Journal of Statistical Software

June 2015, Volume 65, Code Snippet 3. http://www.jstatsoft.org/

An Improved Evaluation of Kolmogorov’s
Distribution

Luis Carvalho
Boston University

Abstract

We propose a new algorithm for computing extreme probabilities of Kolmogorov’s
goodness-of-fit measure, D,,. This algorithm is an improved version of the method orig-
inally proposed by Wang, Tsang, and Marsaglia (2003) based on a result from Durbin
(1973). The new algorithm keeps the same numerical precision of the Wang et al. (2003)
method, but is more efficient: it features linear instead of quadratic space complexity and
has better time complexity for a common range of input parameters of practical impor-
tance. The proposed method is implemented in the R package kolmim, which also includes
an improved routine to perform one-sample two-sided exact Kolmogorov-Smirnov tests.

Keywords: Kolmogorov-Smirnov test.

1. Introduction

Given an ordered set of n uniform [0, 1) variates, 21 < -+ < x,,, Kolmogorov (1933) suggested
D,, = max{D,,, D;'} as a goodness-of-fit measure, where:

_ i—1 . i
D”_iznll?.)fn{%_ - } and D”_iznll?.)fn{n_ml}' (1)

Wang et al. (2003) proposed an algorithm to compute P(D,, < d) based on a result discussed
by Durbin (1973) that represents this probability as the middle element in the diagonal of
the nth power of a certain matrix. To be precise, if k = [nd]| and 0 < h = k —nd < 1 so that
d = (k—h)/n, and m = 2k — 1, then

K(n,d) = P(D, < d) = <HLH”> : 2)
" kk

where H is a m X m matrix that depends on h only.

http://www.jstatsoft.org/

2 An Improved Evaluation of Kolmogorov’s Distribution

The general form of H is simple, but a concrete example is illustrative: for £ = 3 we have
m =5 and

H =
(1-h')/1! 1 0 0 0
(1—h%)/2! 1/1! 1 0 0
(1—h3)/3! 1/2! 1/1! 1 0 (3)
(1 — h*)/4! 1/3! 1/2! 1/1! 1

(1—20° +[(2h — 1),]°)/5! (1—h%)/4 (1—h%)/30 (1—h%)/20 (1-h')/1!

where (), = max{0,z}. In general, H is specified in block form as

Um Vi

H = [Viim—1 TL]’ (4)

where the vector v is given by

(1—h')/j!, j=1,...,m—1,
Y= _op) PV s — (5)
{ (1= 207 + [(2h — 1), 1))/jl, j=m,

and L is a unit diagonal lower triangular Toeplitz matrix. Note that for 0 < h < 1/2 we have
U = (1=2R™)/m! and for 1/2 < h < 1 we have v,, = (1—-2h™+(2h — 1)) /m!. As we can see,
even though H is dense in structure it is sparse in information; we exploit this fact in Section 2
to offer an improved way to compute K (n,d). In Section 3, we discuss a C implementation
of the improved method in the R (R Core Team 2015) package kolmim (Carvalho 2015), and
present example applications and a performance evaluation. Package kolmim is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
kolmim. Finally, in Section 4, we conclude with a discussion on the performance gains of the
new method.

2. Improvements in evaluating K (n,d)

Wang et al. (2003) provide a C program to compute K (n,d) using an explicit representation
of H as a m x m matrix and taking its nth power iteratively (only |logs 7| multiplications
are necessary.) However, since we only need the kth entry in the diagonal of T' = n!/n"H",
we can just compute and store the kth row of T'. Moreover, we compress the information in
H in two vectors, v from Equation 5 and w = (1/j !);.”:_12 capturing the lower diagonals of L,
since

U1 0 0, cor Opo Opy—g
H=| voam—1 Wim—2 Wipm—3 -+ Wi 0 + 5, (6)
Um Um—1 Um—-2 - U2 U1

where S = (Ji41,5)7%=1, 0 the Kronecker delta, is the right shift operator. Note that the left
summand is a lower triangular matrix, and that wy.,,— o = w.

