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Abstract

An algorithm is presented for calculating concordance-discordance totals in a time of
order N logN , where N is the number of observations, using a balanced binary search
tree. These totals can be used to calculate jackknife estimates and confidence limits in
the same time order for a very wide range of rank statistics, including Kendall’s tau,
Somers’ D, Harrell’s c, the area under the receiver operating characteristic (ROC) curve,
the Gini coefficient, and the parameters underlying the sign and rank-sum tests. A Stata
package is introduced for calculating confidence intervals for these rank statistics using
this algorithm, which has been implemented in the Mata compilable matrix programming
language supplied with Stata.

Keywords: balanced binary search tree, jackknife, confidence interval, rank statistics, Kendall’s
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1. Introduction

Rank or so-called “non-parametric” statistics are in fact based on parameters, which are
usually equal to zero or 0.5 under a null hypothesis, such as the hypotheses tested by
rank-sum tests or by sign tests. Such parameters include Kendall’s τ (Kendall and Gib-
bons (1990)), Somers’ D (Somers (1962)), Harrell’s c (Harrell, Califf, Pryor, Lee, and Rosati
(1982)), the area under the receiver-operating characteristic (ROC) curve (Hanley and Mc-
Neil (1982)), and the Gini coefficient, defined as the difference between the areas above and
below the Lorenz curve (Cowell (1995)). It is often more informative to calculate confidence
limits for these parameters (and their differences) than to calculate P -values alone. Con-
fidence intervals for rank statistics are discussed extensively in Newson (2002), which also
introduces a Stata package somersd as a unified solution to calculating confidence intervals
for all these parameters. At a given time, the current version of somersd can usually be
downloaded from the Statistical Software Components (SSC) archive, which is located at
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http://ideas.repec.org/c/boc/bocode/s336401.html. This downloading is usually done
using the ssc command in Stata. The package includes a manual somersd.pdf, which con-
tains the formulas used, and also a range of demonstration examples.

Historically, the main problem with confidence intervals for rank statistics has always been
the large amount of computational effort required. As argued in Newson (2002), most rank
parameters can be defined in terms of the canonical rank parameter Kendall’s τa (Kendall
and Gibbons (1990)). Confidence interval formulas for Kendall’s τa appeared as early as
1947 in two consecutive papers in the same issue of Biometrika, namely Höffding (1947)
(who also published extensively as Hoeffding) and Daniels and Kendall (1947). The second
paper illustrated the formulas with a worked example, using a dataset of 30 observations. The
calculations required were obviously laborious, even for a dataset as small as this, because the
usual formulas for calculating Kendall’s τa and its standard error involve comparisons of every
pair of observations in the dataset, implying a number of operations of order N2, where N is
the number of observations. The availability of computers eased this problem to an extent,
and Knight (1966) introduced an algorithm, based on computer sorting, to calculate Kendall’s
τa requiring a time of orderN logN . However, this algorithm did not calculate standard errors
or confidence limits. A possible standard error formula for Kendall’s τa is provided by the
jackknife method, discussed in Arvesen (1969) and Miller (1974). Using the jackknife together
with the Knight algorithm would normally imply using the Knight algorithm one time for
each observation (excluding that observation from the dataset), implying a computational
time of order N2 logN . Using the bootstrap (Efron and Tibshirani (1993)) with the Knight
algorithm would imply a computational time of order NrepsN logN , where Nreps is the number
of repeated subsamples. All of these formulas imply a lot of time in large datasets (> 1000
observations), even with today’s technology.

An alternative solution was presented by Newson (1987), and used a binary search tree to
allow calculation of Kendall’s τa and its jackknife standard error in a time of order N logN .
Initially, the algorithm was implemented in Pascal and intended to input a temporary file
output by SAS and to output a temporary file for input by SAS. An improved version of
the algorithm was later written in FORTRAN77. These programs were used by the author,
but could not be used easily by the typical casual user of a statistical package. However,
the appearance of Version 9 of Stata, in May 2005, provided Stata programmers with the
C-like compilable matrix language Mata (StataCorp LP (2005)). This enabled the author
to incorporate the search tree algorithm into a new version of the somersd package, which
had previously been written in the interpretable Stata language and used a quadratic-time
algorithm.

