Journal of Statistical Software

May 2007, Volume 20, Issue 11. http:/ /www.jstatsoft.org/

Mokken Scale Analysis in R

L. Andries van der Ark
Tilburg University

Abstract

Mokken scale analysis (MSA) is a scaling procedure for both dichotomous and poly-
tomous items. It consists of an item selection algorithm to partition a set of items into
Mokken scales and several methods to check the assumptions of two nonparametric item
response theory models: the monotone homogeneity model and the double monotonicity
model. First, we present an R package mokken for MSA and explain the procedures.
Second, we show how to perform MSA in R using test data obtained with the Adjective
Checklist.

Keywords: nonparametric item response theory, Mokken scale analysis, monotonicity, R.

1. Introduction

In this paper an R package (R Development Core Team 2007), called mokken, for Mokken
scale analysis (MSA) is discussed. MSA is a scaling technique for ordinal data and mainly
used for scaling test and questionnaire data. MSA is closely related to nonparametric item
response theory (IRT) models which imply ordinal measurement. MSA consists of two parts:
(1) an automated selection algorithm which partitions a set of ordinal variables (from here
on called items) into scales (called Mokken scales) satisfying criteria related to nonparamet-
ric IRT models and possibly leaving some items unselected, and (2) methods to investigate
assumptions of nonparametric IRT models.

The paper provides a short summary of the main concepts in MSA but is by no means
exhaustive. For a more thorough discussion of nonparametric IRT, MSA, and data analysis
strategies we refer to the following literature. Nonparametric IRT and MSA for dichotomous
item scores were developed by Mokken (1971; also see Mokken and Lewis, 1982) and extended
to polytomous items scores by Molenaar (1991, 1997). Sijtsma and Molenaar (2002) gave
an overview of nonparametric IRT and MSA, and provided many references and examples.
Meijer and Baneke (2004) demonstrated how MSA can be used preliminary to parametric IRT.

http://www.jstatsoft.org/

2 Mokken Scale Analysis in R

Currently available software for MSA are a commercial package called MSP5 for Windows
(Molenaar and Sijtsma 2000) and a Stata module (Weesie 1999).

The remainder of the paper is organized as follows. Section 2 discusses nonparametric IRT
models and several methods to check model assumptions. Section 3 discusses the functions
in mokken. Section 4 gives a demonstration of MSA by applying the functions in mokken to
personality test data.

2. Mokken scale analysis

2.1. Nonparametric IRT models

Suppose a test or a questionnaire contains a set of items which are numbered 1,...,J and
indexed by j. For convenience, but without loss of generality, suppose that each item has m+1
ordered answer categories. Let X; denote the score on item j with realization z; = 0,1,...,m.
If m = 1 the item is called dichotomous; if m > 1 the item is called polytomous. The sum
score is defined as X = 23121 X;. In IRT it is assumed that a (possibly multidimensional)
latent trait 6 triggers the item responses. It is also assumed that the ordering of the scores
of each item reflects the hypothesized ordering on 6. Expression X; > x is called an item
step (Sijtsma and Molenaar 2002, p. 122) and P(X; > x|0) is called the item step response
function. Because P(X; > 0]0) = 1 for all §, the relation between item j and 6 is characterized
by m item step response functions: P(X; > 1]0),...,P(X; > m|§). For dichotomous items
the item step response function reduces to P(X = 1]0).

Four assumptions define the two most popular nonparametric IRT models.

Unidimensionality : 6 is a unidimensional latent variable;
J
Local independence : P(X| = z1,...,X; =2;]0) = [] P(X; = z;(0);
j=1

Latent monotonicity : P(X; > z|6,) < P(X; > z|6,), for all 6, < 6 for j =1,...,J;2 =
1,...,m; and

Nonintersection : if for a fixed value 0y P(X; > z|6y) > P(X; > y|6p) then P(X; > z|6) >
P(X; > y|0) for all . This is true for all pairs of items i # j and for all pairs of item
scores ., Y.

Local independence implies that the item responses only depend on #. Latent monotonicity
means that the item step response functions are nondecreasing functions of 6. (Latent mono-
tonicity is usually referred to as monotonicity, but we prefer the term latent monotonicity to
distinguish it from manifest monotonicity that it introduced later on.) Nonintersection means
that the item step response functions do not intersect.

The assumptions unidimensionality, local independence, and latent monotonicity define the
most general nonparametric IRT model: the monotone homogeneity model (Mokken 1971)
also known as the nonparametric graded response model (Hemker, Sijtsma, Molenaar, and
Junker 1997). Assumptions unidimensionality, local independence, latent monotonicity, and
nonintersection define the double monotonicity model (Mokken 1971). Several other nonpara-
metric IRT models have been proposed (see van der Ark 2001, for an overview). All popular

Journal of Statistical Software

unidimensional parametric IRT models, such as the Rasch model (Rasch 1960), the two- and
three-parameter logistic model (Birnbaum 1968), the graded response model (Samejima 1969),
also assume unidimensionality, local independence, and latent monotonicity. Therefore, in-
vestigation of the assumptions of nonparametric IRT models is also useful when parametric
IRT models are used. In addition, parametric IRT models assume that the item step response
functions have a parametric functional form.

