Journal of Statistical Software

January 2006, Volume 15, Issue 2. http:/ /www.jstatsoft.org/

The R Package geepack for Generalized Estimating

Equations
Ulrich Halekoh Sgren Hgjsgaard
Danish Institute of Agricultural Sciences Danish Institute of Agricultural Sciences
Jun Yan

University of lowa

Abstract

This paper describes the core features of the R package geepack, which implements the
generalized estimating equations (GEE) approach for fitting marginal generalized linear
models to clustered data. Clustered data arise in many applications such as longitudinal
data and repeated measures. The GEE approach focuses on models for the mean of the
correlated observations within clusters without fully specifying the joint distribution of
the observations. It has been widely used in statistical practice. This paper illustrates the
application of the GEE approach with geepack through an example of clustered binary
data.
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1. Introduction

Generalized Estimating Equations (GEE) (Liang and Zeger 1986) are a general method for
analyzing data collected in clusters where 1) observations within a cluster may be correlated,
2) observations in separate clusters are independent, 3) a monotone transformation of the
expectation is linearly related to the explanatory variables and 4) the variance is a function
of the expectation. It is essential to note that the expectation and the variance referred to in
points 3) and 4) are conditional given cluster-level or individual-level covariates.

There are several approaches to extend generalized linear models to clustered data. Mixed
effect models and transition models (Diggle, Liang, and Zeger 1994, Chapter 7, 9-10) fully
specify the joint distribution within clusters via latent variables or conditional dynamics.
With the presence of random effects, likelihood estimation necessitates the integration over
the random effects distributions, which may be numerically intractable. Lee and Nelder (1996,
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2001) introduced hierarchical generalized linear models and showed that the integration may
be avoided by working on the h-likelihood. Compared to these approaches, the method of
GEE fits marginal mean models with the advantage that only correct specification of marginal
means is needed for the parameter estimator to be consistent and asymptotically normal. This
approach has become an important tool in analyzing longitudinal data or repeated measures
arising in a wide variety of applications. For a discussion on the relation between marginal
and mixed effects models, see Heagerty and Zeger (2000) and Nelder and Lee (2004).

Several implementations of GEE have become available (Horton and Lipsitz 1999). The
basic approach of Liang and Zeger (1986) is available in SAS (SAS Institute Inc. 1999, proc
genmod), Stata (StataCorp LP 2005), XLISP-STAT (Lumley 1996) and in S-PLUS by the
packages oswald (Smith 1998) and gee or yags (Carey 2002, 2004). The last two packages
have been ported to R (R Development Core Team 2005). The R package geepack implements
the basic approach and some extensions (Yan 2002; Yan and Fine 2004). Three features of
geepack distinguish it from other implementations: 1) There is an interface function geeglm
which is designed to be as similar to glm as possible; 2) A jackknife variance estimator is
available as an alternative to the sandwich estimator; and 3) Covariates can be incorporated
into the scale and correlation parameters in a similar fashion to the mean modeling. In this
paper, we illustrate the aspects of geepack with the focus on the first two features.

The paper is organized as follows. In Section 2 we introduce an example dataset on repeated
measures of binary data. In Section 3 we outline the GEE approach and in Section 4 we
describe the features of the geeglm function that implements the approach in geepack. We
close the article with an analysis of the data in Section 5 and a conclusion in Section 6.

2. An example data set

To illustrate the type of problems well suited for the GEE approach we consider a data set on
respiratory illness. The data is provided in geepack and detailed information about the data
can be found in Koch, Carr, Amara, Stokes, and Uryniak (1990). Briefly, the data comes
from a clinical study in which the effect of a treatment of patients with respiratory illness was

Visit Response pattern
1 o 1.0 0 0 1 1 1 0 0 1 1 1 0 1
2 o o100 1 0 0 1 01 1 0 1 1
3 o o 0o 10001 0 1 11 01 1 1
4 O 0o oo 10001 0 1 01 11 1
Baseline Treat Sum
0 A T 2 2 2 1 0 1 0 1 0 1 2 0 4 30
P 8 1.0 2 1 2 0 0 1 0 0 1 2 0 3 31
1 A O 00 0O0OO1 1 0 O0 4 0 1 0 17 24
P 1 4100 001 1 3 1 1 2 1 10 26
Sum 26 7 3 4 2 2 2 2 3 3 6 4 5 5 37 111

