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1 Introduction

This paper describes how to use the Matlab software package CMregr, and
also gives some limited information on the CM-estimation problem itself. For
detailed information on the algorithms used in CMregr as well as extensive
testings, please refer to Arslan, Edlund & Ekblom (2002) and Edlund &
Ekblom (2004).

New methods for robust estimation regression have been developed during
the last decades. Two important examples are M-estimates (Huber 1981)
and S-estimates (Rousseeuw & Yohai 1984). A more recent suggestion is
Constrained M-estimates – or CM-estimates for short – where the good local
properties of the M-estimates and good global robustness properties of the
S-estimates are combined (Mendes & Tyler 1995). CM-estimates maintain
an asymptotic breakdown point of 50% without sacrificing high asymptotic
efficiency.

Until recently, there was no satisfying method for fast computation of CM-
estimates, with high precision. The Matlab code CMregr presented here is an
implementation of a new algorithm for CM-estimates for regression presented
in Arslan et al. (2002) and Edlund & Ekblom (2004), that addresses these
issues.

We can formulate CM-estimation for regression in the following way. Con-
sider the linear model y = X β +e, where y = (y1, y2, ..., yn)T is the response
vector, X is an (n× p) design matrix, β a p-dimensional vector of unknowns
and e = (e1, e2, ..., en)T the error vector. Alternatively we may write

yi = xT
i β + ei, i = 1, 2, ..., n

where xT
i is the i:th row in X. Define the residuals as ri = yi − xT

i β, i =
1, 2, ..., n. The CM-estimation problem is to find the global minimum of

L(β, σ) = c
1

n

n∑
i=1

ρ(ri/σ) + log σ (1)
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over β ∈ Rp and σ ∈ R+ subject to the constraint

1

n

n∑
i=1

ρ(ri/σ) ≤ ε ρ(∞) (2)

Here ρ(t) is a bounded function, symmetric around zero and nondecreasing
for t ≥ 0, and c and ε are tuning parameters that need to be chosen carefully,
as described in Section 5.

If strict inequality holds in the constraint above we get the redescend-
ing M-estimating equations for β and σ. Equality in the constraint instead
gives the S-estimate, where σ is minimized with respect to (2). The reason
is that for equality constraint we have L(β, σ) = constant + log(σ), which
is minimized by minimizing σ. Thus the S- and CM-estimates are closely
related. However, the CM-estimates have some nice properties not shared
by the S-estimates as exemplified in Section 5.

Two ρ-functions are considered in this paper: Tukey biweight

ρ(t) =

{
t2

2
− t4

2
+ t6

6
, for |t| ≤ 1

1
6
, for |t| > 1

and Welsh

ρ(t) =
1

2
(1− e−t2) .

In CMregr these two functions are referred to as tukey and welsh respectively.
As shown in Section 4, it is easy to add customized ρ-functions to CMregr,
to calculate other CM-estimates.

The code presented here is written as a set of Matlab function, and re-
quires thus the Matlab program. Matlab functions generally work without
modifications on different platforms, and indeed CMregr has been observed
to behave the same on Sun-Solaris, Windows NT and MacOS 9 and X.

2 The algorithm

The CM-estimates cannot be expressed explicitly. Computing these esti-
mates numerically is a challenging problem, since we like to minimize an
objective function where many local minima1 may exist.

If σ is held fixed in (1), we have a linear model M-estimation problem.
The algorithms in Arslan et al. (2002) and Edlund & Ekblom (2004) make use
of the fact that very good algorithms exist for this problem (Edlund 1997).
So the solution is found by solving a series of linear model M-estimation
problems.

The updating of σ is done as a separate step, that requires much less
calculations, since we have a one-dimensional problem at hand. Details on
this issue is found in Edlund & Ekblom (2004).

1It has been observed though, that the number of local minima is limited, in fact it
seldom exceeds two, but the wrong local minimum still has to be avoided.
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To find the global minimum, good starting points for the local itera-
tion above is generated by considering many subsamples with p observations
(Arslan et al. 2002). Just keep in mind that although this is a heuristic
that has proven to work reasonably well, it is no guarantee for the calculated
solution to give the right local minimum.

3 Invoking the software

There are two commands in CMregr for calculating CM-estimates:
globalCMregr and localCMregr. The first of these tries to find the “global
minimum” using the technique described above, while localCMregr needs a
user-supplied starting point.

globalCMregr

[β, σ, stat] = globalCMregr(ρ-fun, c, ε, X, y)

or

[β, σ, stat] = globalCMregr(ρ-fun, c, ε, X, y, iters)

Input parameters

ρ-fun – the chosen ρ-function as a Matlab string e.g. ’tukey’ or ’welsh’.
c – the tuning parameter, from Table 1.
ε – asymptotic breakdown point. Always use 0.5 for CM-estimates.
X – the design matrix.
y – the response vector.
iters – the number of subsamples to investigate for a good starting point.