Nonparametric IRT models have the following measurement properties. For dichotomous
items, the monotone homogeneity model implies stochastic ordering of 8 by X (known under
the acronym SOL), i.e.,

PO >alXy =L)>P(#>alXy =K) forall a and for all K < L

(Hemker, Sijtsma, Molenaar, and Junker 1996; also see, Grayson 1988; Huynh 1994). Because
the monotone homogeneity model is the most general IRT model, SOL also holds for other
popular IRT models for dichotomous item scores. In general, SOL does not hold for IRT
models for polytomous item scores (Hemker et al. 1997) but for most models violations are
rare if the number of items exceeds five (van der Ark 2005). For dichotomous items, the
double monotonicity model allows an invariant ordering of the items on 6. For polytomous
items this is not the case. Sijtsma and Junker (1996) and Sijtsma and Hemker (1998) provided
more details on item ordering.

2.2. Scalability coefficients

For each pair of items, there is an item-pair scalability coefficient H;j; 4, j = 1,...,J (Molenaar
1991). Let COV(X;, X;) be the covariance between X; and X;, and let COV(X;, X;)™** be
the maximum covariance between X; and X; given the marginal distributions of X; and X;.
If the variance of the scores on item 4 and item j are both positive, then H;; is the normed
covariance between the item scores:

~ COV(Xy, Xj)
Hl] - Cov(Xi,Xj)max' (1)

If X; or X, have zero variance, H;; can still be computed (Molenaar 1991) but Equation 1
is no longer true. In MSA, items belonging to the same Mokken scale should have positive
item-pair scalability coefficients.

For each item, there is an item scalability coefficient H;; j =1,...,J (Molenaar 1991). Let
R_; = X4 —Xj; R_j is called the rest score. Let COV (X, R_;) be the covariance between X
and R_j;, and let COV(X;, R_;)™** be the maximum covariance between X; and R_; given
the marginal distributions of X; and R_;. If X; and R_; both have positive variance, then
Hj is the normed covariance between the item score and the rest score:

- COV(X,R)) o)
J COV(Xj,R_j)maX'

In MSA, items belonging to the same Mokken scale should have an item scalability coefficient
greater than some positive lower bound c. As a rule of thumb ¢ > .3 (Sijtsma and Molenaar
2002). van Abswoude, van der Ark, and Sijtsma (2004) argued that H; can be interpreted in
a similar way as the discrimination parameters in parametric IRT.

4 Mokken Scale Analysis in R

For the entire set of items, there is a test scalability coefficient H:

V(Xj, R,j)
H=

J
> CO
j=1
.)
> COV(Xj, R_j)max
j=1

If H = 1 the test data follow a perfect Guttman scalogram. Mokken (1971) proposed the
following rules of thumb for H. A scale is considered weak if .3 < H < .4, a scale is considered
moderate if .4 < H < .5, and a scale is considered strong if H > .5.

Assumptions unidimensionality, local independence, and latent monotonicity imply the follow-
ing testable restrictions on the scalability coefficients (Sijtsma and Molenaar 2002, Theorem
4.3): 0< Hy <1,foralli#j;0<H; <1, forall j;and 0 < H < 1. For an extensive discus-
sion of the relationship between the scalability coefficients, we refer to Sijtsma and Molenaar
(2002, Chapter 4) and van Abswoude et al. (2004).

2.3. Automated item selection algorithm

An important part of MSA is the partitioning of a set of items into Mokken scales and
possibly a set of unscalable items. Mokken (1971, p. 184) defined a Mokken scale as a set
of dichotomously scored items for which, for a suitably chosen positive lower bound ¢, all
inter-item covariances are strictly positive and H; > ¢ > 0. This definition can be readily
generalized to polytomously scored items. Partitioning a set of items into Mokken scales is
done using an automated item selection algorithm (Mokken 1971, pp. 190-193) described in
detail by Sijtsma and Molenaar (2002, Chapter 5) and van Abswoude et al. (2004). Two
parameters, lower bound ¢ and nominal significance level «, have to be specified by the
researcher. Lower bound c defines the minimum value of coefficients H; in the Mokken scale.
The recommended default value is ¢ = .3 (Molenaar and Sijtsma 2000). Parameter o is
the nominal significance level of the inequality tests used in the automated item selection
algorithm and its recommended default value is .05.

2.4. Investigation of latent monotonicity

Manifest monotonicity is an observable property of the test data, and defined as
P(X; >2|R_j =5) >P(X; >z|R_j =) for all j,z,s>r. (3)

Junker and Sijtsma (2000) showed that for dichotomous items latent monotonicity implies
manifest monotonicity. For polytomous items, some counterexamples have been found (Junker
and Sijtsma 2000) but Molenaar and Sijtsma (2000) assume that in practice, also for polyto-
mous items, manifest monotonicity is a valid test of latent monotonicity.