Let us then denote by q; the kth row of i!/n'H®. Since q; = (i/n)q;_1H, we profit from the

http://CRAN.R-project.org/package=kolmim
http://CRAN.R-project.org/package=kolmim

Journal of Statistical Software — Code Snippets

function K(n, d);
begin
k<« [nd]; h < k—nd; m<+ 2k—1; s+ 1;
Initialize v according to Equation 5, w = (1/j!);7"”:_12, and q = (0x;)jLy;
fori=1,...,ndo
s<s-(i/n); u <+ q;
q1 < DOT(v,q) - s;
for j=2,...,m—1do
a < u; u < gj;
q; < [DOT(lem—ja CIj:m—l) + Um—j+19m + CL] © S5
end
Gm < (V1gm +u) - 8;
end
return q;
end

Algorithm 1: Computing K (n,d) = (qn)na) by iteratively updating q;.

formulation in Equation 6 to compute q; as follows:

(i/n) - v qi-1, Jj=1,
(@i); =14 (i/n) [(Wim—7) " (Qi=1)jim—1 + Vm—j1(Aim1)m + (di=1)j=1], F=2,...,m —1,
(i/n) - [(Ai=1)mv1 + (Qi=1)m—1], j=m

(7)
In practice, we do not need to store q; for each i, but just use one vector representing q;
and update it in-place. However, due to the right shift operator in H we need to compute
q; from j = 1 to m. We summarize the procedure in Algorithm 1. Routine DOT returns
the dot product between two vectors and can be found as a level 1 routine in many (high
performance) BLAS implementations as ddot.

From Algorithm 1 we see that we incur in a O(nm?) time complexity due to the n iterations
of m dot products; the original procedure of Wang et al. (2003) requires O(m?log,n) due to
|logy | matrix multiplications for the power calculations. Since m = O(nd), these complexi-
ties translate to O(n3d>logy n) and O(n®d?) in terms of n and d for the original and proposed
methods, respectively.

3. Implementing K(n,d)

The original C program from Wang et al. (2003) is coded in the routine pKolmogorov2x in
the R base package stats. We implement Algorithm 1 in a C routine, pkolmim, that is used
in a homonymous R function in package kolmim. Since pkolmim computes K, the cumulative
distribution function of D,,, it follows the same common signature of R CDF routines and
can take vectors as arguments.

To attain the exact same numerical precision of pKolmogorov2x, C routine pkolmim follows the
practice in Wang et al. (2003) of scaling q iteratively — in their case, the whole intermediate

4 An Improved Evaluation of Kolmogorov’s Distribution

0140

power matrix — by 1 , multiplying or dividing, to avoid under- and overflows, respectively.

Routine pKolmogorov2x is used for one-sample two-sided exact Kolmogorov-Smirnov tests
in ks.test, also in package stats. We provide a similar R function in package kolmim,
ks.test.imp, to conduct one-sample two-sided exact Kolmogorov-Smirnov tests using func-
tion pkolmim.

Examples

We start by assessing the precision of pkolmim with a simple example borrowed from the man
page of ks.test:

R> set.seed(1234)
R> x <- rnorm(100, 2)
R> ks.test(x, "pgamma", 3, 2, exact = TRUE)

One-sample Kolmogorov-Smirnov test
data: x
D = 0.199, p-value = 0.0006002
alternative hypothesis: two-sided
R> ks.test.imp(x, "pgamma", 3, 2)
One-sample two-sided exact Kolmogorov-Smirnov test
data: x

D = 0.199, p-value = 0.0006002
alternative hypothesis: two-sided

The numerical precision is exactly the same, as expected. We can also confirm the p-value
directly using the Kolmogorov-Smirnov statistic:

R> 1 - pkolmim(ks.test(x, "pgamma", 3, 2)$stat, 100)
[1] 0.000600162

As another example, in Figure 1 we plot K(n,d), as computed by pkolmim, against the faster
right-tail approximation suggested by Wang et al. (2003):

331 14
K(n,d) ~max< 0,1 —2expq — [2.000071 + 0.331 + 1.409 nd* 3 5.
vn n

As can be seen in Figure 1, the values agree well in the region suggested by Wang et al. (2003),
that is, nd? > 3.76 when n > 99. However, the proposed routine is fast enough to render this
approximation unnecessary.

Journal of Statistical Software — Code Snippets 5

o
S
[o0)
2
(o]
= o |
\Y)
a
T o<
o
N
N
o
2 -
T T T T I
0.00 0.05 0.10 0.15 0.20
d

Figure 1: Comparison of probabilities K (n, d), n = 100, computed according to pkolmim (solid
line) and using Wang et al. (2003) approximation (dashed line.) Note that the approximation
works well in the region suggested by Wang et al. (2003), that is, with n = 100, when
nd® > 3.76 or d > 0.194.