If this is omitted, the routine makes a guess of the number of sub-
samples to use.

Output parameters

β & σ – the calculated solution.
stat – some additional data on the solution.

stat.border is 1 if the solution fulfills (2) with equality, and 0 if
(2) is fulfilled with strict inequality.
stat.obj is the value of the objective function (1) at the solution.
stat.constr is the difference between the left and right hand sides
of (2).
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Example

Let us define a design matrix and a response vector:

>>X = [1 0;1 1;1 3;1 4;1 8]

X =

1 0

1 1

1 3

1 4

1 8

>>y = [1 2 3 4 0.5]’;

The Tukey biweight CM-estimate with c = 19.62 (see Table 1) is then found
by

>>[b,s,stat] = globalCMregr(’tukey’,19.62,0.5,X,y)

b =

1.07973997179869

0.71013001410066

s =

0.54750922628337

stat =

border: 0

obj: 0.63014080945719

constr: -0.02051392582918

Since stat.border = 0, the solution is in the interior of the feasible region,
i.e. (2) is not fulfilled with equality. If the number of outliers would increase,
the solution would eventually reach the border. In a sense one could say
that, if outliers are plentiful, the S-estimate kicks in and saves the day.

Plotting the regression line yields:

>>t = -1:9;

>>plot(X(:,2),y,’o’,t,b(1)+b(2)*t)
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localCMregr

[β, σ, stat] = localCMregr(ρ-fun, c, ε, X, y, βstart)

Input parameters

ρ-fun – the chosen ρ-function as a Matlab string e.g. ’tukey’ or ’welsh’.
c – the tuning parameter, from Table 1.
ε – asymptotic breakdown point. Always use 0.5 for CM-estimates.
X – the design matrix.
y – the response vector.
βstart – the initial guess of the solution β. The algorithm searches from this

point and finds a local minimum.

Output parameters

β & σ – the calculated solution.
stat – some additional data on the solution.

stat.border is 1 if the solution fulfills (2) with equality, and 0 if
(2) is fulfilled with strict inequality.
stat.obj is the value of the objective function (1) at the solution.
stat.constr is the difference between the left and right hand sides
of (2).

Example

Using the same design matrix and response vector as in the previous example,
we want to calculate the Welsh estimate with c = 12.07 (see Table 1) and
starting from the least squares solution:

>>[b,s,stat] = localCMregr(’welsh’,12.07,0.5,X,y,X\y)

b =

2.28257700557494

-0.07363502459208

s =

4.06413162024954

stat =

border: 0

obj: 1.94453719549732

constr: -0.20506734889203

Also in this example the solution is in the interior of the feasible region
(stat.border = 0). Plotting the solution yields:
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The badly chosen starting point results in a solution that is a local minimum,
and not the global minimum we were interested in.

4 Adding customized ρ-functions

The ρ-functions that are supplied with CMregr are implemented as Matlab-
functions. This means that it is quite easy to add new ones manually. The
Matlab-function that implements the ρ-function must obey the following
rules:

1. If the Matlab-function is called with one vector as input, it should
return a vector with the ρ-function applied to each element in the input
vector. Example:

>>welsh([-1 0 1 2])

ans =

0.3161 0 0.3161 0.4908

2. If the vector is followed by the parameter 0 (zero), the same vector as
above should be returned. Example:

>>welsh([-1 0 1 2],0)

ans =

0.3161 0 0.3161 0.4908

3. If the vector is followed by the parameter 1, the Matlab-function should
return a vector with the derivative ρ′ applied to each element in the
input vector. Example:

>>welsh([-1 0 1 2],1)

ans =

-0.3679 0 0.3679 0.0366

4. If the vector is followed by the parameter 2, the Matlab-function should
return a vector with the second derivative ρ′′ applied to each element
in the input vector. Example:

>>welsh([-1 0 1 2],2)

ans =

-0.3679 1.0000 -0.3679 -0.1282
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The routines in CMregr make use of all these four cases. This puts some
restrictions on what ρ-functions can be used. The ρ-function has to be twice
differentiable!

The code for the welsh function of CMregr serves as an example of how
to implement such a function, and may serve as a template for customized
ρ-functions in CMregr:

function v = welsh(r,diff)

if nargin==1
diff = 0;

elseif nargin∼=2
error(’Wrong number of input arguments’)

end

switch diff
case 0

v = 0.5*(1–exp(–r.∧2));
case 1

v = r.*exp(–r.∧2);
case 2

r2 = r.∧2;
v = (1–2*r2).*exp(–r2);

otherwise
error(’Illegal order of differentiation’)

end

5 Estimation parameters and how to choose

them

The parameters c and ε in (1) and (2) are used for tuning the CM-estimates.
The parameter ε controls the asymptotic breakdown point: The asymp-

totic breakdown point is given by min(ε, 1 − ε). By choosing ε = 0.5, the
highest possible asymptotic breakdown point is achieved. No other choice is
sensible when CM-estimates are considered.

