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Abstract

Relative importance is a topic that has seen a lot of interest in recent years, particularly
in applied work. The R package relaimpo implements six different metrics for assessing
relative importance of regressors in the linear model, two of which are recommended -
averaging over orderings of regressors and a newly proposed metric (Feldman 2005) called
pmvd. Apart from delivering the metrics themselves, relaimpo also provides (exploratory)
bootstrap confidence intervals. This paper offers a brief tutorial introduction to the pack-
age. The methods and relaimpo’s functionality are illustrated using the data set swiss
that is generally available in R. The paper targets readers who have a basic understanding
of multiple linear regression. For the background of more advanced aspects, references
are provided.

Keywords: relative importance, hierarchical partitioning, linear model, relaimpo, hier.part,
variance decomposition, R2.

1. Introduction

“Relative importance” refers to the quantification of an individual regressor’s contribution to
a multiple regression model. Assessment of relative importance in linear models is simple,
as long as all regressors are uncorrelated: Each regressor’s contribution is just the R2 from
univariate regression, and all univariate R2-values add up to the full model R2. In sciences
with predominance of observational data, regressors are typically correlated, so that it is no
longer straightforward to break down model R2 into shares from the individual regressors.
Various methods have been proposed in the literature. Darlington (1968) gives an overview
of the older methods, Lindeman, Merenda, and Gold (1980, p. 119 ff.) propose averaging
sequential sums of squares over all orderings of regressors, Pratt (1987) yields a justification
for an earlier proposal by Hoffman (1960) that had already been rejected by Darlington (1968)
and others, and Feldman (2005) makes an interesting new proposal. The R (R Development
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Core Team 2006) package relaimpo (Grömping 2006) implements six different methods for
assessing relative importance in linear regression. Among these, the averaging over order-
ings proposed by Lindeman, Merenda and Gold (lmg) and the newly proposed method by
Feldman (pmvd) are the most computer-intensive and are also the recommended methods.
relaimpo is the first R package to provide pmvd, while lmg has already been available in R
package hier.part. relaimpo offers advantages over hier.part in terms of computation time
and bootstrap confidence intervals.

Achen (1982) has introduced a distinction between “dispersion importance”, i.e., importance
relating to the amount of explained variance, “level importance”, i.e., importance of each
regressor for the response’s mean, or “theoretical importance” i.e., change in the response
for a given change in the regressor. The focus in relaimpo is on metrics for “dispersion
importance”. Also focussing on dispersion importance, Johnson and Lebreton (2004) define
relative importance as ”the proportionate contribution each predictor makes to R2, considering
both its direct effect (i.e., its correlation with the criterion) and its effect when combined with
the other variables in the regression equation”. This definition still leaves room for debate on
which metrics are useful. However, it rules out some simple metrics immediately.

Section 2 of this paper briefly introduces the example data set swiss that is used for illus-
trating the methods and features of relaimpo. Section 3 presents the linear model and the
relative importance metrics covered in relaimpo, and explains how calculations can be done
based on the empirical covariance matrix of the data. Formulae are supported by example
calculations for the data set swiss. Section 4 briefly discusses how to bootstrap regression
models. The most important features of relaimpo are covered in Section 5. Section 6 compares
relaimpo to other R packages concerned with relative importance, and computation times of
the computer-intensive metrics are discussed in Section 7. The “Final remarks” section sum-
marizes the most important elements of the paper and gives an outlook on intended future
developments.

2. The example data set

When working with R, the dataset swiss is in the search path per default. A description
of the variables in this dataset can be obtained by typing ?swiss into the R console, and
plot(swiss) provides a quick overview of the data. The dataset has 47 observations (French-
speaking swiss provinces) on 6 variables, the response is a fertility index (Fertility), and
the following regressors are available:

Agriculture is the percentage of males working in agriculture,

Examination is the percentage of draftees getting highest mark on an army exam,

Education is the percentage of draftees having more than primary school education,

Catholic is the percentage of catholics in the population (as opposed to protestant chris-
tians),

Infant.Mortality is the percentage of live births who die within the first year.

This dataset is useful for demonstrating differences between relative importance approaches,
since different perspectives yield different assessments of relative importance, in particular
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with respect to the influence of the variable Examination. This phenomenon is the conse-
quence of multicollinearity:

> cor(swiss)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Fertility 1.0000000 0.35307918 -0.6458827 -0.66378886 0.4636847 0.41655603

Agriculture 0.3530792 1.00000000 -0.6865422 -0.63952252 0.4010951 -0.06085861

Examination -0.6458827 -0.68654221 1.0000000 0.69841530 -0.5727418 -0.11402160

Education -0.6637889 -0.63952252 0.6984153 1.00000000 -0.1538589 -0.09932185

Catholic 0.4636847 0.40109505 -0.5727418 -0.15385892 1.0000000 0.17549591

Infant.Mortality 0.4165560 -0.06085861 -0.1140216 -0.09932185 0.1754959 1.00000000

Examination has a relatively high positive correlation with Education, and both these vari-
ables have a relatively high negative correlation with Agriculture, Examination is also neg-
atively correlated with Catholic. This structure leads to the strong dependence of allocation
of relative importance on the way of looking at the matter.

3. The linear model and the relative importance metrics

A linear model with an intercept can be written as

yi = β0 + xi1β1 + · · ·+ xipβp + ei. (1)

The response of object i is modelled as a linear function of regressor values xi1, . . . , xip, with
unknown coefficients β1, . . . , βp, and ei represents the unexplained part. For the example,
p = 5 regressors are available for explaining the response Fertility.

In linear regression, the coefficients βk, k = 0, . . . , p, are estimated by minimizing the sum
of squared unexplained parts. If we denote the estimated coefficients as β̂k and the fitted
response values as ŷi = β̂0 + xi1β̂1 + · · · + xipβ̂p, the coefficient of determination R2 can be
written as

R2 =
Model SS
Total SS

=
∑n

i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

. (2)

R2 measures the proportion of variation in y that is explained by the p regressors in the
model.

The following output shows the linear regression results for the example data:

> linmod <- lm(Fertility ~ ., data = swiss)

> summary(linmod)

Call:
lm(formula = Fertility ~ ., data = swiss)

Residuals:
Min 1Q Median 3Q Max

-15.2743 -5.2617 0.5032 4.1198 15.3213

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546
Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-Squared: 0.7067, Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

We see that R2 is 70.67% and that all regressors except Examination are significant in this
model, with Fertility increasing for higher Infant.Mortality and higher proportion of
Catholics and Fertility decreasing for higher values for Agriculture, Education and
Examination. This is somewhat in line with expectations, though the direction of the effect
of Agriculture might come as a surprise.
Note that the stored linear model object linmod will be used in many subsequent calculations.
Initially, all six metrics available in relaimpo are calculated:

> metrics <- calc.relimp(linmod, type = c("lmg", "pmvd", "first", "last",

+ "betasq", "pratt"))

> metrics

Response variable: Fertility
Total response variance: 156.0425
Analysis based on 47 observations

5 Regressors: Agriculture Examination Education Catholic Infant.Mortality
Proportion of variance explained by model: 70.67%
Metrics are not normalized (rela=FALSE).