A first practical issue when using manifest monotonicity to investigate latent monotonicity is
that the number of respondents having R_; = r may be too small for an accurate estimation
of P(X; > z|R_; = r). This is solved by grouping respondents with adjacent rest scores until
the size of the rest score group is greater a preset criterion called minsize (Molenaar and
Sijtsma 2000, pp. 67-70). In fact, (3) becomes

P(X; >2|R_j € {s1,...,8n}) > P(X; > 2|R_j € {r1,...,rm}) for all j,z,s1 > 1,

Journal of Statistical Software

where s1,...,8, and rq, ...,y are n and m consecutive integers, respectively. For the default
method to construct rest score groups see Molenaar and Sijtsma (2000, p. 67). It is advised
to investigate latent monotonicity several times using different values for minsize.

A second practical issue is that some violations of manifest monotonicity may be too small
to be relevant. Therefore, only violations greater than minvi (default value is .03) are re-
ported and for each reported violation a significance test at level & = .05 (without Bonferroni
correction) is computed (Molenaar and Sijtsma 2000, p. 67).

2.5. Investigation of nonintersection

Molenaar and Sijtsma(2000, pp. 74-88) describe three methods to investigate nonintersection:
method pmatrix, method restscore, and method restsplit (method restsplit is not included
in mokken). All three methods are a special case of the following implication. If local
independence holds, then nonintersection,

P(X; > z|6) > P(X; > y|0) for all 0 (4)
implies manifest property
P(X; > z|W =w) > P(X; > y|lW = w) for all w, (5)

where W is a manifest variable independent of X; and X.

Method pmatrix

Method pmatrix was proposed by Mokken (1971, pp. 180-182). Manifest variable W in (5)
is the dichotomized score on item k. Mokken showed that if (4) holds then

and

PXi <2, Xp<2)<PXj<yXp<z)forz=1,... myi#k;j#k. (7)
The joint probabilities P(X; > z, X} > z) are collected in a Jm x Jm matrix called the
P(++) matrix. The rows and columns of the P(++) matrix correspond to the Jm item
steps ordered in popularity. The first row and column of the P(++) matrix correspond to
the least popular item step, the last row and column correspond to the most popular item
step. Entries in the P(++) matrix pertaining to the same item (i.e. P(X; > z,X; > z2)
j=1,...,J;z=1,...,m;z=1,...,m) are not considered. The P(4++) matrix can be used
to test nonintersection in the following way. Equation (6) is equivalent to a P(4++) matrix
that has nondecreasing entries both rowwise and columnwise.

Similarly, the P(——) matrix contains the joint probabilities P(X; < z,X; < y). The rows
and columns of the P(——) matrix correspond to the same ordered item steps as the rows and
columns of the P(++) matrix. Entries P(X; < 2,X; <2) (j=1,..., sz =1,... m;z =
1...,m), i.e. entries pertaining to the same item, are not considered. Equation (7) is equiv-
alent to a P(——) matrix that has nonincreasing entries both rowwise and columnwise.

Method restscore

A second choice for W in (5) is rest score R—; —j = X4 — X; — X, (note that X is not an
adequate choice because it depends on X; and X;). Equation 5 then becomes

P(Xi>z|R_;—j=r)>P(X; >y|R_;—j =r) for all r.

6 Mokken Scale Analysis in R

Method restscore investigates nonintersection for each pair of items.

Similar practical issues as discussed in Section 2.4 apply to method restscore. First, the
number of respondents having R_; _; = r may be too small for an accurate estimation of
P(X; > z|R_; _; = r) and rest score groups must be formed (Molenaar and Sijtsma 2000,
pp. 74-78).

Second, some violations may be too small to be relevant. Therefore, only violations greater
than minvi (default value is .03) are reported and for each reported violation a significance

test at level @ = .05 (without Bonferroni correction) is computed (Molenaar and Sijtsma
2000, p. 78).

3. Description of the functions in mokken

The package mokken contains five principal functions. Except for the graphics, the function
names and the output in mokken are similar to function names and output in the package
MSP5 for Windows (Molenaar and Sijtsma 2000). The graphics in mokken differ substantially
from the graphics provided by MSP5 for Windows. The functions in mokken were tested on
several real and simulated data sets. In all occasions the results were identical to results
obtained with MSP5 for Windows.

1. coefH

Description: returns a list of the scalability coefficients (Section 2.2).
Usage: coefH(X)

Required arguments: X: matrix or data frame of numeric data containing the responses
of N respondents to J items. Missing values are not allowed.

Value:
Hij: matrix containing item-pair scalability coefficients H,;,
Hj: vector containing item scalability coefficients H;
H: scalability coefficient H.

Details: Does not work if any of the item scores has a variance equal to zero. Such
items should not be used in a test and should be removed from the data frame.
2. search.normal
Description: returns a vector of J integers indicating the Mokken scale to which an
item belongs (Section 2.2).
Usage: search.normal(X, lowerbound = .3, alpha = .05)

Required arguments: X: matrix or data frame of numeric data containing the responses
of N respondents to J items. Missing values are not allowed.

Optional arguments: lowerbound and alpha are scalars (see Section 2.3)

Value: An indicator vector of length J. Each entry refers to an item. Items with same
integer belong to the same Mokken scale. A zero indicates an unscalable item. If
n is the largest integer, then n Mokken scales were found.