The search tree algorithm, described below, is entirely generic, and could in principle be
implemented as a C plugin by any programmer on the R project with the time and the
inclination to do so. However, the Mata solution has the advantage of being integrated
seamlessly into a Stata package, and therefore being available immediately to Stata users on
all platforms on which Stata is available.

2. Statistical formulas

The family of rank parameters estimated by somersd is very comprehensive, including exten-
sions to stratified, clustered and left- or right-censored data. The formulas, and a range of
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demonstration examples, are documented extensively in the accompanying manual
somersd.pdf. However, the canonical parameter is Kendall’s τa, and the computational
issues for jackknifing the others are more complicated versions of the computational issues for
jackknifing Kendall’s τa, which we will therefore describe here. However, we will generalize
Kendall’s τa immediately to the case where the variables may be left- and/or right-censored
and the observations may have “importance weights”. We will assume that observations
(Xi, Ri, Yi, Si,Wi) are sampled independently from a common population, where, for the ith
observation, Xi is the X-value, Ri is the censorship indicator for the X-value, Yi is the Y -
value, Si is the censorship indicator for the Y -value and Wi is the importance weight. The
censorship indicators are numeric, and indicate left-censorship (implying a “true” value at
or below the stated value) if negative, right-censorship (implying a “true” value at or above
the stated value) if positive, and non-censorship (implying a “true” value equal to the stated
value) if zero. We define the censored signed difference

csign(U,P, V,Q) =


1, U > V and P ≥ 0 ≥ Q ,

−1, U < V and P ≤ 0 ≤ Q ,
0. otherwise,

(1)

for numeric values U and V and censorship indicators P and Q. Note that csign(U,P, V,Q)
is equal to sign(U − V ) if P = Q = 0, implying no censorship. If we define

Tij = csign(Xi, Ri, Xj , Rj) csign(Yi, Si, Yj , Sj) ,

Ti. =
∑N

j=1WjTij ,

T.. =
∑N

i=1WiTi. ,

(2)

where N is the sample number, then we can define the population Kendall’s τa as

τX,R,Y,S = E (WiWjTij) (3)

(for i 6= j), and estimate it from the sample Kendall’s τa, defined as

τ̂X,R,Y,S =
T..

N(N − 1)
, (4)

and estimate the sampling variance of this estimate as the sample variance of the jackknife
pseudovalues

ψi =


0 , N = 1 ,
WiTi. , N = 2 ,
T../(N − 1) − (T.. −WiTi.)/(N − 2) , otherwise,

(5)

divided by the sample number N . We see that τ̂X,R,Y,S is simply the mean of the ψi, and that
the key to calculating the estimate and its standard error is to calculate the concordance-
discordance totals Ti.. However, if we calculate these as suggested by the definition (2), then
we must evaluate each of the Tij individually, implying N(N−1) comparisons, and therefore a
computational time of order N2. The algorithm presented below allows the calculation of all
the Ti. in a time of order N logN , without calculating the individual Tij , by using a balanced
binary search tree.
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3. Data structures

In the somersd package, the search tree algorithm is contained in a Mata function tidottree(),
whose code is in the file tidottree.mata, distributed with the package in accordance with the
open-source principle. tidottree() has column-vector input parameters x, y, weight, xcen
and ycen, containing, respectively, the X-values, the Y -values, the weights, the X-censorship
indicators, and the Y -censorship indicators. These vectors have the same number of rows,
and this number is stored internally in a scalar variable nobs. tidottree() assumes that
the input data matrix defined by these column vectors is sorted in non-descending order of x,
and starts by defining temporary matrices xpanel, with one row per observed X-value and
two columns containing the minimum and maximum indices with each X-value, and yval,
with one row per observed Y -value and one column containing these Y -values in ascending
order. (These matrices are created using the very useful Mata functions panelsetup() and
uniqrows(), provided as part of “official Stata”.) The numbers of distinct X-values and
Y -values are stored in scalars nxval and nyval, respectively.