Relative importance metrics:

lmg pmvd last first betasq pratt
Agriculture 0.05709122 0.04478517 0.042869607 0.1246649 0.09791973 -0.1104860
Examination 0.17117303 0.04446868 0.007387419 0.4171645 0.02715186 0.1064274
Education 0.26013468 0.37981877 0.161962693 0.4406156 0.44943721 0.4450046
Catholic 0.10557015 0.13433174 0.062372626 0.2150035 0.12082578 0.1611768
Infant.Mortality 0.11276592 0.10333064 0.056945259 0.1735189 0.06306928 0.1046122

The rationale of these metrics is explained in the following two sub sections.

3.1. Simple relative importance metrics

The metric first

One way of looking at relative importance is to compare, what each regressor alone is able
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to explain, i.e., to compare the R2-values from p regression models with one regressor only.
These univariate R2-values are identical to the squared correlations of the regressors with the
response. They are available in relaimpo under the name first. If regressors are correlated,
the sum of these individual contributions is often far higher than the overall R2 of the model
with all regressors together, i.e., the overall model explains less than the sum of all individual
models. This is also the case for the example data:

> cor(swiss[, 1], swiss[, 2:6])^2

Agriculture Examination Education Catholic Infant.Mortality
[1,] 0.1246649 0.4171645 0.4406156 0.2150035 0.1735189

> metrics$first

Agriculture Examination Education Catholic Infant.Mortality
0.1246649 0.4171645 0.4406156 0.2150035 0.1735189

Note that Examination, the only insignificant variable in the linear model, looks second most
important, when using this metric. first is the only metric that is completely ignorant of
the other regressors in the model, no adjustment takes place. Thus, this metric does not
comply with the definition of relative importance by Johnson and Lebreton (2004), in that
it only uses the direct effect. Also, it is not suitable for decomposing R2 into contributions
from individual regressors, since the contributions do not naturally add up to R2.

The metric last

Another way of looking at relative importance is to compare, what each regressor is able
to explain in addition to all other regressors that are available. Here, we ascribe to each
regressor the increase in R2 when including this regressor as the last of the p regressors. This
approach is implemented in relaimpo under the name last. If regressors are correlated, these
contributions again do not add up to the overall R2, but typically add up to far less than the
overall R2. A direct calculation from a linear model in R can be obtained using the function
drop1. (The sums of squares calculated by this function are known to SAS users as type III
SS.)

> drop1(linmod)

Single term deletions

Model:
Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality
Df Sum of Sq RSS AIC

<none> 2105.0 190.7
Agriculture 1 307.7 2412.8 195.1
Examination 1 53.0 2158.1 189.9
Education 1 1162.6 3267.6 209.4
Catholic 1 447.7 2552.8 197.8
Infant.Mortality 1 408.8 2513.8 197.0
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Note that the output of the function calc.relimp is identical to the type III SS divided by
the total sum of squares

∑n
i=1(yi − ȳ)2:

> TotalSS <- (nrow(swiss) - 1) * var(swiss$Fertility)

> drop1(linmod)$"Sum of Sq"[2:6]/TotalSS

[1] 0.042869607 0.007387419 0.161962693 0.062372626 0.056945259

> metrics$last

Agriculture Examination Education Catholic Infant.Mortality
0.042869607 0.007387419 0.161962693 0.062372626 0.056945259

For the metric last, like in significance testing, Examination comes out particularly low.
This is not surprising, since the relation between regressors in terms of last is identical to
the relation between regressors in terms of t-test statistics (cf. e.g., Bring 1996). The metric
last has also been called“usefulness”by Darlington (1968), who also notes that basing relative
importance considerations on this metric is close to using siginificance testing for assessing
importance. Again, the contributions do not naturally decompose R2. Also, the metric does
again not comply with the definition of relative importance by Johnson and Lebreton (2004),
in that it does not at all use the direct effect.

The metric betasq

A further approach to assessing individual contributions consists in considering standardized
coefficients. The regressors in data set swiss are all percentages scaled from 0 to 100 (though
most of them do not use the full scale). Imagine that one regressor is rescaled from the
0-100 scale to a 0-1 scale. Obviously, if nothing else changes, the respective coefficient has to
be multiplied by the factor 100 in order to adjust for the change. Likewise, if the response
Fertility were rescaled from the scale 0 to 100 to the scale 0 to 1, all β’s would have to be
divided by the factor 100 in order to adjust for this rescaling. Standardized coefficients are
introduced as scale-invariant versions of the coefficients, by adjusting with estimated standard
deviations:

β̂k,standardized = β̂k

√
skk√
syy

, (3)

where skk and syy denote the empirical variances of regressor xk and the response y respec-
tively. (As long as one only compares regressors within models for the same response y,
division by

√
(syy) is irrelevant.) The squared standardized coefficient has been proposed as

a metric for relative importance. It is available in relaimpo as betasq.

> sx <- as.numeric(lapply(swiss[, 2:6], "sd"))

> (linmod$coefficients[2:6] * sx/sd(swiss$Fertility))^2

Agriculture Examination Education Catholic Infant.Mortality
0.09791973 0.02715186 0.44943721 0.12082578 0.06306928

> metrics$betasq
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Agriculture Examination Education Catholic Infant.Mortality
0.09791973 0.02715186 0.44943721 0.12082578 0.06306928

Bring (1996) cites an ongoing debate about whether or not this metric is appropriate for
relative importance considerations. Johnson and Lebreton (2004) criticize standardized co-
efficients, because they take too little acount of the direct effect. Whatever stand one takes
in the debate, if interest is in decomposing R2, betasq is not an appropriate metric, since it
does not provide a natural decomposition of R2.

The metric pratt

Hoffman (1960) proposed to multiply the standardized coefficient with the marginal corre-
lation. Since the sum of these products over all regressors is just the overall R2, he consid-
ered this metric a natural decomposition of R2. This proposal has been criticized and even
ridiculed, but has found a powerful defender in Pratt (1987) and is therefore included in
relaimpo under the name pratt.