Details: The number of Mokken scales cannot exceed J/2.

Journal of Statistical Software

3. check.monotonicity

Description: Returns the results from the investigation of latent monotonicity.
Usage: check.monotonicity(X, minvi = .03, minsize = default.minsize)

Required arguments: X: matrix or data frame of numeric data containing the responses
of N respondents to J items. Missing values are not allowed.

Optional arguments:

minvi: minimum size of a violation that is reported (Molenaar and Sijtsma 2000,
p. 71).

minsize: minimum size of a rest score group. By default minsize = N/10 if
N > 500; minsize = N/5 if 250 > N < 500; and minsize = max(/N/3,50) if
N < 250 (Molenaar and Sijtsma 2000, p. 72).

Value: Returns an object of class monotonicity.class containing

results: A list with as many components as there are items. Each component
itself is also a list containing the results of the check of manifest monotonicity.
See Section 4 or (Molenaar and Sijtsma 2000, pp. 66-74) for more detailed
information;

I.labels: the item labels,
Hi: the item scalability coeflicients H; (2); and
m: the number of answer categories.

Details: S3 methods are available so summary and plot can be used for objects of class
monotonicity.class. Let MC be an object of class monotonicity.class.

summary (MC) returns a matrix with a summary of the results of the investigation
of latent monotonicity (See Section 4 for an example).

plot(MC, items = all) returns a graph (See Section 4 for an example).
items: vector containing the numbers of the items for which the results are
depicted graphically. By default the results for all items are depicted.

4. check.pmatrix
Description: computes the P(++) matrix, the P(——) matrix, and auxiliary informa-
tion.
Usage: check.pmatrix(X, minvi = .03)

Required arguments: X: matrix or data frame of numeric data containing the responses
of N respondents to J items. Missing values are not allowed.

Optional arguments: minvi: minimum size of a violation that is reported (Molenaar
and Sijtsma 2000, p. 71).

Value: returns an object (of class pmatrix.class) containing
Ppp: the P(4++) matrix,
Pmm: the P(——) matrix,

I.item: vector indicating to which items the rows and column the P(++) matrix
belong.

I.step: the labels of the item steps in order of popularity,

Mokken Scale Analysis in R

I.labels: the item labels,
Hi: the item scalability coeflicients H; (2), and

minvi: the value of minvi.

Details: The output is often numerous. S3 methods are available so summary and
plot can be used for objects of class pmatrix.class. Let PC be an object of class
pmatrix.class.

summary (PC) returns a list with two components. The first components contains
a summary of the P(++) matrix per item and the second component contains
a summary of the P(——) matrix per item. See Section 4 for an example.

plot(PC, items = all, pmatrix=both) returns a graphic display of the results
of the investigation of nonintersection using method pmatrix (See Section 4
for an example).
items: vector containing the numbers of the items for which the results are
depicted graphically. By default the results for all items are depicted.
pmatrix has values "ppp", "pmm", and "both"; If pmatrix="ppp", then the
P(++) matrix is plotted, if pmatrix="pmm", then the P(——) matrix is plot-
ted, if pmatrix="both", then both the P(++) matrix and P(——) matrix are
plotted.
No c-axis labels are provided in the plot if the number of item steps is greater
than 10.

5. check.restscore

Description: Returns the results from the investigation of nonintersection using method
restscore.

Usage: check.restscore(X, minvi = .03, minsize = default.minsize)

Required arguments: X: matrix or data frame of numeric data containing the responses
of N respondents to J items. Missing values are not allowed.

Optional arguments:

minvi: minimum size of a violation that is reported (Molenaar and Sijtsma 2000,
p. 71).

minsize: minimum size of a rest score group. By default minsize = N/10 if
N > 500; minsize = N/5 if 250 > N < 500; and minsize = max(N/3,50) if
N < 250 (Molenaar and Sijtsma 2000, p. 72).

Value: returns an object (of class restscore.class) containing

results: A list with as many components as there are item pairs. Each compo-
nent itself is also a list containing the results of the check of nonintersection
using method restscore. See Section 4 or (Molenaar and Sijtsma 2000, pp. 74—
78) for more detailed information;

I.labels: the item labels,

Hi: the item scalability coeflicients H; (2); and

m: the number of answer categories.

Details: the output is often numerous because results is a list of J(J — 1)/2 com-
ponents. The procedure can be slow for large numbers of items. S3 methods are

Journal of Statistical Software 9

available so summary and plot can be used for objects of class restscore.class. Let
RC be an object of class restscore.class.

summary (RC) Returns a matrix with a summary of the results of the checks of
nonintersection using method restscore.

plot(RC, item.pairs = all) returns a graphic display of the results of the
investigation of nonintersection using method restscore (See Section 4 for an
example).
item.pairs: vector containing the numbers of the item pairs for which the
results are depicted graphically. For example, item.pairs = 1 prints the
results for items 1 and 2, item.pairs = 2 prints the results for items 1 and 3,
item.pairs = J prints the results for items 1 and J, and item.pairs = J+1
prints the results for items 2 and 3. By default the results for all item pairs
are depicted.