Evaluating performance

The main advantage of pkolmim is computational performance. To compare running times,
we conduct two experiments by generating ten replicates of ten datasets x;;, ¢ = 1,...,10,
j =1,...,10, of varying lengths and run ks.test and ks.test.imp on each dataset while
measuring execution times in seconds. In both experiments we adopt the setup from the
previous section, again borrowed from the examples in the man page of ks.test: we sample
xi; ~ N(2,1,) and compare it to a shifted gamma distribution with shape 3 and rate 2. In
the first experiment, we set n € {100, 150,200, ...,500} to measure running time differences
in small datasets, while in the second experiment we take n € {500,600, ...,1000} to see the
effect on larger datasets. The results are summarized in Figure 2, and show that ks.test.imp
has a running time proportional to n3 on average. Thus, in practice, for larger datasets
the running time of ks.test can be orders of magnitude higher than the running time of
ks.test.imp. The more extreme values for n = 1000 in the bottom plot (second experiment)
are due to memory swapping to disk and highlight a practical bottleneck from the higher
space complexity of ks.test.

4. Discussion

The main advantage of the proposed routine arises from the representation in Equation 6:
since we store H implicitly using two vectors, v and w, and the kth row of T = n!/n"H"
using q, we just need O(nd) space to compute K (n,d) instead of the original O(n?d?) space
complexity required to store H and T in Wang et al. (2003). As a consequence, we also save in

6 An Improved Evaluation of Kolmogorov’s Distribution

0.6

0.4+
o method
@
L B3 ks.test
<] .
£ - ks.test.imp

0.2

== h . *
- —— = == ==
0.0 === — —_— -— —
1 1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500
n

15
) method
$10-
— - ks.test
<] .
£ - ks.test.imp

5 -
- B
—— ——— |- | I S—
0- —— | -
I I I 1 I 1
500 600 700 800 900 1000

n

Figure 2: Comparison of running times (in seconds) for one-sample two-sided exact tests
implemented using Wang et al. (2003) routine in ks.test and the improved routine in
ks.test.imp. We run the experiments on 10 dataset replicates of size n. Top panel fo-
cuses on smaller datasets (n € {100,...,500}), while bottom panel covers a broader scale of
running times for larger datasets (n € {500, ...,1000}).

Journal of Statistical Software — Code Snippets

time complexity since only vector multiplications are needed: while we incur in a O(n3d?) time
complexity, the original procedure requires O(n3d>log, n) and thus, for d > O((logyn)~1), we
achieve better time complexity. We expect that these cases cover most common applications
since they yield probabilities close to one and that correspond to very significant p-values in
two-sided Kolmogorov-Smirnov tests. Moreover, in practice, the original routine might take
much longer than the proposed method as n and d—and thus m—grow since the allocation
of large matrices can result in swapping memory to disk.

The gains in complexity, both in space and time, from the proposed routine are more critical
as n and d get larger. In fact, we are now able to compute more efficiently and with more
precision values of K (n,d) that are close to one since we do not have to resort to the practical
approximation adopted by Wang et al. (2003) when nd? > 7.24 or when nd> > 3.76 and
n > 99.

Acknowledgments

We would like to thank one referee for useful comments on an earlier draft of this article.
Carvalho was supported by grant DMS-1107067 from the National Science Foundation.

References

Carvalho L (2015). kolmim: An Improved Evaluation of Kolmogorov’s Distribution. R
package version 1.0, URL http://CRAN.R-project.org/package=kolmim.

Durbin J (1973). Distribution Theory for Tests Based on the Sample Distribution Function.
9. Society for Industrial Mathematics.

Kolmogorov AN (1933). “Sulla determinazione empirica di una legge di distribuzione.” Gior-
nale dell’Istituto Italiano degli Attuari, 4(1), 83-91.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Wang J, Tsang WW, Marsaglia G (2003). “Evaluating Kolmogorov’s Distribution.” Journal
of Statistical Software, 8(18), 1-4. URL http://www. jstatsoft.org/v08/118/.

Affiliation:

Luis Carvalho
Department of Mathematics and Statistics
Boston University

http://CRAN.R-project.org/package=kolmim
http://www.R-project.org/
http://www.jstatsoft.org/v08/i18/

8 An Improved Evaluation of Kolmogorov’s Distribution

111 Cummington Mall
Boston, MA, United States of America
E-mail: lecarval@math.bu.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 65, Code Snippet 3 Submitted: 2013-05-23

June 2015 Accepted: 2014-10-17

mailto:lecarval@math.bu.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Improvements in evaluating K(n, d)
	Implementing K(n, d)
	Discussion