> sx <- as.numeric(lapply(swiss[, 2:6], "sd"))

> (linmod$coefficients[2:6] * sx/sd(swiss$Fertility)) * cor(swiss$Fertility,

+ swiss[, 2:6])

Agriculture Examination Education Catholic Infant.Mortality
[1,] -0.110486 0.1064274 0.4450046 0.1611768 0.1046122

> metrics$pratt

Agriculture Examination Education Catholic Infant.Mortality
-0.1104860 0.1064274 0.4450046 0.1611768 0.1046122

Although Pratt (1987) found some interesting properties of the metric (cf. also Johnson and
Lebreton 2004), several researchers have brought forward quite counterintuitive examples
(e.g., Bring 1996), and the main criticism in the context of decomposing R2 is that the metric
can allocate negative contributions (as for Agriculture in the example data). Even Pratt
says that the metric is not usable in this case, so that this metric is only applicable in some
but not all situations. Because of this property, the present author does not recommend this
metric.
Thus, the chapter of simple metrics has not offered anything that yields a useful (=at least non-
negative) natural decomposition of R2, although some of the metrics - especially combinations
of several metrics - can provide insights regarding the contributions of regressors.

3.2. Computer-intensive relative importance metrics

The following metrics, lmg and pmvd, require far more computational effort. Both these
metrics decompose R2 into non-negative contributions that automatically sum to the total
R2. This is an advantage they have over all simple metrics.
The difficulty in decomposing R2 for regression models with correlated regressors lies in the
fact that each order of regressors yields a different decomposition of the model sum of squares,
which is illustrated below:
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> anova(linmod)

Analysis of Variance Table

Response: Fertility
Df Sum Sq Mean Sq F value Pr(>F)

Agriculture 1 894.84 894.84 17.4288 0.0001515 ***
Examination 1 2210.38 2210.38 43.0516 6.885e-08 ***
Education 1 891.81 891.81 17.3699 0.0001549 ***
Catholic 1 667.13 667.13 12.9937 0.0008387 ***
Infant.Mortality 1 408.75 408.75 7.9612 0.0073357 **
Residuals 41 2105.04 51.34
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> reverse <- anova(lm(Fertility ~ Infant.Mortality + Catholic + Education +

+ Examination + Agriculture, data = swiss))

> reverse

Analysis of Variance Table

Response: Fertility
Df Sum Sq Mean Sq F value Pr(>F)

Infant.Mortality 1 1245.51 1245.51 24.2589 1.426e-05 ***
Catholic 1 1129.82 1129.82 22.0055 3.013e-05 ***
Education 1 2380.38 2380.38 46.3628 3.068e-08 ***
Examination 1 9.49 9.49 0.1848 0.66956
Agriculture 1 307.72 307.72 5.9934 0.01873 *
Residuals 41 2105.04 51.34
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In R, the command anova provides sequential sums of squares. “Sequential”means that the re-
gressors are entered into the model in the order they are listed. The sequential sums of squares
of all regressors do sum to the model sum of squares (in this example 5072.91 or 70.67% of
the total response sum of squares of

∑n
i=1(yi − ȳ)2=7177.96). Division of sequential sums of

squares by the total response sum of squares yields sequential R2 contributions. The example
above shows that the order of regressors can have a very strong impact on the relative im-
portance assessment: for example, Agriculture and Infant.Mortality receive about three
times the share when entered first in comparison to when entered last into the model. The
discrepancy between the two orders is particularly striking for Examination which receives
the largest share for one of the orders and the smallest share for the other one. Obviously,
unless there is a meaningful prior knowledge that prompts a natural order among variables,
an approach based on the sequential R2 of one fixed order of regressors is not appropriate
for judging relative importance. Sometimes, applied researchers apply stepwise regression
and decompose R2 based on the order obtained by this automatic approach. Even though
this approach relieves the researcher from the burden to decide on an arbitrary ordering, the
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automatic decision is not so much less arbitrary and is therefore not recommended (cf. also
Bring 1996, and references therein).

The approach taken by the metrics lmg and pmvd is based on sequential R2s, but takes care of
the dependence on orderings by averaging over orderings, either using simple unweighted av-
erages (lmg) or weighted averages with data-dependent weights (pmvd). First, the approaches
are formally described giving the formulae for their calculation, then the functioning of both
approaches is illustrated using the swiss data.

For describing the metrics, the following notations are useful: The R2 for a model with
regressors in set S is given as

R2(S) =
Model SS(model with regressors in S)

Total SS
. (4)

The additional R2 when adding the regressors in set M to a model with the regressors in set
S is given as

seqR2(M |S) = R2(M∪S)−R2(S). (5)

The order of the regressors in any model is a permutation of the available regressors x1, . . . , xp

and is denoted by the tuple of indices r = (r1, . . . , rp). Let Sk(r) denote the set of regressors
entered into the model before regressor xk in the order r. Then the portion of R2 allocated
to regressor xk in the order r can be written as

seqR2 ({xk}|Sk(r)) = R2 ({xk} ∪ Sk(r))−R2 (Sk(r)) . (6)

The metric lmg

With (6), the metric lmg (in formulae denoted as LMG) can be written as

LMG(xk) =
1
p!

∑
r permutation

seqR2({xk}|r). (7)

Orders with the same Sk(r) = S can be summarized into one summand, which simplifies the
formula into

LMG(xk) =
1
p!

∑
S⊆{x1,...,xp}\{xk}

n(S)!(p− n(S)− 1)!seqR2({xk}|S).

Christensen (1992) has shown that this metric can also be written in a different way that
some people consider to be more intuitive:

LMG(xk) =
1
p

p−1∑
j=0

 ∑
S⊆{x1,...,xp}\{xk}

n(S)=j

seqR2({xk}|S)(
p−1

i

)
 .

This formula shows lmg as the average over average contributions in models of different sizes.
From a heuristic and ad-hoc perspective, unweighted averaging is a natural thing to do, so that
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lmg has been adopted or reinvented by many researchers. The very popular paper by Chevan
and Sutherland (1991) has coined the expression “hierarchical partitioning” and has extended
the idea to other regression models, and the R package hier.part implements this proposal
(cf. also Section 6). The metric lmg has nevertheless not made it into the mainstream of
applied statistical analysis (with possible exceptions in some special fields of application),
which may be due to both computational burden and lack of understanding what is really
calculated. Johnson and Lebreton (2004) recommend lmg, since it clearly uses both direct
effects (orders with xk first) and effects adjusted for other regressors in the model (orders
with xk last). Given the current choices of metrics for relative importance, the present author
also recommends lmg, particularly if interest is in decomposing R2.

The metric pmvd1

It is known and not surprising (cf. e.g., Feldman 2005) that the lmg contribution of a regressor
with coefficient 0 can be positive, if this regressor is correlated with one or more strong
contributors. Feldman considers this as a disadvantage of the lmg allocations. He introduces
the metric PMVD (denoted throughout the text of this paper with its relaimpo name pmvd,
in formulae as PMVD) in order to cure this disadvantage: Per construction, pmvd guarantees
that a regressor with 0 estimated coefficient is assigned a relative importance of 0, and - more
important - that the allocated contribution asymptotically approaches 0 if the true coefficient
is 0. As mentioned before, pmvd can be seen as an average over orderings as well, but with
data-dependent weights for each order:

PMVD(xk) =
1
p!