4. Example

4.1. The data

MSA was performed on Adjective Checklist (Gough and Heilbrun 1980) data, acl, which
are available in mokken. The data (Vorst 1992) contain the scores of 433 students from the
University of Amsterdam on 218 items from a Dutch version of the Adjective Checklist. Each
item is an adjective with five ordered answer categories (0 = completely disagree, 1 = disagree,
2 = neither agree nor disagree, 3 = agree, 4 = completely agree). Form each adjective, the
respondents must consider to what degree it describes their personality, and mark the answer
category that fits best to this description.

Initially, the number of items in the Dutch version of the Adjective Checklist was larger
than 218. Oosterveld (1989) suggested constructing 22 scales of 10 items each, and ignoring
the remaining adjectives. Two items were not included in the administered test leaving
two scales with 9 items. 77 of the 218 items that constitute the ten scales were negatively
worded. The negatively worded items are indicated by an asterisk in the dimnames and their
item scores were reversed. 296 out of the 94,394 responses (.03%) were missing; item scores
were imputed for the missing scores using method Two-Way with Error (for details on this
imputation method see Bernaards and Sijtsma, 2000) applied to each scale separately, yielding
a completed 433 x 218 data matrix. Table 1 gives an overview of the 22 scales of the Adjective
Checklist and their items.

4.2. Scalability coefficients

The first scale is denoted Communality and contains the adjectives Reliable, Honest,
Unscrupulous™®, Deceitful®, Unintelligent*, Obnoxious*, Thankless*, Unfriendly*, Dependable,
and Cruel*. The scalability coefficients of this scale are obtained by

R> acl.com <- acl[,1:10]
R> coefH(acl.com)

10 Mokken Scale Analysis in R

Scale Items Scale Ttems

Communality 1-10 Change 111-119
Achievement 11-20 Succorance 120-129
Dominance 21-30 Abasement 130-139
Endurance 31-40 Deference 140-149
Order 41-50 Personal Adjustment 151-159
Intelligence 51-60 Ideal Self 160-169
Nurturance 61-70 Critical parent 170-179
Affiliation 71-80 Nurturant parent 180-189
Exhibition 81-90 Adult 190-199
Autonomy 91-100 Free Child 200-209
Aggression 101-110 Adapted Child 210-218

Table 1: An overview of the 22 scales of the Adjective Checklist and their items

The output shows that all H;;s are positive satisfying the first criterion of a Mokken scale.
Seven out of ten Hjs are less than the lower bound ¢ = .3 which violates the second criterion
of a Mokken scale; especially the item-scalability coefficient for Unintelligent* is low (H; =
.11). The scalability coefficient for the entire scale, H, equals .26 which is too low for the
qualification “weak scale”.

4.3. Investigation of latent monotonicity

Investigating latent monotonicity in the scale Communality can be done using the following
three commands.

R> monotonicity.com <- check.monotonicity(acl.com)
R> summary (monotonicity.com)
R> plot(monotonicity.com)

All computations are done in the function check.monotonicity; the most important com-
ponent of the resulting object monotonicity.com is results, which is a list with as many
components as there are items in the scale (i.e. 10), and each component itself is also a list
with four components. These results are summarized by summary and visualized by plot.

For example, monotonicity.com$results[[5]] is a list containing information on Item 5:

1. monotonicity.com$results[[5]]1[[1]] is the label of the item: Unintelligentx*.
2. monotonicity.com$results[[5]][[2]] is the following matrix (rounded):

Group Lo Hi N FO F1 F2 F3 F4 Mean P(X>=1) P(X>=2) P(X>=3) P(X>=4)
11225 8 0 3 20 28 38 3.13 1.00 0.97 0.74 0.43
22628 93 0 1 18 41 33 3.14 1.00 0.99 0.80 0.35
329 31 113 1 1 10 44 57 3.37 0.99 0.98 0.89 0.50
4 32 36 138 0 2 9 43 84 3.51 1.00 0.99 0.92 0.61

For each rest score group (Group) it shows the minimum rest score (Lo), the maximum
rest score (Hi), the size of the rest score group (N), the frequency distribution of the

Journal of Statistical Software

item scores (FO, ... ,F4), the mean item score (Mean), and the proportion of respondents
obtaining at least scores 1, 2, 3, and 4 (P(X>=1),...,P(X>=4)). It should be noted that
the last column (first and second row) shows a violation of manifest monotonicity that
is greater than 0.03.

3. monotonicity.com$results[[5]1][[3]] is a summary of the violations of manifest
monotonicity in item 5:

#ac #vi #vi/#ac maxvi sum sum/#ac zmax group group #zsig

P(X >=1) 6 0 0.00 0.00 0.00 0.00 0.00 0 0 0
P(X >=2) 6 O 0.00 0.00 0.00 0.00 0.00 0 0 0
P(X >=3) 6 O 0.00 0.00 0.00 0.00 0.00 0 0 0
P(X >=4) 6 1 0.17 0.07 0.07 0.01 0.85 1 2 0

Total 24 1 0.04 0.07 0.07 0.00 0.85 0 0 0

For each item step it gives the number of active pairs (#ac, if there are four rest score
groups, there are 4x3x % active pairs); the number of violations of manifest monotonicity
(#vi, note that only violations greater than minvi are reported); the average number of
violations of manifest monotonicity per active pair (#vi/#ac), the largest violation of
manifest monotonicity (maxvi); the sum of violations of manifest monotonicity (sum);
the average violation per active pair (sum/#ac); the two rest score groups that are
involved in the largest violation of manifest monotonicity (group, equals zero if there
were no violations); and the number of violations that are significantly greater than
Zero.

