensure particular functional forms, prior distributions are assigned to the regression coef-
ficients. The general form of the prior for βj is

p(βj |τ2j ) ∝ exp

(
− 1

2τ2j
βj
>Kjβj

)
,

where Kj is a quadratic penalty matrix that shrinks parameters towards zero or penalizes too
abrupt jumps between neighboring parameters. In most cases Kj will be rank deficient and
the prior for βj is partially improper.

The variance parameter τ2j is equivalent to the inverse smoothing parameter in a frequentist
approach and controls the trade off between flexibility and smoothness. For full Bayesian
inference, weakly informative inverse Gamma hyperpriors τ2j ∼ IG(aj , bj) are assigned to τ2j ,
with aj = bj = 0.001 as a standard option. Small values for aj and bj correspond to an
approximate uniform distribution for log τ2j . For empirical Bayes inference, τ2j is considered
an unknown constant which is determined via restricted maximum likelihood (REML).

In BayesX, estimation of regression parameters is based on three inferential concepts:

1. Full Bayesian inference via MCMC
A fully Bayesian interpretation of STAR models is obtained by specifying prior distri-
butions for all unknown parameters. Estimation is carried out using MCMC simulation
techniques. BayesX provides numerically efficient implementations of MCMC schemes
for structured additive regression models. Suitable proposal densities have been devel-
oped to obtain rapidly mixing, well-behaved sampling schemes without the need for
manual tuning (Brezger and Lang 2006).
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2. Inference via a mixed model representation
Another concept used for estimation is based on mixed model methodology. The general
idea is to take advantage of the close connection between penalty concepts and corre-
sponding random effects distributions. The smoothing variances of the priors then trans-
form to variance components in the random effects (mixed) model. While regression
coefficients are estimated based on penalized likelihood, restricted maximum likelihood
or marginal likelihood estimation forms the basis for the determination of smoothing
parameters. From a Bayesian perspective, this yields empirical Bayes/posterior mode
estimates for the STAR models. However, estimates can also merely be interpreted as
penalized likelihood estimates from a frequentist perspective (Fahrmeir et al. 2004).

3. Penalized likelihood including variable selection
As a third alternative BayesX provides a penalized least squares (or penalized like-
lihood) approach for estimating STAR models. In addition, a powerful variable and
model selection tool is included. Model choice and estimation of the parameters is done
simultaneously. The algorithms are able to

� decide whether a particular covariate enters the model,

� decide whether a continuous covariate enters the model linearly or nonlinearly,

� decide whether a spatial effect enters the model,

� decide whether a unit- or cluster-specific heterogeneity effect enters the model,

� select complex interaction effects (two dimensional surfaces, varying coefficient
terms),

� select the degree of smoothness of nonlinear covariate, spatial or cluster specific
heterogeneity effects.

Inference is based on penalized likelihood in combination with fast algorithms for se-
lecting relevant covariates and model terms. Different models are compared via various
goodness of fit criteria, e.g., Akaike or Bayes information criterion (AIC or BIC), gener-
alized cross-validation (GCV), or 5- or 10-fold cross-validation (Belitz and Lang 2008).

A thorough introduction into the regression models supported by the program is also provided
in the BayesX methodology manual (Belitz et al. 2012). An in depth discussion using a number
of empirical examples is also provided in Fahrmeir, Kneib, Lang, and Marx (2013). Further
details on special cases of STAR models are also provided in Fahrmeir et al. (2004).

Software packages which have a similar Bayesian scope are the R package INLA (Rue, Mar-
tino, and Chopin 2009; Lindgren and Rue 2015), BUGS/WinBUGS (Lunn, Spiegelhalter,
Thomas, and Best 2009; Lunn, Thomas, Best, and Spiegelhalter 2000), JAGS (Plummer 2003)
and Stan (Stan Development Team 2014). While the former package is relatively similar in
its workflow compared to R2BayesX and works with hierarchical Gaussian Markov random
fields (GMRF), Bayesian inference is not based on MCMC sampling but on integrated nested
Laplace approximation (INLA). This has the advantage of avoiding questions concerning mix-
ing and convergence but also requires quite advanced mathematical and numerical tools for
implementation. Moreover, complex hierarchical prior structures (such as the Bayesian lasso)
or models with a large number of hyperparameters are more difficult to handle in the INLA
framework. In summary, R2BayesX and INLA address special model classes using optimized
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algorithms, the latter packages apply Bayesian inference using Gibbs sampling, where the
user can in principle program a number of very complex models, also the ones covered by
R2BayesX, but due to their flexible MCMC samplers and the data management/efficiency,
STAR models usually run very long and show inferior sampling properties. A detailed com-
parison of BayesX with other software packages including WinBUGS is provided in Brezger
et al. (2005, Section 3). See also Section 4.2 for more R packages, that deal with GLM and
GAM models, mainly from a frequentist perspective.

4. Implementation of the R interface to BayesX

The design of the interface attempts to address the following major issues: First, the interface
functions should follow R’s conventions for regression model fitting functions so that they are
easy to employ for R users. Second, the functions and methods for representing fitted model
objects should reflect BayesX models to enhance their usability.

This section takes a developer’s perspective and discusses the design choices in R2BayesX
and the technical issues involved while the subsequent Section 5 takes a user’s perspective,
providing an introduction on how to employ the R2BayesX for STAR modeling.

4.1. Interface approach

The first challenge in establishing a communication between R and BayesX is the question
which interface to use. As BayesX is written in C++, one might expect that .C() or .Call()
could be an option. However, as BayesX was designed as a standalone software it does not
offer an application programming interface (API) and restructuring the mature and complex
BayesX C++ code to obtain an API at this point is not straightforward. Hence, R2BayesX
adopts the simpler approach of writing the data out from R, calling the BayesX binary with
a suitable program file, and then collecting all output files and representing them in suitable
R objects. This is straightforward and the additional computation effort (as compared to
a direct call) is rather modest compared to time needed for carrying out the estimation of
STAR models within BayesX.

Thus, for the interface adopted by R2BayesX a binary installation of BayesX is required.
To make this easily available to R users in a standardized way, the BayesX C++ sources
are encapsulated in R package BayesXsrc along with Makefiles for GNU/BSD and MinGW
platforms that conform with R build shells. Consequently, upon installation of the BayesXsrc
package, the binary BayesX (or BayesX.exe on Windows) is created in the installed package.
Package BayesXsrc is also available from CRAN at http://CRAN.R-project.org/package=
BayesXsrc and some of its implementation details are discussed in Appendix A.

4.2. Model specification

The second challenge for the interface package R2BayesX is to employ an objects and meth-
ods interface that reflects the workflow typically adapted by R packages for fitting GAMs and
related models. CRAN packages that implement such models include the following prominent
ones: One of the first implementations of GAMs in R is the gam package (Hastie and Tibshi-
rani 1990; Hastie 2013). The package is supporting local regression and smoothing splines in
combination with a backfitting algorithm and is actually a version of the S-PLUS routines for

http://CRAN.R-project.org/package=BayesXsrc
http://CRAN.R-project.org/package=BayesXsrc
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GAMs. The probably best-known and also recommended package is mgcv (Wood 2006, 2011,
2014), which provides fast and stable algorithms for estimating GAMs based on GCV, REML
and others. Vector generalized additive models (VGAMs, Yee and Wild 1996) for categorical
responses are covered by package VGAM (Yee 2010). Another comprehensive toolbox for
GAMs, accounting for responses that do not necessarily follow the exponential family and
may exhibit heterogeneity, is the gamlss suite of packages (Rigby and Stasinopoulos 2005;
Stasinopoulos and Rigby 2007). A package based on mixed model technologies is SemiPar
(Ruppert, Wand, and Carrol 2003; Wand 2013) and, building on top of this, the Adapt-
Fit package for adaptive splines (Krivobokova 2012). The package spikeSlabGAM applies
Bayesian variable selection, model choice and regularization for GAMMs (Scheipl 2011).

Most of these packages follow the common R paradigm of specifying regression models con-
veniently using its formula language (Chambers and Hastie 1992). However, the above-
mentioned packages employ somewhat different approaches for representing smooth/special
terms for GAMs in formulas and the subsequent building of model frames. A popular ap-
proach, though, is to use a model term constructor function “s”, as used in packages gam,
mgcv, and VGAM. As the implementation details are somewhat different across these pack-
ages, loading packages simultaneously may lead to conflicts. Therefore, R2BayesX follows the
approach of the recommended package mgcv where s() does not evaluate design or penalty
matrices, but simply returns a smooth term definition object of class “xx.smooth.spec”,
where "xx" may be specified by the user. To set up a model with a user-defined smooth term,
a method for the S3 generic function smooth.construct() needs to be supplied, that returns
a design matrix etc. Since implementation of additional model terms is also a concern for
R2BayesX and function s() is a very lean solution, we adopt its functionality and provide
methods for a new generic function bayesx.construct(), that returns the required command
for a particular smooth term in BayesX.

Given an R model formula, the specified terms are translated one after another and finally
merged into a complete program which may be sent to BayesX. Note, however, that due to dif-
ferent estimation methods in mgcv and BayesX the default recommendations for specification
of a given basis (e.g., P-splines) differ. To account for this a new smooth term construc-
tor sx() is provided that is recommended as the principal user interface in R2BayesX and
described in Section 5.2 in detail. For example, the defaults for a P-spline in BayesX are

R> bayesx.construct(sx(x, bs = "ps"))

[1] "x(psplinerw2,nrknots=20,degree=3)"

Internally, sx() simply calls mgcv’s s() to set up the smooth term but it chooses the defaults
in accordance with BayesX. A detailed account how arguments are mapped between sx()

and s() is provided in Appendix C.