∑
r permutation

p(r)seqR2({xk}|r), (8)

where p(r) denotes the data-dependent pmvd weights that will be discussed in the following.
Note that formula (8) is not used for computation; there is a more efficient computation
approach that exploits a game-theoretic background of pmvd (cf. Feldman 2005). Regarding
the weights in formula (8), Feldman’s (2005) idea was to use the sequences

seqR2({xrk+1
, . . . , xrp}|{xr1 , . . . , xrk

}), k = 1, . . . , p− 1

for determining the weights of all orders r. The weights have been derived from a set of
axioms the most important of which is the axiom of proper exclusion that requires that a
regressor with actual coefficient 0 should also be allocated an R2 share of 0. The weights
obtained are proportional to

L(r) =
p−1∏
i=1

seqR2({xri+1 , . . . , xrp}|{xr1 , . . . , xri})−1,

i.e., the weights are

p(r) =
L(r)∑

r permutation L(r)
.

A careful look at the L(r) reveals that the factors increase with increasing i. L(r) will be
particularly large, if the first regressor already captures a very substantial amount of the

1In the US, pmvd is potentially protected by US patent 6,640,204. It is therefore available for non-US users
only from the author’s website (cf. also Appendix A).
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variance, or if the last regressor captures only a very small amount of the variance. (If the
last regressor(s) do(es) not capture any variance (estimated coefficient(s) 0), L(r) is infinite,
but the situation is nevertheless well-behaved: Feldman shows via limiting considerations that
the weights are only positive for orders with all 0 coefficient regressors last, which leads to a
share of 0 for these regressors, as desired.)

Note that pmvd’s property of assigning a zero share to regressors with coefficient 0 comes at the
price of a large variability in allocated contributions for many applications (exemplified e.g. in
Figure 2). This is due to basing the weights on the potentially very variable order-dependent
empirical sequential R2 allocations. pmvd weights can be seen as a compromise between
the equal weights of lmg and the (inappropriate) approach of basing relative importance
assessments on one order determined by an automatic variable selection procedure (data-
dependent weight 1 on one order). Given the currently available choices, pmvd is one of
the two metrics that come closest to Johnson and Lebreton’s (2004) reasonable definition of
relative importance so that its use can be recommended, perhaps in comparison with lmg
(but see also the subsection on the exclusion property on page 11).

Comparison of lmg and pmvd on two examples

Table 1 shows a comparison of pmvd and lmg for two different four-regressor models for the
swiss data: One model omits the regressor Agriculture, the other the regressor Examination.
Hence, there are 24 orders of the four regressors in each of the models, so that it is feasi-
ble to show all the allocated sequential R2s and the pmvd weights. In the example with
Agriculture omitted, the pmvd weights are very concentrated on a few orders: the orders
with Examination last are the only ones that receive a weight of more than 1% (bold-face
weights). This is the reason that the pmvd share for Examination is so much lower than the
lmg share. In the example with Examination omitted the weights are far more balanced,
orders with Agriculture or Infant.Mortality last are the ones that tend to receive the
higher weights, orders with low allocations for Education receive a low weight.

Is pmvd’s property “exclusion” desirable?

Feldman (2005) specifically constructs pmvd to allocate a share of zero to any regressor with
coefficient zero (called “exclusion”). However, lmg’s property of allowing correlated regres-
sors to benefit from each other’s shares does have a plausible background, at least for some
purposes. Consider the linear model

yi = β0 + xi1β1 + xi2β2 + ei (9)

based on the causal chain (assuming linear relations)

x1 −→ x2 −→ y. (10)

In this linear model, β1 is zero. For prediction purposes, x1 does not contribute anything, once
x2 is known. Thus, the request for a zero allocated share for x1 seems reasonable. However,
if one is interested in relative importance from a causal perspective, x1’s contribution should
not be zero in spite of its zero coefficient. The linear model equation (9) is compatible with
different types of underlying causal structures, among them the structure (10), for which a 0
coefficient for x1 does not imply no causal influence of x1. Model uncertainty increases with
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Agriculture omitted Examination omitted
Allocated R2 (Total 66.39%) Allocated R2 (Total 69.93%)

pmvd 1 2 3 4 pmvd 1 2 3 4
Order weight Exam Educ Cath Infa weight Agri Educ Cath Infa
1234 0.0024 41.72 8.83 6.94 8.90 0.0255 12.47 32.46 19.30 5.71
2134 0.0026 6.49 44.06 6.94 8.90 0.0567 0.86 44.06 19.30 5.71
2314 0.0046 0.03 44.06 13.39 8.90 0.1136 6.77 44.06 13.39 5.71
1324 0.0016 41.72 14.46 1.31 8.90 0.0142 12.47 39.40 12.36 5.71
3124 0.0009 21.52 14.46 21.50 8.90 0.0168 3.33 39.40 21.50 5.71
3214 0.0023 0.03 35.95 21.50 8.90 0.0607 6.77 35.95 21.50 5.71
2341 0.3097 0.13 44.06 13.39 8.80 0.1763 3.68 44.06 13.39 8.80
1342 0.0012 41.72 12.29 1.31 11.07 0.0026 12.47 31.35 12.36 13.76
3142 0.0006 21.52 12.29 21.50 11.07 0.0031 3.33 31.35 21.50 13.76
3241 0.1540 0.13 35.95 21.50 8.80 0.0942 3.68 35.95 21.50 8.80
1243 0.0047 41.72 8.83 4.48 11.36 0.0109 12.47 32.46 13.33 11.68
2143 0.0052 6.49 44.06 4.48 11.36 0.0243 0.86 44.06 13.33 11.68
3412 0.0004 21.00 12.29 21.50 11.59 0.0038 5.50 31.35 21.50 11.59
3421 0.0414 0.13 33.16 21.50 11.59 0.0319 3.68 33.16 21.50 11.59
1423 0.0058 41.72 8.28 4.48 11.91 0.0072 12.47 24.88 13.33 19.26
2413 0.0082 5.43 44.06 4.48 12.42 0.0452 0.13 44.06 13.33 12.42
2431 0.2793 0.13 44.06 9.78 12.42 0.1635 3.68 44.06 9.78 12.42
1432 0.0021 41.72 12.29 0.47 11.91 0.0030 12.47 31.35 6.86 19.26
4123 0.0029 36.28 8.28 4.48 17.35 0.0078 14.37 24.88 13.33 17.35
4213 0.0038 5.43 39.13 4.48 17.35 0.0222 0.13 39.13 13.33 17.35
4231 0.1272 0.13 39.13 9.78 17.35 0.0805 3.68 39.13 9.78 17.35
4132 0.0011 36.28 12.29 0.47 17.35 0.0033 14.37 31.35 6.86 17.35
4312 0.0004 21.00 12.29 15.74 17.35 0.0035 5.50 31.35 15.74 17.35
4321 0.0378 0.13 33.16 15.74 17.35 0.0294 3.68 33.16 15.74 17.35

pmvd 1.17 40.47 13.25 11.49 pmvd 4.43 40.53 14.71 10.26
lmg 18.03 25.74 10.46 12.16 lmg 6.62 35.93 15.16 12.22