The next action is the creation of a balanced binary search tree, with one node for each row
index of the Y -value matrix yval. Binary search trees and their associated terminology are
discussed in Chapter 4 of Wirth (1976), and also in Knuth (1997). A binary search tree that
might be created by tidottree() is illustrated graphically in Figure 1. In this tree, there are
6 possible Y -values, which (in ascending order) are 1, 2, 3, 5, 8 and 13. As Mata is a matrix
language, the natural way to define this search tree is to create a matrix ytree, with nyval
rows and 2 columns. The ith row of the first column contains the left daughter index of i (or
zero if there is no left daughter index), and the ith row of the second column contains the
corresponding right daughter index (or zero if there is no right daughter index). The search
tree is produced by a Mata function blncdtree() (distributed in the file blncdtree.mata),
which calls a second Mata function _blncdtree() (distributed in the file _blncdtree.mata),
which calls itself recursively to build the tree. In the terminology of Wirth (1976), this tree
is a perfectly balanced search tree, because, for any index i in the tree, the numbers of nodes
in the left and right subtrees of i differ by no more than one, and yval[j] < yval[i] for j
in the left subtree of i, and yval[j] > yval[i] for j in the right subtree of i.

Figure 1 contains information on 5 column vectors other than yval, namely sweqlc, sweqnc,
sweqrc, swlt and swgt. These column vectors have nyval rows, and, together with the col-
umn vector yval and the matrix of daughter indices, they form the search tree matrix. At
most times during execution, these additional arrays contain information about the distribu-
tion of weights in some subset Ω of the indices of the main data matrix, which consists of
the parallel column vectors x, y, weight, xcen and ycen. For an index i in the search tree,
sweqlc[i] contains the sum of all the weight[j] where j ∈ Ω and ycen[j] < 0 (denoting
left-censorship), sweqnc[i] contains the sum of all the weight[j] where j ∈ Ω and ycen[j]
== 0 (denoting non-censorship), and sweqrc[i] contains the sum of all the weight[j] where
j ∈ Ω and ycen[j] > 0 (denoting right-censorship). (The == operator here denotes the equal-
ity operator, common to C and Mata.) For the same index i, swlt[i] contains the sum of
all the sweqlc[k] and sweqnc[k] for indices k in the left subtree of i, and swgt[i] contains
the sum of all the sweqrc[k] and sweqnc[k] for indices k in the right subtree of i. When
these equalities hold for a subset Ω of indices, we will say that the search tree represents Ω.
In the case of the search tree of Figure 1, if all the weight[j] are equal to one, then the
tree will represent a subset Ω of indices of the main data matrix, of which 13 have a Y -value
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Figure 1: A search tree representing a subset of data matrix indices

left-censored at 8, 14 have a Y -value uncensored at 8, and 15 have a Y -value right-censored
at 8. There will also be 21 = 10 + 11 indices in Ω with Y -values left-censored or uncensored
at 5, and 35 = 17 + 18 indices in Ω with Y -values uncensored or right-censored at 13.

4. The algorithm

We are now in a position to define the two main component operations of the search tree
algorithm, which we will denote extraction of left and right subtotals from the search tree
matrix for an index of the main data matrix and updating the search tree matrix with an
index of the main data matrix. In both cases, we take advantage of the fact that, for each
index j of the main data matrix, there exists a path (h1, . . . , hM ) of indices of the tree matrix,
such that h1 is the central root index (which can be evaluated by the Mata function floor()
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as floor( (nyval + 1 ) / 2) and which is equal to 3 in Figure 1), yval[hM] is equal to
y[j], and hg+1 is the left or right daughter of hg for 1 ≤ g < M . The operations of subtotal
extraction and updating are carried out by iteration along the path.