4.3. Under the hood

The main user interface of R2BayesX is the function bayesx() (presented in detail in Sec-
tion 5.1). Internally, this function employs the helper functions parse.bayesx.input(),
write.bayesx.input(), run.bayesx(), and read.bayesx.output() in the following work
sequence: First, a program file is generated by applying function parse.bayesx.input()

to the R input parameters, including the model formula, data, etc. The returned object
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is then further processed with function write.bayesx.input(), utilizing the methods de-
scribed above, as well as setting up the necessary temporary directories and data files to
be used with BayesX. Afterwards, function run.bayesx() (provided in BayesXsrc) executes
the program through a call to function system(). The output files returned by the binary
are imported into R using function read.bayesx.output(). Using these helper functions
it is also possible to run and read already existing BayesX program and output files, see
Appendix D and the R2BayesX manuals for a detailed description. The object returned by
function read.bayesx.output() is a list of class “bayesx”, for which a set of base R functions
and methods described in Table 3, amongst others, is available. The returned fitted model
term objects also have suitable classes along with corresponding plotting methods. Particular
effort has been given on the development of easy-to-use map effect plots using color legends
(by default employing HCL-based palettes, Zeileis, Hornik, and Murrell 2009, from the col-
orspace package, Ihaka, Murrell, Hornik, Fisher, and Zeileis 2013). See also Section 5 for
more details and Section 6 for some practical applications.

5. User interface

5.1. Calling BayesX from R

The main model-fitting function in the package R2BayesX is called bayesx(). The arguments
of bayesx() are

bayesx(formula, data, weights = NULL, subset = NULL, offset = NULL,

na.action = NULL, contrasts = NULL,

family = "gaussian", method = "MCMC", control = bayesx.control(...),

chains = NULL, cores = NULL, ...)

where the first two lines basically represent the standard model frame specifications (see
Chambers and Hastie 1992) and the third line collects the arguments specific to BayesX.

The data processing is carried out “as usual” as in lm() or glm() with the following additions:
(1) The data can not only be provided as a “data.frame” but it is also possible to provide
a character string with a path to a dataset stored on disc, which can be leveraged to avoid
reading very large data files into R just to write them out again for BayesX. An example
is given in Appendix D. (2) Additional contrast specifications for factor variables can be
passed to argument contrasts. Using factors, we recommend deviation or effect coding (see
function contr.sum()) rather than the usual dummy coding of factors as it typically improves
convergence of estimation algorithms used in BayesX.

The BayesX-specific arguments comprise specification of the response distribution family,
the estimation method and further control parameters collected in bayesx.control(). The
default response distribution is family = "gaussian". Note that “family” objects (in the
glm() sense) are currently not supported by BayesX. The inferential concepts that can be used
as the estimation method comprise: "MCMC" for Markov chain Monte Carlo simulation, "REML"
for mixed-model-based estimation using restricted maximum likelihood/marginal likelihood,
and "STEP" for penalized likelihood including model selection. An overview of all available
distributions for the different methods is given in Table 1.
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family Response distribution Link method

"binomial" binomial logit "MCMC" "REML" "STEP"

"binomialprobit" binomial probit "MCMC" "REML" "STEP"

"gamma" gamma log "MCMC" "REML" "STEP"

"gaussian" Gaussian identity "MCMC" "REML" "STEP"

"multinomial" unordered multinomial logit "MCMC" "REML" "STEP"

"poisson" Poisson log "MCMC" "REML" "STEP"

"cox" continuous-time sur-
vival data

"MCMC" "REML"

"cumprobit" cumulative threshold probit "MCMC" "REML"

"multistate" continuous-time multi-
state data

"MCMC" "REML"

"binomialcomploglog" binomial compl.
log-log

"REML"

"cumlogit" cumulative multinomial logit "REML"

"multinomialcatsp" unordered multinomial
(with category-specific
covariates)

logit "REML"

"multinomialprobit" unordered multinomial probit "MCMC"

"seqlogit" sequential multinomial logit "REML"

"seqprobit" sequential multinomial probit "REML"

Table 1: Distributions implemented for methods "MCMC", "REML" and "STEP".

The user can additionally run "MCMC" models on multiple chains and cores, e.g., to check
convergence of the samples (for an example see Section 6.1). While the latter is not supported
on Windows system, multiple chains can be started on all platforms.

The last argument specifies several parameters controlling the processing of the BayesX bi-
nary that are arranged by function bayesx.control(). Note that all additional controlling
arguments are automatically parsed within function bayesx() using the dot dot dot argument
“...”, which is sent to bayesx.control(). The most important parameters for the different
methods are listed in Table 2.

The returned fitted model object is a list of class “bayesx”, which is supported by several
standard methods and extractor functions, such as plot() and summary(). For models es-
timated using method "REML", function summary() generates summary statistics similar to
objects returned from the main model fitting function gam() of the mgcv package. For "MCMC"
estimated models, the mean, standard deviation and quantiles of parameter samples are pro-
vided. Using "STEP", the parametric part of the summary statistics is represented like "MCMC",
i.e., if computed, the confidence bands are based on an MCMC algorithm subsequent to the
model selection, while the remaining summary is similar to "REML". The implemented S3
methods for plotting fitted term objects are quite flexible, i.e., depending on the term struc-
ture, the generic function plot() calls one of the following functions: for 2d plots function
plot2d() or plotblock() (for factors, unit- or cluster specific plots, draws a block for ev-
ery estimated parameter including mean and credible intervals), for perspective or image and
contour plots function plot3d(), map effects plots are produced by function plotmap(), with
or without colorlegends drawn by function colorlegend(), amongst others. See Appendix B
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method Parameter Description

"MCMC" iterations Integer number of iterations for the sampler, default: 12000.
burnin Integer burn-in period of the sampler, default: 2000.
step Integer, defines the thinning parameter for MCMC simulation.

E.g., step = 50 means, that only every 50th sampled param-
eter will be stored and used to compute characteristics of the
posterior distribution as means, standard deviations or quan-
tiles, default: 10.

"REML" eps Numeric, defines the termination criterion of the estimation
process. If both the relative changes in the regression coeffi-
cients and the variance parameters are less than eps, the esti-
mation process is assumed to have converged, default: 0.00001.

maxit Integer, defines the maximum number of iterations to be used
in estimation. Since the estimation process will not necessarily
converge, it may be useful to define an upper bound for the
number of iterations.

"STEP" algorithm Character, specifies the selection algorithm. Possible values
are "cdescent1" (adaptive algorithms see Section 6.3 in Belitz
et al. 2012), "cdescent2" (adaptive algorithms 1 and 2 with
backfitting, see remarks 1 and 2 of Section 3 in Belitz and Lang
2008), "cdescent3" (search according to "cdescent1" followed
by "cdescent2" using the selected model in the first step as the
start model) and "stepwise" (stepwise algorithm implemented
in the gam function of S-PLUS, see Chambers and Hastie 1992),
default: "cdescent1".

criterion Character, specifies the goodness of fit criterion, possible cri-
terions are: "MSEP" (divides the data randomly into a test-
and validation dataset. The test dataset is used to estimate
the models and the validation dataset is used to estimate the
mean squared prediction error which serves as the goodness of
fit criterion to compare different models), "GCV" (generalized
cross-validation based on deviance residuals), "GCVrss" (GCV
based on residual sum of squares), see e.g., Wood (2006), "AIC"
(Akaike information criterion), "AIC_imp" (improved AIC with
bias correction for regression models), see e.g., Burnham and
Anderson (1998), "BIC" (Bayesian information criterion) "CV5"
(5-fold cross validation) "CV10" (10-fold CV), see e.g., Hastie,
Tibshirani, and Friedman (2009), and "AUC" (area under the
ROC curve, binary response only), default: "AIC_imp".

startmodel Character, defines the start model for variable selection. Op-
tions are "linear" (model with degrees of freedom equal
to one for model terms), "empty" (empty model containing
only an intercept), "full" (most complex possible model) and
"userdefined" (user-specified model), default: "linear".

Table 2: Most important controlling parameters for the different methods using function
bayesx(). See ?bayesx.control for more details.
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Function Description

print() Simple printed display of the initial call and some additional infor-
mation of the fitted model.

summary() Return an object of class “summary.bayesx” containing the relevant
summary statistics (which has a print() method).

coef() Extract coefficients of the linearly modeled terms.
confint() Compute confidence intervals of linear modeled terms if method =

"REML", for "MCMC" the quantiles of the coefficient samples according
to a specified probability level are computed.

cprob() Extract contour probabilities of a particular P-spline term, only
meaningful if method = "MCMC" and argument contourprob is speci-
fied as an additional argument in the term constructor function sx().
E.g., in the introductory example, contour probabilities for mbmi are
estimated with sx(mbmi, bs = "ps", contourprob = 4) (see also
Section 5.2).

fitted() Fitted values of either the mean and linear predictor, or a selected
model term.

residuals() Extract model or partial residuals for a selected term.
samples() Extract samples of parameters from MCMC simulation.
bayesx_logfile() Extract the internal BayesX log file.
bayesx_prgfile() Extract the BayesX program file.
bayesx_runtime() Extract the overall runtime of the BayesX binary.

terms() Extract terms of model components.
model.frame() Extract/generate the model frame.
logLik() Extract fitted log-likelihood, only if method = "REML".

plot() Either model diagnostic plots or effect plots of particular terms.
getscript() Generate an R script for term effect, diagnostic plots and model sum-

mary statistics.