4. monotonicity.com$results[[5]][[4]] gives the values of minsize and minvi which
were 0.03 and 86, respectively.

For more details see Molenaar and Sijtsma (2000, pp. 66-74).

The result of summary(monotonicity.com) is a matrix showing for each item a summary of
the checks of manifest monotonicity.

TtemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig

reliable 0.30 24 O 0.00 0.00 0.00 0 0.00 0
honest 0.27 24 0 0.00 0.00 0.00 0 0.00 0
unscrupulous* 0.24 24 O 0.00 0.00 0.00 0 0.00 0
deceitful* 0.32 24 O 0.00 0.00 0.00 0 0.00 0
unintelligent* 0.12 24 1 0.04 0.07 0.07 0 0.85 0
obnoxious* 0.29 24 O 0.00 0.00 0.00 0 0.00 0
thankless* 0.25 24 O 0.00 0.00 0.00 0 0.00 0
unfriendly* 0.31 24 O 0.00 0.00 0.00 0 0.00 0
dependable 0.30 24 O 0.00 0.00 0.00 0 0.00 0
cruel* 0.25 24 O 0.00 0.00 0.00 0 0.00 0

It shows that there is only one (nonsignificant) violation of manifest monotonicity in the scale.
This violation occurred for the item Unintelligent*.

The results are visualized using the plot function. The page that pertains to the item
Unintelligent* is shown in Figure 1 (can be obtained as a separate file by

11

12 Mokken Scale Analysis in R

unintelligent*

o
S -
@ _|
o
c
2 o |
8 o
3
7
@
< | el
E o el
N |
o
o
=3
T T T I
12-25 26-28 29-31 32-36

Rest score group

Figure 1: Visualization of the check of manifest monotonicity for item 5 (Unintelligent™)

plot(acl.com,items=5).) Figure 1 shows the estimated item step response functions P(X5 >
z|R_5) for x = 1,...,4 (dashed lines) and the estimated mean response function L E(X5|R_5)
(solid line). The violation of manifest monotonicity is shown by the decrease between P(X5 >
4|R_5 € {12,13,...,25}) and P(X5 > 4|R_5 € {26,27,28}) (lowest dashed line).

4.4. Investigation of nonintersection

Investigating nonintersection in the scale Communality can be done using methods pmatrix
and restscore.

Method pmatrix

Method pmatrix can be applied using the following three commands.

R> pmatrix.com <- check.pmatrix(acl.com)
R> summary(pmatrix.com)
R> plot(pmatrix.com)

Function check.pmatrix computes the P(++) matrix (pmatrix.com$Ppp) and the P(——)
matrix (pmatrix.com$Pmm). The size of the two matrices (Jm x Jm = 40 x 40) is too large to
be useful for inspecting violations of nonintersection. Function summary reduces the quantity
of the output.

Function summary produces summaries of both the P(++) and the P(——) matrix. The
summary of the P(++) matrix is

Journal of Statistical Software

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac

reliable 0.30 144 6 0.001 0.08 0.39 0.003
honest 0.27 144 11 0.000 0.05 0.43 0.003
unscrupulous* 0.24 144 0 0.000 0.00 0.00 0.000
deceitful* 0.32 144 0 0.000 0.00 0.00 0.000
unintelligent*x 0.12 144 O 0.000 0.00 0.00 0.000
obnoxious* 0.29 144 0 0.000 0.00 0.00 0.000
thankless* 0.25 144 1 0.000 0.05 0.05 0.000
unfriendly* 0.31 144 1 0.000 0.04 0.04 0.000
dependable 0.30 144 10 0.000 0.05 0.35 0.002
cruel* 0.25 144 1 0.000 0.03 0.03 0.000

For each item the output shows: the scalability coefficient H; (ItemH, Section 2.2), the number
of active pairs (#ac), the number of violations greater than minvi (#vi), the average number
of violations per active pair (#vi/#ac), the maximum violation (maxvi), the sum of the
violations greater than minvi (sum), and sum/#ac. The output shows that items Reliable,
Honest, Thankless*, Unfriendly*, and Dependable* have some violations greater than 0.03.
The violations are relatively small. A similar matrix is provided to summarize the results of
the P(——) matrix.

Function plot produces two graphs for each item j. In one graph the lines represent the rows
of the P(4++) matrix pertaining to item j which should be nondecreasing if nonintersection
holds, In the other graph the lines represent the rows of the P(——) matrix pertaining to item
j which should be nonincreasing if nonintersection holds.