The left subtotal of an index j of the main data matrix is defined as zero if ycen[j] < 0 (in
which case y[j] is left-censored), and otherwise as

λtot(j) =
M∑

g=1

λ(j, g), (6)

where λ(j, g) is equal to zero if y[j] < yval[hg], to swlt[hg] if y[j] == yval[hg], and to
swlt[hg] + sweqlc[hg] + sweqnc[hg] if y[j] > yval[hg]. Similarly, the right subtotal
of j is defined as zero if ycen[j] > 0 (in which case y[j] is right-censored), and otherwise
as

ρtot(j) =
M∑

g=1

ρ(j, g), (7)

where ρ(j, g) is equal to sweqnc[hg] + sweqrc[hg] + swgt[hg] if y[j] < yval[hg], to
swgt[hg] if y[j] == yval[hg], and to zero if y[j] > yval[hg]. In other words, if the
search tree represents a subset Ω of indices of the main data matrix, then the left subtotal is
the sum of all the weight[k] for indices k such that

k ∈ Ω and csign(y[k],ycen[k],y[j],ycen[j]) < 0,

and the right subtotal is the sum of all the weight[k] for indices k such that

k ∈ Ω and csign(y[k],ycen[k],y[j],ycen[j]) > 0.

The operation of updating the tree with an index j of the main data matrix is carried out by
iterating along the path (h1, . . . , hM ) and incrementing the appropriate stored sums of weights
by weight[j]. For each index hg on the path, we increment swlt[hg] if y[j] < yval[hg]
and ycen[j] <= 0, we increment swgt[hg] if y[j] > yval[hg] and ycen[j] >= 0, we in-
crement sweqlc[hg] if y[j] == yval[hg] and ycen[j] < 0, we increment sweqrc[hg] if
y[j] == yval[hg] and ycen[j] > 0, and we increment sweqnc[hg] if y[j] == yval[hg]
and ycen[j] == 0. If the search tree represented a set Ω of indices of the main data ma-
trix before the update, and j /∈ Ω, then the tree will represent the set of indices Ω ∪ {j}
after the update. Note that the updating operation often involves adding very small values
of weight[j] to large stored numbers. It is therefore very fortunate that Mata does this
addition in double precision.

Having defined the component operations of the algorithm, we can now summarize the algo-
rithm as a whole. tidottree() first creates the data structures of the search tree and also
a column vector tidot, with as many rows as the main data matrix, which is initialized to
zero and will eventually contain the concordance-discordance totals Ti. of Equation (2). The
remainder of the algorithm is executed in two stages.

In the first stage, we initialize to zero the tree column vectors swlt, sweqlc, sweqrc, sweqnc
and swgt. The search tree now represents the empty set of indices of the main data matrix.
We iterate upwards over all X-values xcur from the lowest to the highest, proceeding for each
X-value as follows:
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1. For each index j such that x[j] == xcur and xcen[j] >= 0, extract the left subtotal
λtot(j) and the right subtotal ρtot(j) from the tree. When this has been done, λtot(j) will
contain the sum of weights for rows of the data matrix known to be below the current
row on both the X-axis and the Y -axis, and ρtot(j) will contain the sum of weights for
rows of the data matrix known to be below the current row on the X-axis and above
the current row on the Y -axis. We therefore add λtot(j)− ρtot(j) to tidot[j].

2. For each index j such that x[j] == xcur and xcen[j] <= 0, update the tree with
index j. When this has been done for all such indices, the tree will represent the set of
rows of the data matrix known to be at or below xcur on the X-axis.

In the second stage, we once again initialize swlt, sweqlc, sweqrc, sweqnc and swgt to zero,
causing the tree once again to represent the empty set of indices of the main data matrix,
and this time we iterate downwards over all X-values xcur from the highest to the lowest,
proceeding for each X-value as follows:

1. For each index j such that x[j] == xcur and xcen[j] <= 0, extract the left subtotal
λtot(j) and the right subtotal ρtot(j) from the tree. When this has been done, ρtot(j) will
contain the sum of weights for rows of the data matrix known to be above the current
row on both the X-axis and the Y -axis, and λtot(j) will contain the sum of weights for
rows of the data matrix known to be above the current row on the X-axis and below
the current row on the Y -axis. We therefore add ρtot(j)− λtot(j) to tidot[j].