AIC(), BIC(),
DIC(), GCV()

Compute information criteria, availability is dependent on the method
used.

Table 3: Functions and methods for objects of class “bayesx”. More details are provided in
the manual pages.

for an overview of the most important arguments for the plotting functions. For MCMC
post-estimation diagnosis, besides the implemented trace and autocorrelation plots, samples
of the parameters may also be extracted using function samples(). The sampling paths are
provided as a data frame, and hence may easily be converted to objects of class “mcmc” using
the coda package (Plummer, Best, Cowles, and Vines 2006) for further analysis (see also
Section 6.1). In addition, an R script for the estimated model, including function calls for
saving, loading, plotting of term effects and diagnostic plots, may be generated using function
getscript(). The produced R script may be useful for less experienced users of the package
to get a quick overview of post-estimation commands. Moreover, the script facilitates the final
preparation of plots and diagnostics to be included in publications. In some situations it may
be useful to inspect the log file generated by the BayesX binary. The file can either be viewed
directly during fitting process when setting verbose = TRUE, or it can be extracted from the
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fitted model object using function bayesx_logfile(). A list of all available functions and
methods of package R2BayesX can be found in Table 3.

5.2. Available additive terms

In package R2BayesX, the main constructor function for specifying additive terms in STAR
formulas is called sx(). The function is basically an interface to the term constructor function
s() of package mgcv but assures defaults appropriate for working with BayesX, see also
Section 4. The arguments of function sx() are

sx(x, z = NULL, bs = "ps", by = NA, ...)

where x represents the covariate that is used for univariate terms and z is used additionally
for bivariate model terms. Argument bs chooses the basis/type of the term, see Table 4 for
possible options of bs (and note that some terms have equivalent short and long specifications,
e.g., bs = "ps" or bs = "psplinerw2"). Argument by can be a numeric or a factor variable
to estimate varying coefficient terms, where the effect of the variable provided to by varies
over the range of the covariate(s) of this term. Finally, the “...” argument is used to set
term-specific control parameters or additional geographical information.

For example to modify the degree and the inner knots for the P-spline term sx(mbmi)

from Section 2, sx(mbmi, degree = 2, knots = 10) could be used. Information about
all possible extra arguments for a particular term basis/type can be looked up using function
bayesx.term.options(), e.g., possible options for P-splines using "MCMC" are shown by

R> bayesx.term.options(bs = "ps", method = "MCMC")

Available options for 'bs = "ps"':

degree: the degree of the B-spline basis functions.

Default: integer, 'degree = 3'.

knots: number of inner knots.

Default: integer, 'knots = 20'.

...

For simplicity, only the first two options are shown here. Note that all default specifications,
e.g., the number of equally spaced knots for P-splines, have been thoroughly tested and should
usually be well-suited for common regression problems (see also Lang and Brezger (2004) and
Brezger and Lang (2006) for a detailed discussion). However, in some situations it might be
useful to evaluate the sensitivity of the results when changing certain parameters (such as
number of knots, degree of the spline, hyperpriors, etc.), e.g., when modeling highly oscillating
functions 20 knots may not be sufficient to capture the overall curvature.

For fitting geoadditive models utilizing spatial information – i.e., by computing suitable neigh-
borhood penalty matrices for terms using Markov random field (MRF) priors, or by calcu-
lating the centroids of particular regions for geosplines and geokriging terms – an argument
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bs Description

"rw1", "rw2" Zero degree P-splines: Defines a zero degree P-spline with first or
second order difference penalty. A zero degree P-spline typically es-
timates for every distinct covariate value in the dataset a separate
parameter. Usually there is no reason to prefer zero degree P-splines
over higher order P-splines. An exception are ordinal covariates or
continuous covariates with only a small number of different values.
For ordinal covariates higher order P-splines are not meaningful while
zero degree P-splines might be an alternative to modeling nonlinear
relationships via a dummy approach with completely unrestricted re-
gression parameters.

"season" Seasonal effect of a time scale.
"ps",
"psplinerw1",
"psplinerw2"

P-spline with first or second order difference penalty.

"te",
"pspline2dimrw1"

Defines a two-dimensional P-spline based on the tensor product of
one-dimensional P-splines with a two-dimensional first order random
walk penalty for the parameters of the spline.

"kr", "kriging" Kriging with stationary Gaussian random fields.

"gk",
"geokriging"

Geokriging with stationary Gaussian random fields (Fahrmeir et al.
2004): Estimation is based on the centroids of a map object provided
in boundary format (see function read.bnd() and shp2bnd()) as an
additional argument named map within function sx(), e.g., map =

MapBnd.
"gs",
"geospline"

Geosplines based on two-dimensional P-splines with a two-
dimensional first order random walk penalty for the parameters of
the spline. Estimation is based on the coordinates of the centroids of
the regions of a map object provided in boundary format (see func-
tion read.bnd() and shp2bnd()) as an additional argument named
map (see above).

"mrf", "spatial" Markov random fields (Fahrmeir et al. 2004): Defines a Markov ran-
dom field prior for a spatial covariate, where geographical information
is provided by a map object in boundary or graph file format (see
function read.bnd(), read.gra() and shp2bnd()), as an additional
argument named map (see above).

"bl", "baseline" Nonlinear baseline effect in hazard regression or multi-state models:
Defines a P-spline with second order random walk penalty for the
parameters of the spline for the log-baseline effect log(λ(time)).

"factor" Special BayesX specifier for factors, especially meaningful if method
= "STEP", since the factor term is then treated as a full term, which
is either included or removed from the model.

"ridge", "lasso",
"nigmix"

Shrinkage of fixed effects: Defines a shrinkage-prior for the corre-
sponding parameters γj , j = 1, . . . , q, q ≥ 1 of the linear effects
x1, . . . , xq. There are three priors possible: ridge-, lasso- and normal
mixture of inverse gamma prior.

"re", "random",
"ra"

Gaussian i.i.d. Random effects of a unit or cluster identification co-
variate.

Table 4: Possible BayesX model terms within function sx().
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named map needs to be provided to sx(). For example, the map of Zambia in the geokrig-
ing term in Section 2 is included with sx(district, bs = "gk", map = ZambiaBnd). The
map argument can be an object of class “SpatialPolygonsDataFrame” (Pebesma and Bivand
2005; Bivand, Pebesma, and Gómez-Rubio 2013) or an object of class “bnd”. The latter is
essentially a named list of the map’s polygons which is the format required by BayesX for
its computations. In case a “SpatialPolygonsDataFrame” is supplied it is transformed in-
ternally to such a polygon list which is employed for all further computations. Furthermore,
“bnd” objects can be created directly using functions from the R package BayesX of Kneib
et al. (2014): read.bnd() and shp2bnd() create “bnd” objects from text files or shapefiles
(using package shapefiles, Stabler 2013), respectively. For MRF terms, it is possible to supply
the whole map as outlined above but it suffices to supply the corresponding neighborhood
information. Internally, BayesX uses a list specification of neighbors which is captured in
objects of class “gra” that can be created by read.gra() and bnd2gra(). Improvements in
the handling of spatial information – especially by leveraging more functionality from the sp
family of packages – are planned for future versions of R2BayesX.

Some care is warranted for the identifiability of varying coefficients terms. The standard in
BayesX is to center nonlinear main effects terms around zero whereas varying coefficient terms
are not centered. This makes sense since main-effects nonlinear terms are not identifiable (with
an intercept in the model) and varying coefficients terms are usually identifiable. However,
there are situations where a varying coefficients term is not identifiable. Then the term must
be centered. Since centering is not automatically accomplished it has to be enforced by the
user by adding option center = TRUE in function sx(). To give an example, the varying
coefficient terms in η = . . . + g1(z1)z + g2(z2)z + γ0 + γ1z + . . . are not identified, whereas
in η = . . . + g1(z1)z + γ0 + . . ., the varying coefficient term is identifiable. In the first case,
centering is necessary, in the second case, it is not.

6. STAR models in practice

The focus of this section is on demonstrating the various features of the R2BayesX pack-
age. Therefore, the examples provided reconsider analyses from Brezger et al. (2005) and
Fahrmeir et al. (2013). The presented datasets have been added to package R2BayesX, en-
suring straightforward reproducibility of the following code. In the first example, a Gaussian
regression model is estimated using Markov chain Monte Carlo simulation. The second exam-
ple covers estimation based on mixed-model technology, where a cumulative threshold model
is employed for an ordered response variable (see Fahrmeir and Tutz 2001, and Kneib and
Fahrmeir 2006 for cumulative threshold models). The last example illustrates the approach
of the stepwise algorithm for model and variable selection.

6.1. Childhood malnutrition in Zambia: Analysis with MCMC

This analysis has already been conducted by Kandala et al. (2001) and has also been used as
a demonstrating example in Brezger et al. (2005). Stunting is one of the leading drivers of
a number of problems developing countries are faced with, for instance, a direct consequence
of stunting is a high mortality rate. Here, the primary interest is to model the dependence
of stunting of newborn children, with an age ranging from 0 to 5 years, on covariates such
as the body mass index of the mother, the age of the child and others presented in Table 5.
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Variable Description

stunting Standardized Z-score for stunting.
mbmi Body mass index of the mother.
agechild Age of the child in months.
district District where the mother lives.
memployment Mother’s employment status with categories ‘yes’ and ‘no’.
meducation Mother’s educational status with categories for no education

or incomplete primary ‘no’, complete primary but incom-
plete secondary ‘primary’ and complete secondary or higher
‘secondary’.

urban Locality of the domicile with categories ‘yes’ and ‘no’.
gender Gender of the child with categories ‘male’ and ‘female’.