This means that the only parameter that really matters for CM-estimates
is c. If c is small, the S-estimate for ε = 0.5 is found rather than an CM-
estimate. For normally distributed residuals, it is in general required that
c > 15 (Tukey) and c > 5.3 (Welsh) to get a CM-estimate rather than an
S-estimate.

The properties of the estimate varies with c. Mendes & Tyler (1995)
made a theoretical investigation of the asymptotic relative efficiency, and the
residual gross error sensitivity : γ∗r . When those results are applied to Tukey
biweight and Welsh, it is revealed that the sensitivity γ∗r has a minimum for
some c, and that the efficiency is an increasing function of c. This implies
that it is pointless to choose c smaller than the minimizer of γ∗r , but it may
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be worthwhile to choose a greater value. For Tukey, γ∗r is minimized by
c = 19.62, and for Welsh the minimizer is c = 7.348. Other possible choices
are given in Table 1.

Table 1: Asymptotic relative efficiency and residual gross error sensitivity (γ∗r )
for varying choices of c in Tukey biweight and Welsh CM-estimates.

Tukey biweight

c eff γ∗r
19.62 0.847 1.64
22.57 0.900 1.66
28.97 0.950 1.77
41.68 0.980 2.01
56.02 0.990 2.28

Welsh

c eff γ∗r
7.348 0.838 1.58
8.930 0.900 1.61

12.07 0.950 1.73
18.39 0.980 2.02
25.54 0.990 2.31

The table for Tukey biweight in Mendes & Tyler (1995) looks different
since they use a slightly modified ρ-function in their analysis. The values in
Table 1 hold for tukey and welsh in CMregr.

It is possible to use CMregr for finding S-estimates by setting c = 0.
Then the properties of the estimate are controlled by changing the asymp-
totic breakdown point ε. As a comparison, Table 2 shows the values of ε
corresponding to Table 1, with the addition of ε = 0.5. A table for Tukey
biweight with some more reasonable choices of ε can be found in Rousseeuw
& Yohai (1984).

Table 2: Asymptotic relative efficiency for varying choices of asymptotic break-
down point ε in Tukey biweight and Welsh S-estimates.

Tukey biweight

ε eff
0.5000 0.287
0.2001 0.847
0.1638 0.900
0.1194 0.950
0.0786 0.980
0.0570 0.990

Welsh

ε eff
0.5000 0.289
0.1835 0.838
0.1400 0.900
0.0963 0.950
0.0596 0.980
0.0417 0.990

Figure 1 illustrates the difference in efficiency between some estimates
with breakdown point 0.5, and least squares. High efficiency means that the
regression line is close to the least squares solution if there are no outliers.

In Figure 2 we see the price one has to pay in S-estimates to get the
same asymptotic relative efficiency as in CM-estimates. In the right graph
of Figure 2, the S-estimate “breaks down” when one more outlier is added
compared to the left graph. This is because of the very low breakdown point
required for S-estimates to get high efficiency.
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Figure 1: Regression lines for least squares (LS), S-estimate with ε = 0.5 and
CM-estimates with c = 19.62 and c = 28.97 using Tukey biweight.
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Figure 2: Regression lines for least squares (LS), S-estimate with ε = 0.1194 and
CM-estimate with c = 28.97 using Tukey biweight. Both parameters correspond
to an asymptotic efficiency of 0.95.
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There may be more than one local minimum of the objective function (1)
in the feasible region defined by (2). Figure 3 shows the two local minima
for CM with two choices for the parameter c. The data-sets are the same
in the two graphs with 43.5% outliers in the data. The right graph has the
greater c corresponding to a higher efficiency, but then the objective function
(1) reports the “wrong” solution as the best one.
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c = 19.62,   Inliers = 35,   Outliers = 27 (43.5 %)

LS
CM 1, obj = 3.818
CM 2, obj = 4.318

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

c = 28.97,   Inliers = 35,   Outliers = 27 (43.5 %)

LS
CM 1, obj = 4.598
CM 2, obj = 4.558

Figure 3: Regression lines for least squares (LS), and for the two local minima of
the CM-estimate with c = 19.62 in the left graph, and with c = 28.97 in the right
graph, using Tukey biweight. The values of the corresponding objective functions
(1) are in the label box.

The CM-estimate has an asymptotic 50% breakdown point, but that is
not achieved in this case. This is what can be expected when the “good data”
is too scattered. Figure 4 shows that for better behaved “good data”, the
50% breakdown point is achieved, even for greater values of c. It is however
obvious that the observed breakdown point may drop a bit. And the drop is
generally greater for CM-estimates with higher efficiency.
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