Table 1: Number of patients for the different response patterns classified by baseline re-
sponse and treatment. The patterns are ordered according to increasing numbers of positive
responses.
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Number of positive reponses

o 1 2 3 4

Sex F 7T 3 3 3 7
M 19 13 9 17 30

Center 1 18 9 6 11 12
2 8 7 6 9 25

Table 2: Number of patients for the number of positive responses across the four visits for
sex and center.

examined. A total of 111 patients from two clinical centers were randomized to receive either
placebo or an active treatment. At four examination visits, the respiratory state of a patient
was classified as good (=1) or poor (=0). Variables characterizing a patient were: center
(1,2), treatment treat (A=active, P=placebo), sex (M=male, F=female), age (in years) at
baseline and baseline respiratory state which is also binary. The values of the covariates
were constant for the repeated elementary observations on each patient.

Table 1 shows the number of patients for the response patterns across the four visits classified
by baseline status and treatment. Patients with baseline respiratory status equal to 0 seem
either to have a low or large number of positive responses whereas patients with a baseline
of 1 tend to respond positively. Table 2 describes the distribution of the number of positive
responses per patient for sex and center.

Figure 1 presents the plot of age against the proportion of positive responses for each patient.
It indicates a quadratic relationship between the proportions and the age. We fit a logistic
model to the data (which would be appropriate if there were no time effect and no spread in
the response probabilities for patients with the same covariate values):

R> m.glm <- glm(outcome ~ baseline + center + sex + treat + age + I(age~2),
+ data = respiratory, family = binomial)

The correlation matrix of the Pearson residuals within a patient based on the glm-fit is shown
in Table 3 and indicates an appreciable correlation within patient measurements.

visitl visit2 visitd visit4
visitl 1.00 035 024 0.30
visit2  0.35 1.00 0.34 0.28
visit3 ~ 0.24 034 1.00 0.36
visit4  0.30 0.28 0.36  1.00

Table 3: Correlation matrix for the measurements at different visits based on the Pearson
residuals from the logistic model.

3. Theory of GEE

For the regression analysis of correlated observations, Liang and Zeger (1986) introduced
the GEE approach. This approach generalized the estimation method of quasi-likelihood of
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Figure 1: Relation of age to the proportion of positive responses. The smooth line is a spline.

Wedderburn (1974) to correlated data. An alternative generalization was proposed by Lee
and Nelder (1996, 2001). An extensive review of the development of the GEE approach is
given by Ziegler, Kastner, and Blettner (1998).

Consider a sample of i = 1,..., K independent multivariate observations
Y = (Yi1,..., Y, ..., Yin,). Here ¢ may represent a cluster with n; observations. The ex-
pectations E(Yj;) = u;; are related to the p dimensional regressor vector x;; by the mean-link
function ¢

9(it) = 73 8. (1)

Let
VAR(Yz‘t) = Pat, (2)

where ¢ is a common scale parameter and a; = a(u;) is a known variance function. Let
R;(a) be a working correlation matrix completely described by the parameter vector a of
length m. Let

V; = ¢A?Ri(a) A?

2

be the corresponding working covariance matrix of Y;, where A; is the diagonal matrix with
entries a;;. For given estimates (¢, &) of (¢, ) the estimate (3 is the solution of the equation

K
op]
2 0

Liang and Zeger (1986) suggest to use consistent moment estimates for ¢ and «. This yields
an iterative scheme which switches between estimating 3 for fixed values of é and & and
estimating (¢, ) for fixed values of . This scheme yields a consistent estimate for 3. More-
over, K1/ 2(3 — () is asymptotically multivariate normally distributed with zero mean and

Vo (Y — ) = 0.
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name function v(p)
gaussian identity

binomial p(1 —p), u€ (0,1)
poisson  u, u >0

gamma wr >0

Table 4: Variance functions in geeglm.

covariance matrix Y = lim KX 12125 1 where

—00

K

O <1 O oy i1 O
]z:: Vz aﬁ"l” Z V COV( 1)Vz aﬂT' (3)

Replacing ﬁ qﬁ and « by consistent estimates and the covariance matrix COV( i) by (Y; —
1) (Yi — 1) T in (3) yields a so called sandwich estimate ¥ of 3. The estimate 3 is a consistent
estimate of E even if the working correlation matrices R;(«) are misspecified.

4. The geeglm function

The geeglm function largely follows the syntax of the glm function and many of the methods
available for glm objects are also available for geeglm objects. We discuss in the following
the most important arguments of the geeglm function and the anova method for comparing
models by Wald tests. These will be exemplified in Section 5.