Table 5: Variables in the dataset on childhood malnutrition in Zambia.

The response stunting is standardized in terms of a reference population, i.e., in this dataset
stunting for child i is represented by

stuntingi =
AI i −m

σ
,

where AI refers to a child’s anthropometric indicator (height at a certain age in our exam-
ple), while m and σ correspond to the median and the standard deviation in the reference
population, respectively.

Following Kandala et al. (2001), we estimate a structured additive regression model with
predictor

η = γ0 + γ1memploymentyes + γ2urbanno + γ3genderfemale +

γ4meducationno + γ5meducationprimary +

f1(mbmi) + f2(agechild) + fstr(district) + funstr(district) (2)

where memploymentyes is the deviation (effect) coded version of covariate memployment, gen-
erated with function contr.sum() by setting the contrasts argument of the factor variable,
i.e., memploymentyes contains of values −1, corresponding to ‘yes’, and 1, ‘no’ respectively,
likewise for covariates genderfemale, urbanno, meducationno and meducationprimary. As
mentioned in the introduction, functions f1 and f2 of the continuous covariates agechild and
mbmi are assumed to have a possibly nonlinear effect on stunting and are therefore mod-
eled with P-splines. Furthermore, the spatial effect is decomposed into a structured effect
fstr, modeled by a Gaussian Markov random field, and an unstructured effect funstr, using a
random effects term for the districts in Zambia.

The data for this analysis is provided in the R2BayesX package and can be loaded with

R> data("ZambiaNutrition", package = "R2BayesX")

Since function fstr is modeled by a Markov random fields term, BayesX needs information
about the district neighborhood structure, which e.g., is enclosed in the file

R> data("ZambiaBnd", package = "R2BayesX")
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Figure 2: Example on childhood malnutrition: A simple map of the districts in Zambia.

The object ZambiaBnd has class “bnd” and is basically a list() of polygon matrices, with x-
and y-coordinates of the boundary points in the first and second column respectively. With
the information of the boundary file BayesX may compute an appropriate adjacency matrix,
allowing for a smoothly varying effect of the neighboring regions. In addition, “bnd” objects
can be used to calculate centroids of polygons to estimate smooth bivariate effects of the
resulting coordinates (e.g., using the "geokriging" option in Section 2, also see Section 6.2
for another example). There is a generic plotting method implemented for objects of class
“bnd”, which essentially calls function plotmap(). E.g., a simple map, as shown in Figure 2,
of the districts in Zambia is drawn by typing

R> plot(ZambiaBnd)

Having loaded the necessary files, the model formula is specified with

R> f <- stunting ~ memployment + urban + gender + meducation + sx(mbmi) +

+ sx(agechild) + sx(district, bs = "mrf", map = ZambiaBnd) +

+ sx(district, bs = "re")

As mentioned above, the structured spatial effect is now modeled as a Markov random field
(option "mrf"), while in Section 2 we used the region centroids to model a smooth spatial
effect applying (geo)kriging. The model is then fitted using MCMC by calling

R> zm <- bayesx(f, family = "gaussian", method = "MCMC", iterations = 12000,

+ burnin = 2000, step = 10, seed = 123, data = ZambiaNutrition)

Argument iterations, burnin and step set the number of iterations of the MCMC simu-
lation, the burnin period, which will be removed from the generated samples, and the step
length for which samples should be stored, i.e., if step = 10, every 10th sampled parameter
will be saved. In most applications 12000 iterations should be enough for a valid fit with
sufficiently small autocorrelations of stored parameters, at least in the model building stage.
However, it is crucial to inspect the sampled parameters and autocorrelation functions to
check the mixing behavior (see below). Moreover, it is generally advisable to specify a higher
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number of iterations for the final model that appears in publications. Argument seed sets
the state of the random number generator in BayesX for exact reproducibility of the model
fit.

After the model has been successfully fitted, summary statistics of the MCMC estimated
model object may be printed with

R> summary(zm)

Call:

bayesx(formula = f, data = ZambiaNutrition, family = "gaussian",

method = "MCMC", iterations = 12000, burnin = 2000, step = 10,

seed = 123)

Fixed effects estimation results:

Parametric coefficients:

Mean Sd 2.5% 50% 97.5%

(Intercept) 0.1052 0.0497 0.0060 0.1059 0.1989

memploymentno -0.0076 0.0139 -0.0356 -0.0071 0.0206

urbanno -0.0897 0.0221 -0.1340 -0.0894 -0.0474

genderfemale 0.0583 0.0129 0.0338 0.0584 0.0833

meducationno -0.1736 0.0277 -0.2256 -0.1731 -0.1203

meducationprimary -0.0614 0.0255 -0.1125 -0.0623 -0.0128

Smooth terms variances:

Mean Sd 2.5% 50% 97.5% Min Max

sx(agechild) 0.0059 0.0057 0.0012 0.0043 0.0193 0.0005 0.0701

sx(district):mrf 0.0355 0.0185 0.0100 0.0319 0.0823 0.0035 0.1317

sx(mbmi) 0.0019 0.0025 0.0003 0.0011 0.0079 0.0002 0.0319

Random effects variances:

Mean Sd 2.5% 50% 97.5% Min Max

sx(district):re 0.0073 0.0059 0.0006 0.0056 0.0215 0.0002 0.0374

Scale estimate:

Mean Sd 2.5% 50% 97.5%

Sigma2 0.8019 0.0165 0.7718 0.8017 0.8342

N = 4847 burnin = 2000 DIC = 4903.827 pd = 50.69312

method = MCMC family = gaussian iterations = 12000 step = 10

The summary typically includes mean, standard deviation and quantiles of sampled linear
effects, smooth terms variances and random effects variances, as well as goodness of fit criteria
and some other information about the model. The estimated effects for covariates agechild

and mbmi may then be visualized with

R> plot(zm, term = c("sx(mbmi)", "sx(agechild)"))



20 Structured Additive Regression Models: An R Interface to BayesX

mbmi

sx
(m

bm
i)

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

15 20 25 30 35 40

agechild

sx
(a

ge
ch

ild
)

0.
0

0.
5

1.
0

0 10 20 30 40 50 60

Figure 3: Example on childhood malnutrition: Effect of the body mass index of the child’s
mother and of the age of the child together with pointwise 80% and 95% credible intervals.
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Figure 4: Example on childhood malnutrition: Kernel density estimates of the posterior
means of coefficients for all regions of the structured, left panel, and the unstructured spatial
effect, right panel respectively.

and are shown in Figure 3. The interpretations of both terms are essentially unchanged
compared to the simpler model considered in Section 2: The age of the child has a larger
effect on stunting while mother’s BMI could also be modeled approprietly by a linear term.

A visual representation of the posterior means for the structured and unstructured spatial
effects, respectively, can be obtained in two ways: via kernel density estimates or using shaded
maps. The former can be obtained by the plain plot function yielding both panels of Figure 4:

R> plot(zm, term = c("sx(district):mrf", "sx(district):re"))

Note that here the term labels have been extended by their respective basis specifications
(mrf and re) to make the labels unique. Equivalently, term can also be specified by the
corresponding index (based on the ordering in the model formula), e.g., term = c(7, 8) (see
Appendix B for more details). In Figure 4, the kernel densities reveal the general form of
the random effects distributions which are assumed to follow a Gaussian distribution. The
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−0.32 0 0.32

Figure 5: Example on childhood malnutrition: Estimated mean effect of the structured
spatial effect (left panel), together with the unstructured spatial effect using the color and
legend scaling of the structured effect (right panel).

range of the estimated random spatial effect is much smaller than the range of the structured
spatial effect, indicating that model fit improvement by including random effects that account
for unobserved spatial heterogeneity of the regions in Zambia, is relatively low. This is also
supported by the comparatively low variance estimate of the random effects term given in the
model summary above.

Alternatively, to view the spatial structure of the correlated effect the plot function can be
used in combination with the boundary object ZambiaBnd yielding the map effect plot in the
left panel of Figure 5:

R> plot(zm, term = "sx(district):mrf", map = ZambiaBnd)

As a default the districts of Zambia are colored in a symmetrical range within the estimated
±max(|posterior mean|) of the corresponding effect. In many situations the visual impression
of the colored map is problematic. This is primarily the case if there are some districts with
extraordinarily high posterior means compared to the rest of the districts. Then the map is
dominated by the colors of these outlying districts. A more informative map may be obtained
by restricting the range of the plotting area using the range option. For the Zambia data the
corresponding random effects are comparably symmetric and without outlying districts such
that the plot function with default options produces fairly informative maps. To demonstrate
the range option we draw the unstructured random effect and the legend range within the
same range as the structured random effect, yielding the right panel of Figure 5:

R> plot(zm, term = "sx(district):re", map = ZambiaBnd,

+ range = c(-0.32, 0.32), lrange = c(-0.32, 0.32))

Using the same scale for both the structured and the unstructured effect is useful for com-
parison. In most cases one of the two effects clearly dominates the other. In our case the
structured spatially correlated effect clearly exceeds the unstructured effect.