Table 1: Orders, pmvd weights and R2s for two reduced examples.

increasing correlation among regressors, so that lmg’s property of allowing correlated regres-
sors to benefit from each other’s shares can be seen as a way to take care about uncertainty
of information regarding the true underlying structure. Hence, particularly when the focus of
the research is more on causal than on predictive importance, lmg’s behaviour appears to be
more appropriate than pmvd’s.

3.3. Calculating relative importances based on the covariance matrix

In the previous section, computer-intensive methods have been discussed. If computing time
is an issue, it can be helpful to reconsider calculation methods developed when computers
were not widely available. Old textbooks on linear regression provide methods to calculate
most regression results from the (p + 1)× (p + 1) covariance matrix S of the response y and
the p regressors that are in this section denoted by a 1 × p-row vector x. Following e.g.,
Lindeman, Merenda, and Gold (1980, p. 103 ff), the relevant formulae are outlined below.
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This sub section is meant for readers who want to dive into the calculations done in relaimpo.

Defining variances and covariances as

syy =
1

n− 1

n∑
i=1

(yi − ȳ)2,

sjk =
1

n− 1

n∑
i=1

(xij − x̄.j)(xik − x̄.k)

and

syk = sky =
1

n− 1

n∑
i=1

(xik − x̄.k)(yi − ȳ),

where x̄.j denotes the arithmetic mean of the j-th regressor, the corresponding variance-
covariance matrices can be defined as

Sxx = (sjk) j=1,...,p
k=1,...,p

,

Sxy = (sky)k=1,...,p, Syx = ST
xy,

and can be combined into the overall variance-covariance matrix as

S =

[
syy Syx

Sxy Sxx

]
.

The estimated coefficients for regressors x1, . . . , xp in model (1) can be calculated as

β̂1,...,p = S−1
xxSxy

(the coefficient β0 is irrelevant for relative importance), and the unexplained variance of the
response is obtained as

syy − SyxS−1
xxSxy. (11)

The coefficient of determination R2 from regressing y on x can thus be obtained as

R2 =
SyxS−1

xxSxy

syy
. (12)

If the regressors in x are partitioned into two groups x1 and x2, i.e., the variance covariance
matrix is partitioned as

S =


syy Syx2 Syx1

Sx2y Sx2x2 Sx2x1

Sx1y Sx1x2 Sx1x1

, (13)

the unexplained variance-covariance matrix of y and x2 after adjusting for x1 can be calculated
as (

syy Syx2

Sx2y Sx2x2

)
−

(
Syx1

Sx2x1

)
S−1

x1x1

(
Sx1y

Sx1x2

)T

. (14)
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Note that (14) is the inverse of the appropriately-sized top left block of S−1 with S partitioned
as shown in (13). The top left element of (14) is the unexplained variance of the response
y after regressing y on x1. Hence, the difference between the top left element of (14) and
the unexplained variance (11) from the full model divided by syy is the sequential R2 when
adding the regressors in x2 to the model in addition to the regressors in x1 (seqR2(x2|x1)
when identifying x1 and x2 with the sets of regressors contained in them, cf. (5)). Note that
all relevant calculations for sequential linear models can be based on the variance-covariance
matrix and its conditional forms according to the formulae given in this section, i.e., after
calculation of the variance-covariance matrix, no further calculations with all observations are
needed. Thus, calc.relimp can also be applied to a variance-covariance matrix directly, as
documented with package relaimpo.

4. Bootstrapping regression models

So far, point estimates for R2 decompositions have been obtained. In order to assess, which
regressors are clearly different and which are similar in terms of relative importance, variability
of the estimates needs to be estimated. In particular the computer-intensive metrics lmg and
pmvd are not easily tackled by proper distributional results (even if there is a distributional
result on lmg for multivariate normal data, cf. e.g., Budescu (1993)). Therefore, relaimpo
provides a bootstrapping facility for assessing the variability of all metrics.

When bootstrapping regression models, there are two principally different reasonable ap-
proaches (cf. e.g., Davison and Hinkley 1997; Fox 2002): The regressors can be considered
fixed in some situations, e.g., for experimental data. In our data example, where the fixed
set of all French-speaking swiss provinces is investigated, it can also be justified to work with
fixed regressors. If regressors are considered fixed, only the error terms are random. Con-
trary, in most relative importance investigations, it makes far more sense to consider also the
regressors as random, since the observations are a random sample from a larger population.
These two scenarii prompt two different approaches for bootstrapping.

For fixed regressors, bootstrapping is based on repeated sampling from the residuals of the
regression model. For random regressors, the complete observation rows - consisting of re-
gressors and response - are resampled. Typically, bootstrapping for fixed regressors yields
somewhat narrower confidence intervals than bootstrapping for random regressors. For ex-
ample, consider the 95%-bootstrap confidence intervals for lmg shares in the swiss dataset:

> fixedlmg <- booteval.relimp(boot.relimp(linmod, b = 1000, fixed = TRUE),

+ bty = "perc", level = 0.95)

> randomlmg <- booteval.relimp(boot.relimp(linmod, b = 1000), bty = "perc",

+ level = 0.95)

> output <- rbind(fixedlmg$lmg.lower, fixedlmg$lmg.upper,

+ randomlmg$lmg.lower, randomlmg$lmg.upper)

> output <- as.matrix(t(output))

> colnames(output) <- c("fixed.lower", "fixed.upper", "random.lower",

+ "random.upper")

> rownames(output) <- c(fixedlmg$namen[2:6])

> output
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fixed.lower fixed.upper random.lower random.upper
Agriculture 0.04687450 0.08840079 0.03167901 0.1138819
Examination 0.11227899 0.26490901 0.08973842 0.2889251
Education 0.16903735 0.37788122 0.06980345 0.3844111
Catholic 0.04593381 0.19673048 0.03704190 0.2396492
Infant.Mortality 0.03533646 0.21817709 0.02973998 0.2380548

If results are to apply to an overall population of which the present data are a random sample,
bootstrapping for random regressors is the appropriate choice. Also note that bootstrapping
for fixed regressors is more vulnerable to model misspecification and requires the error vari-
ances to be constant (cf. e.g., Davison and Hinkley 1997).
Bootstrapping in relaimpo is done using the functions boot and boot.ci from R package boot.
R package boot is based on the book by Davison and Hinkley (1997). Percentile intervals,
BCa intervals, normal intervals and basic intervals are supported (default: BCa intervals,
except for ranks for which intervals are always percentile intervals).