Figure 2 displays the four rows in the P(4++) matrix pertaining to item 5 (Unintelligent™®).
On the horizontal axis, the (10 — 1)4 = 36 item steps of the remaining 9 items are displayed
in ascending order of popularity; i.e. the tick on the extreme left of the horizontal axis is
the least popular item step X5 > 4, and the tick on the extreme right of the horizontal axis
is the most popular item step X1 > 1. Let Iy,...,Iss denote the 36 ordered item steps.
The upper line in the graph connects P(X5 > 1,11),...,P(X5 > 1, I35), the next line in
the graph displays P(X5 > 2,11),...,P(X5 > 2,I36), etc. A nonincreasing line indicates a
violation of nonintersection. Figure 2 shows that there are a few very small violations (less
than 0.03) in the rows of the P(++) matrix pertaining to item 5 (Unintelligent*). A similar
graph is provided for the P(——) matrix, where a nondecreasing line indicates a violation of
nonintersection.

Method restscore

Method restscore can be applied using the following three commands.

R> restscore.com <- check.restscore(acl.com)
R> summary(restscore.com)
R> plot(restscore.com)

The most important component of restscore.com is results, which is a list with as many
components as there are item pairs, i.e. 10 X 9 x .5 = 45; each component itself is also a list.
For example, restscore.com$results[[31]] pertaining to items 5 and 6 is the following
list:

13

14 Mokken Scale Analysis in R

P(++) matrix: unintelligent*

1.0

0.6 0.8

X, item step)

P(X5 >
0.4

0.2

0.0

ordered item steps

Figure 2: Visualization of the check of nonintersection using method pmatrix for item 5
(Unintelligent™)

restscore.com$results[[31]11[[1]] is the label of both items: Unintelligent* and
Obnoxiousx*.
restscore.com$results[[31]] [[2]] is the following matrix:

Group Lo Hi N E(X5) E(X6) P(X5>=1) P(X5>=2) P(X5>=3) P(X5>=4) P(X6>=1)

1 922 88 3.16 2.64 1.00 0.97 0.76 0.43 1.00
22325 98 3.11 3.12 1.00 0.99 0.79 0.34 1.00
32627 8 3.38 3.33 0.99 0.99 0.88 0.52 1.00
4 28 32 159 3.50 3.62 1.00 0.98 0.92 0.60 0.99

P(X6>=2) P(X6>=3) P(X6>=4)

0.92 0.58 0.14
0.99 0.88 0.26
1.00 0.89 0.44
0.99 0.94 0.69

It shows for each of the four restscore groups (Group) the minimum rest score (Lo);
the maximum rest score (Hi); the size of the rest group (N); the mean scores of item 5
(E(X5)) and item 6 (E(X6)), and the probabilities of obtaining at least a score = on items
5and 6, for x =1,...,4 (P(X6>=1),...,P(X6>=4)). Note that there are two violations
greater than minvi: P(X5 > 3|R_5 _¢) and P(X¢ > 3|R_5_¢), and P(X5 > 4|R_5 _¢)
and P(X¢ > 4|R_5 _¢) intersect.

restscore.com$results[[31]] [[3]] shows the violations of restscore for each pair of es-
timated item step response functions:

Journal of Statistical Software

#ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig

P(X56>=1) P(X6>=1) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=1) P(X6>=2) 3 O 0.00 0.00 0.00 0.00 0.00 0
P(X5>=1) P(X6>=3) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=1) P(X6>=4) 3 O 0.00 0.00 0.00 0.00 0.00 0
P(X5>=2) P(X6>=1) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X56>=2) P(X6>=2) 3 O 0.00 0.00 0.00 0.00 0.00 0
P(X56>=2) P(X6>=3) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X56>=2) P(X6>=4) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=3) P(X6>=1) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X56>=3) P(X6>=2) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=3) P(X6>=3) 3 1 0.33 0.09 0.09 0.03 1.61 0
P(X56>=3) P(X6>=4) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=4) P(X6>=1) 3 O 0.00 0.00 0.00 0.00 0.00 0
P(X56>=4) P(X6>=2) 3 0 0.00 0.00 0.00 0.00 0.00 0
P(X5>=4) P(X6>=3) 3 O 0.00 0.00 0.00 0.00 0.00 0
P(X5>=4) P(X6>=4) 3 1 0.33 0.09 0.09 0.03 1.83 1
E(X5) E(X6) 3 1 0.33 0.12 0.12 0.04 NA NA
Total 48 2 0.04 0.09 0.19 0.00 1.83 1

As was noted earlier, two estimated item step response functions showed violations
greater than minvi; only the violation by P(X5 > 4|R_5 _¢) and P(Xg > 4|R_5_¢) is
significant. E(X5|R_5_6) and E(Xg|R_5_¢) also intersect, but no tests are provided for
this violation.

summary (restscore.com) gives the following output.