In addition, care has to be taken interpreting structured and unstructured spatial effects. As
has been shown in Fahrmeir and Lang (2001) the unstructured and the structured spatial
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effect can generally not be separated and are often estimated with bias. Only the sum of both
effects is estimated satisfactorily. This means in practice that only the complete spatial effect
should be interpreted and nothing (or not much) can be said about the relative importance
of both effects. Exception are cases where one of both effects (either the unstructured or
the structured effect) is estimated practically zero and the other effect clearly dominates as
shown in this example. Whenever a structured and unstructured spatial effect is estimated
it is possible to plot the sum of both effects by extending the corresponding term name with
":total", i.e., similar to the ":mrf" and ":re" extension in the above.1

In addition, autocorrelation functions may be drawn, e.g., for the variance samples of term
sx(mbmi), by typing

R> plot(zm, term = "sx(mbmi)", which = "var-samples", acf = TRUE)

For MCMC post estimation diagnosis, it is also possible to extract sampling paths of pa-
rameters with function samples(), or to plot the samples directly. For instance, coefficient
sampling paths for term sx(mbmi) are displayed with

R> plot(zm, term = "sx(mbmi)", which = "coef-samples")

see Figure 6. The plot of sampled parameters should ideally show white noise, i.e., more or
less uncorrelated samples that show no particular pattern. In our case the samples are exactly
as they should be. The maximum autocorrelation of all sampled parameters in the model are
displayed with

R> plot(zm, which = "max-acf")

Autocorrelations for all lags should be close to zero as is mostly the case in our example.
See Figure 7, for the autocorrelation plots. The plot of maximum autocorrelations over all
model parameters suggests to use a larger number of iterations in a final run (e.g., 22000 or
even 32000 iterations) to improve the mixing behavior, i.e., the number of iterations should
be chosen such that the samples after thinning are (nearly) uncorrelated.

Convergence can also be checked, e.g., by running multiple chains or cores. A model using
two chains can be estimated by

R> zm2 <- bayesx(f, family = "gaussian", method = "MCMC", iterations = 12000,

+ burnin = 2000, step = 10, seed = 123, data = ZambiaNutrition,

+ chains = 2)

The returned object zm2 now contains of two separate models, and is also of class “bayesx”,
for which all summary, plotting an extractor functions can be used. Now, to further analyze
convergence, the user can extract the samples for certain parameters and terms with the
extractor function samples()

R> zs <- samples(zm2, term = "linear-samples")

1For convenience, the plot of the total spatial effect is not shown here.
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Figure 6: Example on childhood malnutrition: Sampling paths of the first 12 coefficients of
term sx(mbmi).

In this case we only extract samples for the parametric modeled terms. Per default, func-
tion samples() returns an object of class “mcmc” using a single chain and core or of class
“mcmc.list” when multiple chains or cores are used. One convergence diagnostic function,
as implemented in the package coda, is the Gelman and Rubin’s convergence diagnostic, that
can then be computed e.g. by
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Figure 7: Example on childhood malnutrition: Autocorrelation function of the samples of
the variance parameter of term sx(mbmi) (left panel) and maximum autocorrelation of all
parameters of the model (right panel).

R> gelman.diag(zs, multivariate = TRUE)

Potential scale reduction factors:

Point est. Upper C.I.

Intercept 1.002 1.010

memploymentno 1.001 1.005

urbanno 1.003 1.004

genderfemale 1.004 1.016

meducationno 0.999 0.999

meducationprimary 1.008 1.037

Multivariate psrf

1.01

In some situations problems may occur during processing of the BayesX binary, that are not
automatically detected by the main model fitting function bayesx(). Therefore the user may
inspect the log-file generated by the binary in two ways: Setting the option verbose = TRUE

in bayesx.control() (used within the model fitting function bayesx(), as mentioned in Sec-
tion 5, note that control arguments in bayesx() can be passed directly to bayesx.control()

by the dots “...” argument) will print all information produced by BayesX simultaneously
at runtime. The option is especially helpful if BayesX fails in the estimation of the model.

Another way to obtain the log-file is to use function bayesx_logfile() if BayesX successfully
finished processing. In this example the log-file may be printed with

R> bayesx_logfile(zm)

> bayesreg b

> map ZambiaBnd
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> ZambiaBnd.infile using /tmp/Rtmpa3Z6WF/bayesx/ZambiaBnd.bnd

NOTE: 57 regions read from file /tmp/Rtmpa3Z6WF/bayesx/ZambiaBnd.bnd

> dataset d

> d.infile using /tmp/Rtmpa3Z6WF/bayesx/bayesx.estim.data.raw

NOTE: 14 variables with 4847 observations read from file

/tmp/Rtmpa3Z6WF/bayesx/bayesx.estim.data.raw

> b.outfile = /tmp/Rtmpa3Z6WF/bayesx/bayesx.estim

> b.regress stunting = mbmi(psplinerw2,nrknots=20,degree=3) +

agechild(psplinerw2,nrknots=20,degree=3) + district(spatial,map=ZambiaBnd) +

district(random) + memploymentyes + urbanno + genderfemale + meducationno +

meducationprimary, family=gaussian iterations=12000 burnin=2000 step=10

setseed=123 predict using d

NOTE: no observations for region 11

NOTE: no observations for region 84

NOTE: no observations for region 96

BAYESREG OBJECT b: regression procedure

GENERAL OPTIONS:

Number of iterations: 12000

Burn-in period: 2000

Thinning parameter: 10

RESPONSE DISTRIBUTION:

Family: Gaussian

Number of observations: 4847

Number of observations with positive weights: 4847

Response function: identity

Hyperparameter a: 0.001

Hyperparameter b: 0.001

To simplify matters only a fragment of the log-file is shown in the above. The log-file typically
provides information on the used data, model specifications, algorithms and possible error
messages.

6.2. Forest health dataset: Analysis with REML

The dataset on forest health comprises information on the defoliation of beech trees, which
serves as an indicator of overall forest health here. The data were collected annually from
1980 to 1997 during a project of visual inspection of trees around Rothenbuch, Germany,
see Göttlein and Pruscha (1996), and is discussed in detail in Fahrmeir et al. (2013). In
this example, the percentage rate of defoliation of each tree is aggregated into three ordinal
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Variable Description

id Tree location identification number.
year Year of census.
defoliation Percentage of tree defoliation in three ordinal categories: ‘<

12.5%’, ‘12.5% ≤ defoliation < 50%’, ‘≥ 50%’.
age Age of stands in years.
canopy Forest canopy density in percent.
inclination Slope inclination in percent.
elevation Elevation (meters above sea level).
soil Soil layer depth in cm.
ph Soil pH at 0–2cm depth.
moisture Soil moisture level with categories ‘moderately dry’, ‘mod-

erately moist’ and ‘moist or temporarily wet’.
alkali Proportion of base alkali-ions with categories ‘very low’,

‘low’, ‘high’ and ‘very high’.
humus Humus layer thickness in cm.
stand Stand type with categories ‘deciduous’ and ‘mixed’.
fertilized Fertilization applied with categories ‘yes’ and ‘no’.

Table 6: Variables in the forest health dataset.

categories, which are modeled in terms of covariates characterizing the stand and site of a
tree. In addition, temporal and spatial information is available, see also Table 6.

Similar to Fahrmeir et al. (2013), we start with a threshold model and cumulative logit link,
with P (defoliationit ≤ r) of tree i at time t, for response category r = 1, 2, and the additive
predictor

η
(r)
it = f1(ageit) + f2(inclinationi) + f3(canopyit) + f4(year) + f5(elevationi) + x>itγ

where f1, . . . , f5 are possibly nonlinear smooth functions of the continuous covariates and
x>itγ comprises covariates with parametric effects using deviation (effect) coding for factor
covariates.

To estimate the model within R the data is loaded and the model formula specified with

R> data("ForestHealth", package = "R2BayesX")

R> f <- defoliation ~ stand + fertilized + humus + moisture + alkali + ph +

+ soil + sx(age) + sx(inclination) + sx(canopy) + sx(year) + sx(elevation)

The covariates entering nonlinearly are again modeled by P-splines. The model is then fitted
applying REML by assigning a cumulative logit model and calling

R> fm1 <- bayesx(f, family = "cumlogit", method = "REML",

+ data = ForestHealth)

After the estimation process has converged, the estimated effects of the nonparametric mod-
eled terms may be visualized by

R> plot(fm1, term = c("sx(age)", "sx(inclination)", "sx(canopy)", "sx(year)",

+ "sx(elevation)"))
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Figure 8: Forest damage: Estimates of nonparametric effects including 80% and 95% point-
wise confidence intervals of the model without the spatial effect.