5. Features of the package relaimpo

5.1. Forced to percentages: rela=TRUE

All metrics come in two different versions: so far, we have discussed the natural scale of each
metric. relaimpo allows to force metrics to sum to 100% (instead of R2 or no meaningful
sum). This is achieved by the option rela=TRUE. The default is rela=FALSE.

> calc.relimp(linmod, type = c("lmg", "pmvd"), rela = TRUE)

Response variable: Fertility
Total response variance: 156.0425
Analysis based on 47 observations

5 Regressors: Agriculture Examination Education Catholic Infant.Mortality
Proportion of variance explained by model: 70.67%
Metrics are normalized to sum to 100% (rela=TRUE).

Relative importance metrics:

lmg pmvd
Agriculture 0.08078165 0.06336911
Examination 0.24220256 0.06292130
Education 0.36807952 0.53742742
Catholic 0.14937728 0.19007370
Infant.Mortality 0.15955899 0.14620846

5.2. Adjustment: Some regressors always stay in the model

In many applications, some influences have to be included into the model and are not meant to
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compete with the other influences, e.g., gender in epidemiological or marketing applications.
If one wants to include these influences first and only decompose the remaining R2 among the
remaining regressors, this can be achieved by the option always. In the swiss example, there
is no natural variable one would want to treat like this. Purely for demonstration purposes,
Catholic is now forced to be always first:

> calc.relimp(linmod, type = c("lmg", "pmvd"), always = "Catholic")

Response variable: Fertility
Total response variance: 156.0425
Analysis based on 47 observations

5 Regressors:
Proportion of variance explained: 70.67%

One Regressor always included in model:
Catholic
21.5 % of variance explained by this regressor

Relative importance of 4 regressors assessed:
Agriculture Examination Education Infant.Mortality
49.17 % of variance decomposed among these

Metrics are not normalized (rela=FALSE).

Relative importance metrics:

lmg pmvd
Agriculture 0.04021013 0.04643858
Examination 0.10365086 0.01535452
Education 0.25622307 0.34780386
Infant.Mortality 0.09164744 0.08213453

5.3. Treatment of missing values

If functions calc.relimp or boot.relimp are applied to a formula object, the option na.action
is available and will work like usual in R. If nothing is specified in the function call, the overall
setting of na.action (that can be viewed by options("na.action")) will be applied. For ob-
jects other than formula objects, relaimpo bases all analyses on complete cases only. Whenever
observations are deleted because of missing values, a warning is printed.

5.4. Bootstrapping

A call to the function boot.relimp2 requests bootstrap runs the results of which are stored
2Warning: If you try out the code of this sub section yourself, note that b=1000 requires a little patience.

For simple code-checking, you may want to choose a smaller number for b. It is a good idea to always set b

explicitly, default is b=1000.
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in an object of class relimplmboot. Afterwards, the result object can be (repeatedly) eval-
uated with the function booteval.relimp. booteval.relimp works on the output from
boot.relimp and allows among other things selection of a subset of the metrics, selection
of one or several confidence levels and suppression of confidence intervals for differences or
ranks.

> bootresult <- boot.relimp(linmod, b = 1000, type = c("lmg", "pmvd", "last",

+ "first"), fixed = FALSE)

Bootstrapping makes computation times a real issue, if many bootstrap runs are required
(cf. also Section 7). The recommended BCa bootstrap intervals require a substantial num-
ber of bootstrap runs (default b=1000 should not be decreased, cf. e.g., Hesterberg, Moore,
Monaghan, Clipson, and Epstein 2005) and are themselves slow to calculate. It may be an
alternative to work with percentile confidence intervals (always used for ranks) or normal
distribution based confidence intervals in order to get at least an indication of variability.
Coverage probabilities for percentile confidence intervals with b=1000 and normal confidence
intervals with b=200 have been investigated in some simulations and have proven to be some-
what liberal (non-coverage up to twice nominal level). For this reason, the output contains
a warning that bootstrap confidence intervals can be somewhat liberal. Performance of BCa
intervals has not been simulated (since they take so much longer); they might well perform
better, if calculated from a large enough number of bootstrap resamples.

5.5. Bootstrap confidence intervals for ranks and their visualization

In many applications, the main interest is a ranking of regressors. Rankings of regressors can
obviously be obtained by comparing the allocated shares. In order to assess stability of the
ranking, bootstrap confidence intervals for ranks are provided (always percentile intervals).
Rank bootstrap intervals are visualized by a lettering system.

> booteval.relimp(bootresult, typesel = c("lmg", "pmvd"), level = 0.9,

+ bty = "perc", nodiff = TRUE)

Response variable: Fertility
Total response variance: 156.0425
Analysis based on 47 observations

5 Regressors: Agriculture Examination Education Catholic Infant.Mortality
Proportion of variance explained by model: 70.67%
Metrics are not normalized (rela=FALSE).

Relative importance metrics:

lmg pmvd
Agriculture 0.05709122 0.04478517
Examination 0.17117303 0.04446868
Education 0.26013468 0.37981877
Catholic 0.10557015 0.13433174
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Infant.Mortality 0.11276592 0.10333064

Confidence interval information ( 1000 bootstrap replicates, bty= perc ):
Relative Contributions with confidence intervals:

Lower Upper
percentage 0.9 0.9 0.9

Agriculture.lmg 0.0570 __CDE 0.0359 0.1034
Examination.lmg 0.1711 ABCD_ 0.1042 0.2625
Education.lmg 0.2601 ABCD_ 0.0915 0.3724
Catholic.lmg 0.1055 ABCDE 0.0388 0.2195
Infant.Mortality.lmg 0.1127 ABCDE 0.0407 0.2269

Agriculture.pmvd 0.0447 __CDE 0.0099 0.0925
Examination.pmvd 0.0444 ABCDE 0.0005 0.3438
Education.pmvd 0.3798 ABCD_ 0.0561 0.5763
Catholic.pmvd 0.1343 ABCDE 0.0244 0.2956
Infant.Mortality.pmvd 0.1033 _BCDE 0.0098 0.2532

Letters indicate the ranks covered by bootstrap CIs.
(Rank bootstrap confidence intervals always obtained by percentile method)
CAUTION: Bootstrap confidence intervals can be somewhat liberal.