2. For each index j such that x[j] == xcur and xcen[j] >= 0, update the tree with
index j. When this has been done for all such indices, the tree will represent the set of
rows of the data matrix known to be at or above xcur on the X-axis.

When both stages are completed, the column vector tidot will contain the concordance-
discordance totals Ti. of Equation (2), and is therefore returned by tidottree() as the result.
The above algorithm can be generalized to calculate confidence intervals for Kruskal’s γ and
Kendall’s τb (see Goodman and Kruskal (1979)).

5. Performance

The Mata function tidottree() has a companion function tidot(), distributed with the
package in the file tidot.mata, which has the same input and output as tidottree(), but
calculates the Ti. using a trivial quadratic-time algorithm, which evaluates the individual
Tij . The user has the option of using tidot() instead of tidottree(), and can therefore
compare the performance of the two algorithms. To make the comparison fair, somersd does
not perform the initial sort by the X-variable (which itself takes a time of order N logN) if
the user specifies the quadratic-time algorithm.

The performance trials reported here were carried out on the author’s desktop machine, an
AT/AT compatible Intel Pentium running at 1.70 GHz with 523,760 Kb RAM, using Inter-
cooled Stata 9.0 under Microsoft Windows 2000. The set task was to generate 2 uniformly-
distributed random variables x and y, and to run the Stata command

somersd x y, taua
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Figure 2: Execution times for search tree and quadratic algorithms

which uses the search tree algorithm to calculate Kendall’s τa between x and y, and also
Kendall’s τa between x and x, which is simply the proportion of pairs of observations with
untied values of x. For comparison, we also ran the Stata command

somersd x y, taua notree

which does the same calculations using the trivial quadratic-time algorithm. All trials were
carried out with the Stata setting memory set to 16m, and with the Stata setting rmsg set to
on, so that execution times were recorded for each command executed. Numbers of paired
observations were set to the values of a binary logarithmic series from 20 = 1 to 216 = 65536.

The results are presented as Figure 2, in which both the number of observations and the exe-
cution time are plotted on a binary log scale. With small sample sizes (N < 100), execution
times seem to be dominated by constant terms which seem to be (if anything) marginally
greater for the search tree algorithm. However, for 3-digit or higher sample sizes, the exe-
cution time of the quadratic algorithm rises at the predicted gradient of around 2 doublings
of execution time per doubling of sample size, whereas the execution time of the search tree
algorithm rises at a gradient not much greater than one doubling of execution time per dou-
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bling of sample size. The difference in performance becomes spectacular with large datasets
(N > 1000). At N = 1024, the time was .69 seconds for the search tree algorithm and a
pregnant pause of 10.02 seconds for the quadratic algorithm. At N = 8192, the correspond-
ing times were 5.58 seconds and 667.47 seconds, giving users of the quadratic algorithm a
potential excuse for a coffee break. At N = 65536, the times were 50.86 seconds (still less
than a minute) for the search tree algorithm and 43184.42 seconds (an overnight job of almost
12 hours) for the quadratic algorithm.

Even with today’s technology, the new algorithm has been found useful so far by users,
known to the present author, who have used it to calculate confidence intervals for the Gini
coefficient, Harrell’s c and Somers’ D on large datasets. Moreover, it is likely that, up until
now, many other users (as well as the present author) have been deterred from using these
statistical methods on large datasets, or from developing more advanced variants of these
methods, because of the computational time taken and/or their unavailability in standard
software. Given the tendency for the demand for computing power to rise to fill the available
capabilities, and the comprehensive range of clustered and/or stratified and/or censored-data
analyses offered by the somersd package, the superior performance of the search tree algorithm
is likely to continue to be important, at least to some users some of the time. As an example,
Harrell, Lee, and Mark (1996) discuss using methods similar to the bootstrap for comparing
Harrell’s c indices for different prognostic scores on datasets of thousands of subjects. These
methods are probably more likely to be used in practice by applied scientists if these scientists
have the means to calculate the c index in a time proportional to N logN , rather than to N2.
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