The results are shown in Figure 8 and appear to be rather unintuitive. In particular, the effect
of the covariate age on defoliation seems to be non-monotonic with low defoliation levels
for both younger and older trees. Similarly, the effect of elevation is very non-monotonic
with high defoliation for both low and high elevations. Finally, the extremely wiggly estimate
of inclination is hardly interpretable. Therefore, Göttlein and Pruscha (1996) extend the
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model by a spatial effect, modeled by a two dimensional geospline term of the tree locations.
The tree x- and y-coordinates are calculated by the centroid positions of tree polygons given
by the boundary map file BeechBnd. We can update the model by adding a "gs" effect:

R> data("BeechBnd", package = "R2BayesX")

R> fm2 <- update(fm1, . ~ . +

+ sx(id, bs = "gs", map = BeechBnd, nrknots = 20))

Note that argument nrknots is set to 20 (default is 8) to obtain a sufficiently flexible geospline
that replicates the analysis of Fahrmeir et al. (2013). The associated model information
criteria are:

R> BIC(fm1, fm2)

df BIC

fm1 59.9714 2016.04

fm2 94.8222 1930.06

R> GCV(fm1, fm2)

df GCV

fm1 59.9714 0.816340

fm2 94.8222 0.610199

This clearly indicates a better fit by modeling the spatial effect of tree locations. The summary
statistics for both models gives:

R> summary(fm1)

Call:

bayesx(formula = f, data = ForestHealth, family = "cumlogit",

method = "REML")

Fixed effects estimation results:

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

theta_1 -4.3485 1.5039 -2.8914 0.0039 **

theta_2 0.7500 1.5156 0.4948 0.6208

standmixed -0.6175 0.1044 -5.9178 <2e-16 ***

fertilizedno 0.5362 0.1901 2.8208 0.0048 **

humus[0cm, 1cm] -0.1407 0.1648 -0.8536 0.3934

humus(1cm, 2cm] 0.4421 0.1682 2.6289 0.0086 **

humus(2cm, 3cm] 0.0975 0.1793 0.5439 0.5866

humus(3cm, 4cm] 0.0771 0.2307 0.3341 0.7383

moisturemoderately dry -0.7569 0.2088 -3.6246 0.0003 ***

moisturemoderately moist 0.3067 0.1418 2.1625 0.0307 *
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alkalivery low 1.1612 0.2482 4.6793 <2e-16 ***

alkalilow -0.3889 0.1881 -2.0680 0.0388 *

alkalihigh -0.9853 0.2242 -4.3957 <2e-16 ***

ph -0.8074 0.3021 -2.6728 0.0076 **

soil -0.0470 0.0104 -4.5008 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth terms:

Variance Smooth Par. df Stopped

sx(age) 4.9911 0.2004 12.3322 0

sx(canopy) 0.0527 18.9743 4.7092 0

sx(elevation) 0.0668 14.9682 5.0563 0

sx(inclination) 25.8453 0.0387 14.4449 0

sx(year) 0.2971 3.3664 8.4287 0

N = 1793 df = 59.9714 AIC = 1686.69 BIC = 2016.04

logLik = -783.375 GCV = 0.81634 method = REML family = cumlogit

R> summary(fm2)

Call:

bayesx(formula = defoliation ~ stand + fertilized + humus + moisture +

alkali + ph + soil + sx(age) + sx(inclination) + sx(canopy) +

sx(year) + sx(elevation) + sx(id, bs = "gs", map = BeechBnd,

nrknots = 20), data = ForestHealth, family = "cumlogit",

method = "REML")

Fixed effects estimation results:

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

theta_1 -1.8244 2.0034 -0.9106 0.3626

theta_2 4.5302 2.0421 2.2184 0.0267 *

standmixed -0.1778 0.2269 -0.7835 0.4335

fertilizedno 0.5816 0.4977 1.1685 0.2428

humus[0cm, 1cm] -0.3371 0.2004 -1.6817 0.0928 .

humus(1cm, 2cm] 0.2453 0.1951 1.2576 0.2087

humus(2cm, 3cm] 0.1656 0.2066 0.8014 0.4230

humus(3cm, 4cm] 0.2205 0.2578 0.8552 0.3926

moisturemoderately dry -0.7054 0.5450 -1.2943 0.1957

moisturemoderately moist -0.0765 0.3899 -0.1961 0.8446

alkalivery low 0.9401 0.6297 1.4929 0.1357

alkalilow -0.3564 0.4866 -0.7324 0.4640

alkalihigh -0.3869 0.5608 -0.6899 0.4904

ph -0.3033 0.3611 -0.8399 0.4011

soil -0.0072 0.0281 -0.2553 0.7985
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth terms:

Variance Smooth Par. df Stopped

sx(age) 3.8455 0.2600 10.9703 0

sx(canopy) 0.0179 55.8909 3.2481 0

sx(elevation) 0.0002 5203.4900 1.0280 1

sx(id) 56.3986 0.0177 53.6092 0

sx(inclination) 0.0103 97.4621 1.8657 0

sx(year) 0.5220 1.9158 9.1008 0

N = 1793 df = 94.8222 AIC = 1409.33 BIC = 1930.06

logLik = -609.84 GCV = 0.610199 method = REML family = cumlogit

Most of the parametric modeled terms in the second model now have an insignificant effect
on tree defoliation, with similar findings for covariates inclination and elevation (where
the pointwise 95% credible intervals cover the zero line). However, the estimate of the age

effect seems to be improved in terms of monotonicity, see Figure 9.

A kernel density plot of the estimated spatial effect is then obtained by

R> plot(fm2, term = "sx(id)", map = FALSE)

The effect may also be visualized either using a 3d perspective plot, an image/contour plot
or a map effect plot using the boundary file BeechBnd with

R> plot(fm2, term = "sx(id)", map = BeechBnd)

Both the kernel density and map effect plot are shown in the first two panels of Figure 10.
In this example the coloring of the plot is strongly influenced by a few very high and low
values. In addition, the size of the polygon areas is relatively small and makes it difficult to
examine the effect. Therefore, it is helpful to plot a smooth interpolated map of the effect.
The resulting map in the bottom panel of Figure 10 is created by:

R> plot(fm2, term = "sx(id)", map = BeechBnd,

+ interp = TRUE, outside = TRUE)

where argument interp specifies if interpolation of estimated effects should be applied and
argument outside if values outside the polygon areas should be shown (see also Appendix B).
Plotting interpolated values now leads to a better representation of the effect.

In summary, the results identify a strong influence of the spatial effect on the overall model fit,
indicating that a clear splitting of location-specific covariates and the spatial effect is hardly
possible in this example.

6.3. Childhood malnutrition in Zambia: Analysis with STEP

To illustrate the implemented methodology for simultaneous selection of variables and smooth-
ing parameters, we proceed with the dataset on malnutrition in Zambia of Section 6.1. In
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Figure 9: Forest damage: Estimated effects of covariates inclination, elevation and age,
including 80% and 95% point-wise confidence intervals, of the model including the spatial
effect.

this example, the structured additive predictor (2) contains two continuous covariates mbmi

and agechild, that are assumed to have a possibly nonlinear effect on the response stunting
and are modeled with P-splines. However, to assess whether this is really necessary the corre-
sponding linear effect is also considered using the selection algorithm in BayesX. Additionally,
for each variable and function, the implemented procedures decide if a term is included or
removed from the model. To estimate the model applying the option method = "STEP", we
use the same model formula of Section 6.1 and call

R> f <- stunting ~ memployment + urban + gender +

+ sx(meducation, bs = "factor") + sx(mbmi) + sx(agechild) +

+ sx(district, bs = "mrf", map = ZambiaBnd) + sx(district, bs = "re")

R> zms <- bayesx(f, family = "gaussian", method = "STEP",

+ algorithm = "cdescent1", startmodel = "empty", seed = 123,

+ data = ZambiaNutrition)

where argument algorithm chooses the selection algorithm and startmodel the start model
for variable selection, see also Table 2 for all possible options. Usually the selected final model
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Figure 10: Forest damage: Kernel density estimate of the spatial effect (top panel), to-
gether with a map effect plot (middle panel), and a map effect plot applying smooth spatial
interpolation (bottom panel).

is pretty much insensitive with respect to the selection algorithm and startmodel. However,
it is generally of interest to assess the dependence of results on the selection algorithm and
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the startmodel. The summary statistics of the final selected model are then provided with

R> summary(zms)

Call:

bayesx(formula = f, data = ZambiaNutrition, family = "gaussian",

method = "STEP", algorithm = "cdescent1", startmodel = "empty",

seed = 123)

Fixed effects estimation results:

Parametric coefficients:

Mean Sd 2.5% 50% 97.5%

(Intercept) -0.4863 NA NA NA NA

urbanno -0.0945 NA NA NA NA

genderfemale 0.0589 NA NA NA NA

meducation_0 -0.1087 NA NA NA NA

meducation_2 0.2977 NA NA NA NA

mbmi 0.0209 NA NA NA NA

Smooth terms:

lambda df

sx(agechild) 15.1687 10.981

sx(district) 7.5775 24.391

sx(district):re 35.8077 17.835

Scale estimate: 0.7897

N = 4847 AIC_imp = -1024.37 method = STEP family = gaussian

Thus, the results are similar to those from model zm in Section 6.1. However, the variable
memployment is removed from the model and variable mbmi is modeled by a linear effect.