Lettering shows that Education cannot be in the last position, while Agriculture can be in
the last three positions only for both metrics. Furthermore, Examination cannot be in the
last position for lmg (no restriction for pmvd), while Infant.Mortality cannot be in the first
position for pmvd (no restriction for lmg). Note that lmg confidence intervals are contained in
pmvd confidence intervals for all variables but Agriculture in this example, which exemplifies
the fact that pmvd is a more variable metric than lmg under many circumstances, as was
already mentioned earlier.

5.6. Bootstrap confidence intervals for differences

If there is a detailed interest in the comparison of relative importances for pairs of regressors,
confidence intervals for differences may be of interest.

> eval <- booteval.relimp(bootresult, typesel = c("lmg", "pmvd"), level = 0.9,

+ bty = "perc", norank = TRUE)

> eval

Response variable: Fertility
Total response variance: 156.0425
Analysis based on 47 observations

5 Regressors: Agriculture Examination Education Catholic Infant.Mortality
Proportion of variance explained by model: 70.67%
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Metrics are not normalized (rela=FALSE).

Relative importance metrics:

lmg pmvd
Agriculture 0.05709122 0.04478517
Examination 0.17117303 0.04446868
Education 0.26013468 0.37981877
Catholic 0.10557015 0.13433174
Infant.Mortality 0.11276592 0.10333064

Confidence interval information ( 1000 bootstrap replicates, bty= perc ):
Relative Contributions with confidence intervals:

Lower Upper
percentage 0.9 0.9

Agriculture.lmg 0.0570 0.0359 0.1034
Examination.lmg 0.1711 0.1042 0.2625
Education.lmg 0.2601 0.0915 0.3724
Catholic.lmg 0.1055 0.0388 0.2195
Infant.Mortality.lmg 0.1127 0.0407 0.2269

Agriculture.pmvd 0.0447 0.0099 0.0925
Examination.pmvd 0.0444 0.0005 0.3438
Education.pmvd 0.3798 0.0561 0.5763
Catholic.pmvd 0.1343 0.0244 0.2956
Infant.Mortality.pmvd 0.1033 0.0098 0.2532

CAUTION: Bootstrap confidence intervals can be somewhat liberal.

Differences between Relative Contributions:

Lower Upper
difference 0.9 0.9 0.9

Agriculture-Examination.lmg -0.114 * -0.191 -0.046
Agriculture-Education.lmg -0.203 * -0.303 -0.038
Agriculture-Catholic.lmg -0.048 -0.173 0.0395
Agriculture-Infant.Mortality.lmg -0.055 -0.173 0.0401
Examination-Education.lmg -0.088 -0.228 0.1024
Examination-Catholic.lmg 0.0656 -0.069 0.1818
Examination-Infant.Mortality.lmg 0.0584 -0.098 0.1950
Education-Catholic.lmg 0.1545 -0.109 0.3234
Education-Infant.Mortality.lmg 0.1473 -0.074 0.2844
Catholic-Infant.Mortality.lmg -0.007 -0.130 0.1189
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Agriculture-Examination.pmvd 0.0003 -0.273 0.0703
Agriculture-Education.pmvd -0.335 * -0.538 -0.011
Agriculture-Catholic.pmvd -0.089 -0.258 0.0307
Agriculture-Infant.Mortality.pmvd -0.058 -0.217 0.0551
Examination-Education.pmvd -0.335 -0.559 0.2137
Examination-Catholic.pmvd -0.089 -0.256 0.2784
Examination-Infant.Mortality.pmvd -0.058 -0.212 0.2715
Education-Catholic.pmvd 0.2454 -0.150 0.5001
Education-Infant.Mortality.pmvd 0.2764 -0.092 0.5104
Catholic-Infant.Mortality.pmvd 0.0310 -0.167 0.2174

* indicates that CI for difference does not include 0.
CAUTION: Bootstrap confidence intervals can be somewhat liberal.

The confidence intervals for differences show which differences in contributions can be con-
sidered statistically significant (in an exploratory sense). Stars mark those contributions for
which the confidence interval does not contain the equality case. Note that the procedure
generates a substantial amount of output, if confidence intervals for differences are not sup-
pressed, since confidence intervals for the metrics themselves are also always shown. (The
norank=TRUE-option suppresses the lettering for rank confidence intervals.)

5.7. Plotting results

Barplots of results can be obtained using the plot-methods on the output objects of functions
calc.relimp and booteval.relimp. Figure 1 shows barplots of all metrics for the swiss
example (metrics calculated on page 4) and can be created by the R statements

> par(cex.axis = 0.8)

> plot(metrics, names.abbrev = 3)

Since bootstrapping has taken place, barplots with variability lines can also be created (Fig-
ure 2).

> par(cex.axis = 0.9)

> plot(booteval.relimp(bootresult, typesel = c("lmg", "pmvd"), level = 0.9),

+ names.abbrev = 2, bty = "perc")

6. Comparison to related R packages

R has two further packages that are devoted to relative importance. Package relimp by Firth
(2006) implements a method of comparing the contributions of two groups of regressors that
has been proposed by Silber, Rosenbaum, and Ross (1995). This method does something
quite special that is not very closely related to the scope of relaimpo. Hence, it is not further
considered here. Package hier.part by Walsh and Mac Nally (2005) is more closely related
and is therefore discussed in this section in comparison to relaimpo. (For some of the code in
this section, hier.part needs to be installed.)
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R2 = 70.67%, metrics are not normalized.

Figure 1: Bar plots of all calculated relative importance metrics.

Note that hier.part is more general than relaimpo in that it covers more general regression
models and more goodness-of-fit statistics, while relaimpo is restricted to the linear model
with goodness-of-fit statistic R2. On the other hand, relaimpo is more general for the linear
model in that it covers more metrics for relative importance. Furthermore, relaimpo provides
appropriate bootstrap confidence intervals and makes use of the specifics of linear models for
being faster in computing and thus allowing more regressors.

For comparing hier.part to relaimpo, the goodness-of-fit choice for the former has to be chosen
as R2 (gof=Rsqu). Then the standard output of hier.part for the example data (barplot turned
off, since almost identical to that in relaimpo) is shown below:

> hier.part(swiss[, 1], swiss[, 2:6], gof = "Rsqu", barplot = F)

$gfs
[1] 0.0000000 0.1246649 0.4171645 0.4406156 0.2150035 0.1735189 0.4326045
[8] 0.4492484 0.2482782 0.3172607 0.5054845 0.4302471 0.5363016 0.5745071
[15] 0.5647800 0.3309201 0.5568480 0.4460681 0.5397679 0.6422541 0.5660833
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Figure 2: Bar plots of lmg and pmvd with confidence intervals.