4.1. Variance and link functions (family)

The variance function is specified by the family argument in geeglm and is identified by the
name of the corresponding distribution in a generalized linear model. The available variance
functions are given in Table 4. The available link functions for the mean are the same as
those in glm with the exception of the cauchit link for the binomial family.

4.2. Working correlation (corstr, zcor)

Four pre-defined working correlation structures are available and are specified via the argu-
ment corstr (Table 5). It is also possible to provide a correlation matrix the entries of which
remain fixed under the computation. This may be necessary if the estimate for o does not yield
a positive definite R(«) (Chaganty 1997). Using a fixed working correlation (corstr="fixed")
may still yield efficient estimates (Chaganty and Joe 2004) for 5. Additionally, a user-defined
correlation structure (corstr="userdefined") can be provided by expressing the correlation
parameters as linear combinations of covariates. Given a n; X m matrix X; of covariates,
the upper diagonal correlations parameters r; = (712,713, .-, Tiings 7,235 - - - » Ting_1n;) OF
the working correlation matrix R;(«) can be written as r; = X;«. The zcor argument takes
the concatenated matrices (X{ ,..., X})" as the design matrix for the working correlation.
For the fixed correlation matrix one has simply m = 1 and X; = r;. Some useful correlation
structures are defined as simple linear restrictions of the unstructured working correlation
matrix for which the corresponding design matrix is provided by the genZcor function of the
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name R(«)

independence COR(Yy,Yiy) =0, t#¢
exchangeable COR(Yi,Yiy)=a, t#t
arl COR(Yy, Yiy) = alt=¥
unstructured COR(Yy, Zt/) =y, t £t

Table 5: Working correlations in geeglm.

geepack package. For example, the entries in each off-diagonal of a Toeplitz correlation matrix
are equal, r; gy = 7jx—;|- Hence, the corresponding design matrix is obtained by adding those
columns in the unstructured design matrix with the same difference in the &, indices.

4.3. Missing values (waves)

In case of missing values, the GEE estimates are consistent if the values are missing com-
pletely at random (Rubin 1976). The geeglm function assumes by default that observations
are equally separated in time. Therefore, one has to inform the function about different sep-
arations if there are missing values and other correlation structures than the independence or
exchangeable structures are used. The waves arguments takes an integer vector that indicates
that two observations of the same cluster with the values of the vector of k respectively [ have
a correlation of ry;.

4.4. Jackknife variance estimates (std.err)

For a small number of clusters (K < 30) the sandwich variance estimator exhibits bias and
Paik (1988) recommended using the jackknife variance estimator. It is defined as

K ~ A ~
Z -BB—BT

where p is the number of parameters in the mean structure and B—i are the estimates of 3
leaving out the ith cluster. By default the geeglm function returns the sandwich estimates.
Specifying std.err="fij" the fully iterated jackknife estimate is returned. Additionally,
the computationally less demanding approximate jackknife estimate (std.err="jack") or a
one-step jackknife estimate (std.err="jis") can be obtained. Simulation studies (Ziegler,
Kastner, Brunner, and Blettner 2000; Yan and Fine 2004) indicate that the approximate
jackknife estimates are in many cases in good agreement with the fully iterated estimates.

4.5. anova method

The anova method allows either to produce a table of tests for sequentially adding terms to a
model or to compare two nested models. The test statistic for testing the difference between
model M1 and a submodel M2 is the Wald test statistic. If 3 is the parameter of model M1
and the submodel M2 is obtained from M1 by setting C3 = 0, where C' is a rank ¢ contrast
matrix and 2[? is a consistent estimate of the covariance matrix of ﬁ, the test statistic is

BTCT(CE5CT) 108 ~ X2,
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5. Analysis of the respiratory data

In the initial description of the respiratory data we saw appreciable within-patient correlation.
We now fit the logistic model with the same mean structure and the binomial variance function
a(pit) = pit(1 — pip) using the GEE approach. We estimate (8 under the four pre-defined
working correlations and a user-defined Toeplitz working correlation. For example, the fit
with the exchangeable working correlation is obtained by

R> m.ex <- geeglm(outcome ~ baseline + center + sex + treat + age + I(age”2),
+ data = respiratory, id = interaction(center, id),
+ family = binomial, corstr = "exchangeable')

The design matrix for the Toeplitz working correlation was constructed by first obtaining the
design matrix for the unstructured correlation using the genZcor function and then adding
the appropriate columns. The use of the waves argument is not necessary because there are
no missing observations.