By default, the columns sd, 2.5%, 50% and 97.5% from a "STEP" fit contain no values, likewise
for the estimated random and smooth effects. The posterior quantiles may be computed if
argument CI in function bayesx.control() is specified. E.g., conditional confidence bands
can be calculated conditional on the selected model, i.e., they are computed for selected
variables and functions only. The computation of conditional confidence bands is based on an
MCMC-algorithm subsequent to the selection procedure. For the selection of a model with a
subsequent computation of conditional confidence bands the user may type

R> zmsccb <- bayesx(f, family = "gaussian", method = "STEP",

+ algorithm = "cdescent1", startmodel = "empty", CI = "MCMCselect",

+ iterations = 10000, step = 10, seed = 123, data = ZambiaNutrition)

which results in the following summary

R> summary(zmsccb)
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Call:

bayesx(formula = f, data = ZambiaNutrition, family = "gaussian",

method = "STEP", algorithm = "cdescent1", startmodel = "empty",

CI = "MCMCselect", iterations = 10000, step = 10, seed = 123)

Fixed effects estimation results:

Parametric coefficients:

Mean Sd 2.5% 50% 97.5%

(Intercept) -0.4815 0.0982 -0.6737 -0.4813 -0.2922

urbanno -0.0939 0.0239 -0.1373 -0.0949 -0.0464

genderfemale 0.0587 0.0124 0.0342 0.0590 0.0824

meducation_0 -0.1087 0.0297 -0.1690 -0.1098 -0.0516

meducation_2 0.2961 0.0661 0.1724 0.2934 0.4223

mbmi 0.0207 0.0043 0.0123 0.0207 0.0287

Smooth terms:

lambda df

sx(agechild) 15.1687 10.981

sx(district) 7.5775 24.391

sx(district):re 35.8077 17.835

Scale estimate: 0.7897

N = 4847 DIC = 4966.286 pd = 59.60813 AIC_imp = -1024.37

method = STEP family = gaussian iterations = 10000 step = 10

It is also possible to obtain unconditional confidence bands by setting CI = "MCMCbootstrap",
which additionally considers the uncertainty due to model selection. The model is specified
e.g. by

R> zmsccb2 <- bayesx(f, family = "gaussian", method = "STEP",

+ CI = "MCMCbootstrap", bootstrapsamples = 99, iterations = 10000,

+ step = 10, seed = 123, data = ZambiaNutrition)

The bootstrap approach for obtaining unconditional confidence bands also provides the rel-
ative frequencies each model term has been selected during the bootstrap iterations. The
frequency tables can be extracted using function term.freqs(), e.g. for the effect of the
body mass index of the mother the frequency table is extracted by

R> term.freqs(zmsccb2, term = "sx(mbmi)")

df lambda frequency selected

1 1.00000 -1.00000 73 +

2 1.95385 6718.75000 13 -

3 3.02125 1313.07000 4 -

4 3.95243 456.20900 2 -
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5 5.95180 80.80170 1 -

6 7.03855 37.43130 3 -

7 7.97073 20.50530 1 -

8 8.99663 11.04710 1 -

9 9.98339 6.26908 1 -

10 11.02430 3.50045 1 -

showing that a linear representation of that term with one degrees of freedom has been selected
73 times by the algorithm, i.e., as in the above, the linear effect for variable mbmi is selected
in the final model.

Another variation of this model would be to start from a "userdefined" instead of an "empty"

startmodel (see also Table 2 for further options). In the "userdefined" case, it may be
reasonable to start with a the initial degrees of freedom (complexity or roughness) in the
search for the nonlinearly modeled terms can be supplied. For example, the starting values
for the degrees of freedom of the P-spline, spatial and random effect terms can be specified
via

R> f <- stunting ~ memployment + urban + gender +

+ sx(meducation, bs = "factor") + sx(mbmi, dfstart = 2) +

+ sx(district, bs = "mrf", map = ZambiaBnd, dfstart = 5) +

+ sx(district, bs = "re", dfstart = 5) + sx(agechild, dfstart = 2)

The model is then fitted by

R> zmsud <- bayesx(f, family = "gaussian", method = "STEP",

+ algorithm = "cdescent1", startmodel = "userdefined", CI = "MCMCselect",

+ iterations = 10000, step = 10, seed = 123, data = ZambiaNutrition)

which actually produces the model output of the first model (zms) again.

7. Summary

The R package R2BayesX provides an interface to the standalone software package BayesX for
estimation of structured additive regression (STAR) models via MCMC, REML, or stepwise
selection. The interface has the usual“look & feel”of regression modeling functions in R with a
formula-based fitting function bayesx() along with suitable methods such as summary() and
plot(). Adapting functionality from the mgcv package, the package allows for specification
of regressions with smooth terms via the sx() constuctor function. This is implemented
using mgcv’s smooth term constructor s() but facilitates specification of BayesX-specific
terms along with corresponding optional control arguments. Moreover, the software design is
modular enabling the import of already existing BayesX fitted-model files or the execution of
previously generated BayesX program files from R. For post-estimation analysis and graphical
inspection, the suite of methods allows for extraction of summary statistics and fitted model
term objects as well as generation of 2d, 3d, image, and map effect plots, amongst others.
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A. BayesXsrc: Packaging the BayesX C++ sources for R

BayesX was originally developed under the Borland C++ compiler and is distributed as a
Windows application with a Java-based user interface. Since version 2.0, it also offers a
command line version comprising the interpreter and modules for computations. The sources
have been modified to be compliant with the GNU Compiler Collection (GCC), and the
software was ported to run on Linux, Mac OS X, Windows and several BSDs.

Our objective with the R package BayesXsrc is to offer R users a convenient way to download,
build, and install the open-source BayesX software as if this were an ordinary R package, and
for offering prebuilt binary versions of BayesX through the CRAN build servers for major
R platforms.

To accomplish this goal, BayesXsrc comes with a tiny R package hull, within which the BayesX
sources for the command line version are embedded. In order to compile the BayesX sources
with the R build system (e.g., via R CMD INSTALL), Makefiles under src/ are utilized to
compile the sources stored at src/bayesxsrc. The current source tree of BayesX requires
a slightly different setting of compile flags for Windows which is achieved by using the two
standard locations for R Makefiles: src/Makefile.win for Windows and src/Makefile

otherwise. Since R 2.13.1 the package installation was enhanced to support non-standard
installation of compiled code via an R installation script. If an R script src/install.libs.R
is found, it will be executed after successful compilation. We make use of this feature to copy
the binary executable to the package installation directory in an architecture-specific subfolder
to support multi-architecture installations using R as a cross-platform portable install shell:

binary <- if(WINDOWS) "BayesX.exe" else "BayesX"

if(file.exists(binary)) {

libarch <- if (nzchar(R_ARCH)) paste("libs", R_ARCH, sep = "") else "libs"

dest <- file.path(R_PACKAGE_DIR, libarch)

dir.create(dest, recursive = TRUE, showWarnings = FALSE)

file.copy(binary, dest, overwrite = TRUE)

}

Since the executable exists in a designated location within the installed BayesXsrc package, we
can run the command line version from within R via a single front-end function run.bayesx().

Note that the package hull of BayesXsrc (including inst/bayesxsrc) is maintained in a
subversion (SVN) repository on R-Forge (at https://R-Forge.R-project.org/projects/

bayesr/, along with R2BayesX). The source code will be updated if a new stable release of
BayesX is availaible.

Although we do not effectively distribute an R package in the usual sense, we use the R package
system as a cross-platform build system. The installation via an R package is an attractive
alternative, in particular for software that aims to be embedded to R. Potential support for
distribution and delivery of self-contained software in form of sources and prebuilt binaries
via CRAN is very attractive to end users but also to smaller development teams (like us) that
would otherwise have no resources for multi-platform builds and tests.

https://R-Forge.R-project.org/projects/bayesr/
https://R-Forge.R-project.org/projects/bayesr/


Journal of Statistical Software 41

B. Options for the plot() method

Argument Description

term The term that should be plotted, either an integer or a character, e.g.,
term = "sx(x)".

which Choose the type of plot that should be drawn, possible options
are: "effect", "coef-samples", "var-samples", "intcpt-samples",
"hist-resid", "qq-resid", "scatter-resid", "scale-resid",
"max-acf". Argument which may also be specified as integer, e.g.,
which = 1. The first three arguments are all model term-specific. For
the residual model diagnostic plot options which may be set with which

= 5:8.
acf If set to TRUE and which specifies samples to be plotted, the autocor-

relation function of the samples are shown.

residuals If set to TRUE, partial residuals may also be plotted if available.
rug If set to TRUE, a rug() is added to the plot.
jitter If set to TRUE, a jitter()ed rug() is added to the plot.

col.surface The color of the surface, may also be a function, e.g., col.surface =

heat.colors.
grid The grid size of the surface(s).
image If set to TRUE, an image.plot() is drawn.
contour If set to TRUE, a contour() plot is drawn.

map The map to be plotted, the map object must be a list of matrices
with first column indicating the x-coordinate and second column the
y-coordinate each, see also function polygon().

legend If set to TRUE, a legend will be shown.
range Specify the range of values the plot should be generated for, e.g., only

values between −2 and 2 are of interest then range = c(-2, 2).
interp If set to TRUE, values will be smoothly interpolated.
outside If set to TRUE, interpolated values outside the polygon areas will be

plotted.

color The colors for the legend, may also be a function, e.g., colors =

heat.colors.
pos The position of the legend, either a numeric vector, e.g., pos = c(0.1,

0.2) will add the legend at the 10% point in the x-direction and at the
20% point in the y-direction of the plotting window, may also be neg-
ative, or one of the following: "bottomleft", "topleft", "topright"
or "bottomright". Using function plotmap() option "right" is also
valid.

lrange Specifies the range of the legend.
symmetric If set to TRUE, a symmetric legend will be drawn corresponding to the

±max(|x|) of values x that are used for plotting.