[22] 0.3858919 0.5748498 0.6190960 0.5409672 0.6625438 0.6497897 0.6443624
[29] 0.5447723 0.6993476 0.6638654 0.7067350

$IJ
I J Total

Agriculture 0.05709122 0.06757369 0.1246649
Examination 0.17117303 0.24599144 0.4171645
Education 0.26013468 0.18048097 0.4406156
Catholic 0.10557015 0.10943335 0.2150035
Infant.Mortality 0.11276592 0.06075300 0.1735189

$I.perc
I

Agriculture 8.078165
Examination 24.220256
Education 36.807952
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Catholic 14.937728
Infant.Mortality 15.955899

The first bit of output (gfs) lists the R2 values for all sub models. Then, IJ shows the
individual and joint contributions of each regressor, and I.perc shows a percentage rescaling
of the individual contributions. In fact, I.perc from hier.part coincides with relaimpo’s lmg
for rela=TRUE, I from hier.part coincides with relaimpo’s lmg for rela=FALSE, and J from
hier.part is the difference between first and lmg for rela=FALSE. The following program
illustrates how the relevant portion of the output from hier.part can be reproduced using
relaimpo (metrics calculated on page 4):

> IJ <- cbind(I = metrics$lmg, J = metrics$first - metrics$lmg,

+ Total = metrics$first)

> I.perc <- as.matrix(100 * calc.relimp(linmod, type = "lmg", rela = T)$lmg)

> colnames(I.perc) = ""

> list(IJ = IJ, I.perc = I.perc)

$IJ
I J Total

Agriculture 0.05709122 0.06757369 0.1246649
Examination 0.17117303 0.24599144 0.4171645
Education 0.26013468 0.18048097 0.4406156
Catholic 0.10557015 0.10943335 0.2150035
Infant.Mortality 0.11276592 0.06075300 0.1735189

$I.perc

Agriculture 8.078165
Examination 24.220256
Education 36.807952
Catholic 14.937728
Infant.Mortality 15.955899

Note that I.perc could have been obtained by the much simpler command

> cbind(I.perc = 100 * IJ[,"I"]/sum(IJ[,"I"]))

Since the example serves the purpose of underscoring the connection between results from
hier.part and relaimpo, the more complicated second call to function calc.relimp has been
used.

7. Computation times

The metrics lmg and pmvd require a lot of computation in case of many regressors. If one
wants to apply these for many regressors and potentially even in connection with a bootstrap
analysis, it is helpful to know in advance how much computing time will be needed. Table 2
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shows computing times for 3 to 12 regressors for both lmg and pmvd and for comparison also
for hier.part (barplot turned off). All times are averages over 100 runs on a Windows XP
Professional system, AMD Athlon XP 1700+, 1.47GHz, 256MB RAM. We see that relaimpo’s
CPU times are virtually unaffected by the change in sample size, while hier.part times do
change significantly. This is due to the fact that calculation of metrics in relaimpo is based
on the covariance matrix (as explained in Section 3.3) which is only calculated once while
hier.part calculates 2p − 1 regression models using all observations.

100 observations 1000 observations
p hier.part lmg pmvd hier.part lmg pmvd
3 0.13 0.02 0.02 0.27 0.02 0.02
4 0.26 0.03 0.03 0.60 0.03 0.03
5 0.53 0.06 0.05 1.24 0.06 0.05
6 1.09 0.10 0.09 2.61 0.10 0.09
7 2.23 0.18 0.18 5.49 0.19 0.18
8 4.61 0.33 0.37 11.46 0.33 0.37
9 9.49 0.64 0.78 23.90 0.64 0.78

10 19.50 1.25 1.74 49.84 1.23 1.72
11 40.02 2.46 4.22 104.09 2.44 4.22
12 82.42 4.93 11.64 218.84 4.92 11.64

Table 2: CPU times in seconds (average of 100 runs each) for p equi-correlated regressors
with variances 1 and pairwise correlations 0.5.

For relaimpo, we see that pmvd takes longer than lmg for large numbers of regressors p. This
is due to the fact that formula (8) cannot be simplified as much as formula (7). (Nevertheless,
as mentioned before, formula (8) is not directly used for computations.) In fact, the time
for lmg roughly doubles when adding a regressor, while the growth factor for times for pmvd
increases with increasing number of regressors, so that the time difference between the two
methods increases quite dramatically with increasing numbers of regressors (for 15 regressors,
for example, pmvd needs about 525 seconds CPU, while lmg needs about 43 seconds).

8. Final remarks

The functionality of R package relaimpo has been explained and illustrated in this paper, using
the data set swiss that is available in R. This dataset has a complicated correlation structure
among regressors which makes assessment of relative importances somewhat ambiguous. R
package relaimpo broadens R’s possibilities of assessing relative importances in linear models
by offering a choice of six metrics two of which - lmg and pmvd - are recommended if interest
is in decomposing R2. pmvd is newly provided, and for lmg computing times are substantially
improved vs. the package hier.part. For all metrics, relaimpo offers bootstrap confidence
intervals for the estimated relative importances themselves as well as for pairwise differences
of relative contributions and for regressors’ ranks in terms of relative importance. These help
preventing the analyst from over-interpreting differences.
The availability of six metrics - which are already a selection from even more candidates
- emphasizes the fact that there is no unique unchallenged metric for relative importance
in case of correlated regressors. The recommended metrics lmg and pmvd are also not
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entirely satisfactory, but are so far the metrics that come closest to Johnson and Lebre-
ton’s (2004) definition of relative importance, as cited in the introduction. There is a sub-
stantial amount of relatively recent literature on relative importance. A (certainly incom-
plete) list of further references on relative importance can be found on the author’s website
http://www.tfh-berlin.de/~groemp/.

Regarding future developments, it is intended to allow treating regressors in groups in order
to support applications with large numbers of regressors that are not unusual e.g., in mar-
keting applications. If there are e.g., 30 regressors, a complete analysis including bootstrap
confidence intervals will be prohibitive even on modern computers. Often, regressors can be
grouped, and an analysis of twelve groups, say, will again be feasible. Being able to handle
grouped regressors will also make it possible to support factors with more than two levels. As
a further step, factors with interaction terms will require the procedure to be able to respect
a pre-defined hierarchy, i.e., some orders of regressors (interaction before main effect) must be
excluded from the possibilities. This would also be a desirable extension of relaimpo. Further-
more, it would be useful to be able to accomodate weights in the analysis, since often survey
data come with observation weights that reflect sampling probabilities. Further suggestions
from users are welcome.
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A. Global and non-US version

There are two versions of the R package relaimpo. The version on CRAN (http://CRAN.
R-project.org/) is globally licensed under GPL version 2 (or later). There is an extended
version which includes the metric pmvd (cf. (8)) that is licensed according to GPL version
2 under the geographical restriction “outside of the US” because of potential issues with US
patent 6,640,204. This version can be obtained from the author’s website at http://www.
tfh-berlin.de/~groemp/. Whenever you load the package, a display tells you, which version
you are loading.
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