R> zcor <- genZcor(clusz = c(xtabs(~ id + center, data = respiratory)),
+ waves = respiratory$visit, corstrv = 4)

R> zcor.toep <- matrix(NA, nrow(zcor), 3)

R> zcor.toep[,1] <- apply(zcor[,c(1,4,6)], 1, sum)

R> zcor.toep[,2] <- apply(zcor[,c(2,5)], 1, sum)

R> zcor.toep[,3] <- zcorl[,3]

The fit with the Toeplitz working correlation is obtained by

R> m.toep <- geeglm(outcome ~ baseline + center + sex + treat + age + I(age~2),

+ data = respiratory, id = interaction(center, id),
+ family = binomial, corstr = "userdefined", zcor = zcor.toep)
Est.GLM SE.GLM | Est.Ind SE.Ind | Est.Exc SE.Exc
(Intercept) 3.87 0.96 3.87 1.31 3.87 1.31
baselinel 1.89 0.25 1.89 0.38 1.89 0.38
center?2 0.51 0.25 0.51 0.38 0.51 0.38
sexM —0.45 0.32 | —-0.45 0.48 —0.45 0.48
treatP —1.32 024 | -1.32 0.38 —1.32 0.38
age —0.21 0.05 | —0.21 0.06 —0.21 0.06
age?/100 0.26 0.06 0.26 0.08 0.26 0.08
Est.Arl SE.Arl | Est.Un SE.Un | Est.Toep SE.Toep
(Intercept) 3.48 1.29 3.86 1.30 3.83 1.31
baseline=1 1.90 0.37 1.92 0.37 1.89 0.37
center=2 0.59 0.37 0.50 0.38 0.52 0.38
sex=M —0.42 0.48 | —0.44 0.48 —0.45 0.48
treat=P —1.25 037 | —-1.32 0.38 —1.32 0.37
age -0.19 0.06 | —0.21 0.06 —0.21 0.06
age?/100 0.24 0.08 0.26 0.08 0.25 0.08

Table 6: Comparison of parameter estimates.
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sand fij jls jack

(Intercept) 1.31 1.39 1.35 1.35
baseline=1 0.38 0.39 0.38 0.38
center=2 0.38 0.39 0.39 0.39
sex=M 048 0.51 0.50 0.50
treat=P 0.38 0.39 0.38 0.38
age 0.06 0.06 0.06 0.06
age?/100  0.08 0.08 0.08 0.08

Table 7: Standard errors for the parameters from the exchangeable working correlation fit
for the different variance estimators (sand: sandwich, fij: fully iterated jackknife, jls: 1-step
jackknife; jack: approximate jackknife).

A table of the estimated parameters, their standard deviations, and Wald tests is obtained
by

R> coef (summary (m.ex))

Table 6 presents the results from the fit of the simple generalized linear model and the fits
obtained by using GEE with the different working correlations. In all cases the estimates of
0 are in close agreement. The standard errors under all five working correlation assumptions
are practically identical and about 30% larger than under the assumption of independent
observations.

To illustrate the facility of different variance estimates, Table 7 presents a comparison of the
sandwich variance estimate and various jackknife variance estimates (Yan and Fine 2004).
For this particular dataset, all these variance estimates are virtually the same.

To test whether the effect of age may be removed, we first fit a model without the age terms

R> m.ex.0 <- update(m.ex, - age - I(age~2))

and then compare this model to the full model using the anova method. This yields a p-value
that underlines the importance of the age effect.

R> anova(m.ex, m.ex.0)

Analysis of ’Wald statistic’ Table
Model 1 outcome ~ baseline + center + sex + treat + age + I(age”2)
Model 2 outcome ~ baseline + center + sex + treat
Df X2 P(>|Chil)
1 2 12.403 0.002

6. Conclusion

The R package geepack provides a flexible estimating equations approach for estimating the
covariate depending mean, scale and correlations parameters of correlated observations. In
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this paper we described the geeglm function of the package that is close in syntax to the
glm function and implements the estimating equation approach of Liang and Zeger (1986).
Additionally, the function allows to use a fixed user-defined correlation structure and several
jackknife variance estimators. The latter are preferable to the sandwich estimator in case of
a small number of clusters.

geepack has additional features which allow the scale parameters and the parameters of the
working correlation matrix to be modeled as functions of explanatory variables, see Yan
(2002) and Yan and Fine (2004). Using additional estimating equations for these parameters
the approach yields consistent estimates for 3, the scale and correlation parameters. The
function ordgee of geepack allows the analysis of ordinal data according to the method
proposed by Heagerty and Zeger (1996).
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