Table 7: Most important arguments of the plot() method for “bayesx” objects. The first
block describes arguments of the plot() method itself, subsequent blocks arguments that are
passed to plot2d(), plot3d(), plotmap(), and colorlegend(), respectively.
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Objects of class “bayesx” returned either from function bayesx() or read.bayesx.output()
have a method for the plot() generic. Depending on the structure of the“bayesx”object, the
method identifies the various types of inherent model terms and applies one of the following
implemented plotting functions: plot2d(), plot3d() or plotmap(). Using the method with-
out further specifications will produce a plot of all estimated effects. For individual effect plots
argument term is used. For MCMC estimated models argument which is useful to inspect
sampling paths of coefficients, but also to view basic residual diagnostic plots. To build map
effect plots using plotmap(), a map needs to be supplied to argument map. The map must
be an object of “bnd” or “SpatialPolygonsDataFrame”. Per default, similar to 2d plots, map
effect plots are colored using a diverging color legend where the range is set symmetrical, e.g.
according to the ± max(|posterior mean|) of the effect. In this setting it is easier to distin-
guish between regions of large and no influence. The most important options of the plotting
method are shown in Table 7, for a detailed description of all available arguments and options
please see documentation of function plot.bayesx(), plot2d(), plot3d(), plotmap() and
colorlegend().

C. Smooth term constructor functions

The main model term constructor function in R2BayesX is sx() (see also Section 4.2) which
is simply a front-end to mgcv’s smooth term constructor function s() with BayesX-specific
argument names and corresponding defaults. Due to this setup, s() (instead of sx()) can
also be used directly in bayesx() model calls, facilitating specification of models in a way
familiar to mgcv users. However, note that some arguments are named/defined somewhat
differently in mgcv and BayesX; and due to the usage of different estimation methods not all
settings that work well in one package necessarily work well in the other, too.

The smooth term construction typically proceeds in the following three steps:

1. sx() is called by the user in a formula. It takes BayesX-specific argument/option names
and corresponding defaults, and maps them to argument names/values consistent with
s() from mgcv.

2. s() is called by sx(), creating an object of class “xx.smooth.spec” where "xx" is the
name of the basis type bs specified.

3. bayesx.construct() is called when the formula is parsed. If a method for objects of
class “xx.smooth.spec” exists, this maps the mgcv-style arguments back to BayesX-
style arguments, and subsequently creates a character string with the corresponding
BayesX-interpretable command.

Although this entails mapping of arguments from BayesX style to mgcv style in Step 1 and
back again in Step 3, this is worth the effort for two reasons: (a) R2BayesX does not have
to reinvent a mechanism for storing information about smooth terms but simply leverages
the mgcv system. (b) Expert users can skip Step 1 above and directly supply s() calls in
bayesx() model formulas.

Function sx() has two arguments that directly correspond to s() arguments: bs for specifying
the type of basis/term used, by for nesting of smooth terms. All remaining term specifications
in sx() are passed through ... and depend on the basis type bs (and can be queried via
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Basis/type bs sx() argument/default s()/te() equivalent

"ps" nrknots = 20 k = nrknots + degree - 1 ∗
degree = 3 m = c(degree - 1, order)

order = 2

... xt = list(...)

"te", te() nrknots = 8 k = nrknots + degree - 1 ∗
degree = 3 m = c(degree - 1, order)

order = 2

... xt = list(...)

"mrf" map xt = list(map, ...)

...

Table 8: Argument mapping and default specifications of smooth terms available in both
sx() and s()/te(). Rows marked with ∗ indicate that the s() default is different from the
corresponding sx() default. The map argument for bs = "mrf" has to be a list of polygons
and has no default in both sx() and s().

bayesx.term.options()). These ... arguments are mapped to the s() arguments k for the
dimension of the basis, m for the (basis and) penalty order, and xt for extra information.

An overview of the argument mapping performed is shown in Table 8 for those smooth term
types that can be estimated by bayesx() and gam() from mgcv: bs = "ps" for P-splines, bs
= "mrf" for Markov random fields (MRFs), or a tensor product of two P-splines which can
be created either as sx(x1, x2, bs = "te") or te(x1, x2, bs = "ps"). Some additional
details and illustrations (using the Zambia malnutrition data) are provided below.

P-splines. The default smoothing splines employed in R2BayesX are P-splines. Hence,

R> bayesx.construct(sx(mbmi))

[1] "mbmi(psplinerw2,nrknots=20,degree=3)"

produces a P-spline term with degree 3 basis functions constructed from 20 inner knots. As
this corresponds to 22 B-spline basis functions (of degree 3), the equivalent s() call would
be s(mbmi, bs = "ps", k = 22). Note that the s() default k = 10 corresponds to a much
lower-dimensional basis

R> bayesx.construct(s(mbmi, bs = "ps"))

[1] "mbmi(psplinerw2,nrknots=8,degree=3)"

Finally, note that the default for bs in s() is not "ps" but "tp" for thin-plate splines so that
s(mbmi) cannot be used in bayesx()/bayesx.construct() and hence results in an error.

Tensor products. For two-dimensional smoothing, BayesX offers two-dimensional P-splines
as bs = "te" where both marginal P-splines have the same degree and number of inner knots.
In package mgcv, such terms can be constructed with the function te() which is hence also
supported in R2BayesX. The following specifications lead to identical results when passed to
bayesx.construct():



44 Structured Additive Regression Models: An R Interface to BayesX

R> sx(mbmi, agechild, bs = "te")

R> te(mbmi, agechild, bs = "ps", k = 7)

Note the default for the basis dimension in te() is k = 5 and thus lower than in sx().
However, currently BayesX does not support a number of inner knots that is lower than 5.

Finally, note that the default for bs in te() is not "ps" but "cr" for cubic regression splines
so that te(mbmi, agechild)() cannot be used in bayesx()/bayesx.construct(). Also,
te() could in principle set up tensor products of splines with different specifications which is
currently not supported in BayesX either and hence results in an error as well.

Markov random fields. The specification of MRFs in sx() and s() is rather straightfor-
ward. The main difference is that the list of polygons for the map argument has to be passed to
the xt list of extra arguments in s() while it can be supplied directly to sx(). Consequently,
the following two specifications lead to identical results when passed to bayesx.construct().

R> sx(district, bs = "mrf", map = ZambiaBnd)

R> s(district, bs = "mrf", xt = list(map = ZambiaBnd))

D. Additional options for running BayesX

For practical purposes fitting models with function bayesx() is typically sufficient. How-
ever, the interfacing functions that are called internally within bayesx() can also be used
independently. This could be useful for two reasons: First, users may want to use already
existing BayesX program files, and second, there might be a need for automated importing
of previously generated BayesX output files into R for further analysis.

Function run.bayesx(), included in package BayesXsrc, is used to run an arbitrary BayesX
program file. The arguments of run.bayesx() are

run.bayesx(prg = NULL, verbose = TRUE, ...)

where prg is a character string with the path to a program file to be executed. If argument
prg is not provided BayesX will start in batch mode. During processing of BayesX several
pieces of information will be printed to the R console if verbose = TRUE. Further arguments
can be passed to function system(), which calls the BayesX binary, using the“...” argument.
The function returns a list including the log-file returned by BayesX as well as information
on the total runtime.

Model output files are imported using function

read.bayesx.output(dir, model.name = NULL)

Here, dir is again a directory and model.name is the name of the model the files are imported
for, also provided as character strings. Note that the function will search for all different
BayesX-estimated models in the declared directory if argument model.name is set to NULL.
The returned object is also of class “bayesx”, i.e., all the functions and methods described in
Table 3 may be applied.



Journal of Statistical Software 45

Another noteworthy feature of package R2BayesX is the internal handling of data. BayesX
uses numerically efficient algorithms including sparse matrix computations which in principle
allow to estimate models using very large datasets. Moreover, the number of different observa-
tions for particular covariates is usually much smaller than the total number of observations.
That is, the output files returned by the binary only include estimates for unique covariate
values. Since these files typically reserve much less disc space, importing the fitted model
objects into R using read.bayesx.output() is straightforward in most cases, whereas han-
dling the complete dataset within R may be more burdensome when provided to model fitting
functions that do not account for special matrix structures. As mentioned in Section 5.1,
users can exploit this by providing a character string to argument data in function bayesx(),
which includes the path to a dataset instead of an R data object. As a consequence, this
dataset will not be loaded within R and is only used internally by the BayesX binary. To
give an example, we generate a large dataset that might produce problems with R’s memory
allocation using a model fitting function, especially if the model contains a large number of
parameters. Therefore, we store the data on disc in the temporary folder of the running
session with

R> set.seed(321)

R> file <- paste(tempdir(), "/data.raw", sep = "")

R> n <- 5e+06

R> dat <- data.frame(x = rep(runif(1000, -3, 3), length.out = n))

R> dat$y <- with(dat, sin(x) + rnorm(n, sd = 2))

R> write.table(dat, file = file, quote = FALSE, row.names = FALSE)

This produces a dataset of approximately 170Mb with only 1000 unique observations for
covariate x. The path to the dataset is stored in object file and is provided to argument
data in the function call

R> b <- bayesx(y ~ sx(x), family = "gaussian", method = "MCMC",

+ iterations = 3000, burnin = 1000, step = 2, predict = FALSE,

+ data = file, seed = 123)

For illustration purposes, the number of iterations is only set to 3000. Note that argument
predict is set to FALSE, i.e., only output files of estimated effects will be returned, otherwise
an expanded dataset using all observations would be written in the output directory, also
containing the data used for estimation. The runtime of this example is about 4 1/2 hours

R> bayesx_runtime(b)

user system elapsed

16442.12 7.56 16461.33

on a Linux system with an Intel 2.33GHz Dual Core processor, while the returned object b

uses less than half a megabyte of memory:

R> print(object.size(b), units = "Mb")

0.4 Mb
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