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig

reliable 0.30 432 7 0.02 0.09 0.31 0 1.43 0
honest 0.27 432 5 0.01 0.07 0.25 0 1.25 0
unscrupulous* 0.24 416 6 0.01 0.11 0.42 0 1.46 0
deceitful* 0.32 400 8 0.02 0.09 0.40 0 1.22 0
unintelligent* 0.12 416 14 0.03 0.11 0.86 0 1.99 2
obnoxious* 0.29 432 7 0.02 0.11 0.52 0 1.83 1
thankless* 0.25 432 7 0.02 0.08 0.38 01.14 0
unfriendly* 0.31 432 8 0.02 0.11 0.48 0 1.99 1
dependable 0.30 432 9 0.02 0.09 0.48 01.22 0
cruel* 0.25 432 3 0.01 0.04 0.12 0 0.67 0

For each item it shows scalability coefficient H; (ItemH), the total number of active pairs
(#ac), the total number of violations (#vi), the average number of violations per active pair
(#vi/#ac), the maximum violation (maxvi), the sum of all violations (sum), the average
violation per active pair (sum/#ac), the maximum test statistic (zmax), and the number of
significant violations (#zsig). For example, item 5 (Unintelligent*) has most violations (14),
two were significant. These significant violations occurred in item pairs (5,6) and (5,8). With
respect to nonintersection, item 5 would be a good candidate to be removed from the item
set.

15

16 Mokken Scale Analysis in R

unintelligent* (solid) obnoxious* (dashed)

o
-
«© _|
oS
5
] © _|
g o
>
3
bt
"
[}
-«
E L
E o
=
N]
<
o |
o

I T T I
9-22 23-25 26-27 28-32

Rest score group

Figure 3: Visualization of the check of nonintersection using method restscore for items 4
(Deceitful*) and 5 (Unintelligent™)

Function plot(restscore.com) visualizes the results of investigating nonintersection using
method restscore. As an example, the results for items 5 (Unintelligent*) and 6 (Obnoxious™)
are depicted in Figure 3. The thick solid line represents E(X5|R_5 _¢), and the thick dashed
line represents E(Xg|R_5_¢) (both lines scaled by a factor ;). The violation found in

restscore.com$results[[31]] [[3]] is also shown in the graph because the thick solid line
and the thick dashed line intersect. The thin solid lines represent the estimated item step
response functions of item 5 (Unintelligent*) and the thin dashed lines represent the estimated
item step response functions of item 6 (Obnoxious*). Figure 3 clearly shows the two violations
found in restscore.com$results[[31]] [[3]] as intersections of a solid and a dashed line.

4.5. Automated item selection algorithm
The automated item selection algorithm can be applied to scale Communality as follows:
R> scale.com <- search.normal(acl.com)

and results in the following vector scale.com (t(scale.com) is displayed).

(,11 [,2] [,3] [,4] [,8] [,6] [,7]1 [,8] [,9] [,10]
[1,] 1 1 0 1 o 2 2 2 1 2

hence, using the default lower bound ¢ = .3 results in two Mokken scales. One Mokken
scale contains the adjectives Dependable, Reliable, Honest, and Deceitful* (indicated by a
1 in scale.com), and the other Mokken scale contains the adjectives Cruel*, Unfriendly™,

Journal of Statistical Software 17

Obnoxious*, and Thankless* (indicated by a 2 in scale.com). The items Unscrupulous® and
Unintelligent™ are unscalable (indicated by a 0 in scale.com).

Computing the scalability coefficients for the first scale can be done as follows
R> coefH(acl.com[,scale.com==1])
Similarly, investigating latent monotonicity for the first Mokken scale is done by

R> monotonicity.com.1 <- check.monotonicity(acl.com[,scale.com==1])
R> summary (monotonicity.com.1)
R> plot (monotonicity.com.1)

Investigating latent monotonicity for the second scale and checking nonintersection are done
in a similar way.

Acknowledgments

Thanks are due to Harrie C. M. Vorst for providing the ACL data set, Anton L. M. de Vries
for providing the item labels in English, Rudy Ligtvoet for testing mokken, and Patrick Mair
and an anonymous reviewer for providing very useful comments on the package and the paper,
respectively.

References

Bernaards CA, Sijtsma K (2000). “Influence of Imputation and EM Methods on Factor
Analysis When Item Nonresponse in Questionnaire Data Is Nonignorable.” Multivariate
Behavioral Research, 35, 321-364.

Birnbaum A (1968). “Some Latent Trait Models.” In FM Lord, MR Novick (eds.), “Statistical
Theories of Mental Test Scores,” pp. 397-424. Addison-Wesley, Reading, MA.

Gough HG, Heilbrun AB (1980). The Adjective Check List, Manual 1980 Edition. Consulting
Psychologists Press, Palo Alto, CA.

Grayson DA (1988). “Two-Group Classification in Latent Trait Theory: Scores With Mono-
tone Likelihood Ratio.” Psychometrika, 53, 383-392.

Hemker BT, Sijtsma K, Molenaar IW, Junker BW (1996). “Polytomous IRT Models and
Monotone Likelihood Ratio of the Total Score.” Psychometrika, 61, 679-693.

Hemker BT, Sijtsma K, Molenaar IW, Junker BW (1997). “Stochastic Ordering Using the
Latent Trait and the Sum Score in Polytomous IRT Models.” Psychometrika, 62, 331-347.

Huynh H (1994). “A New Proof for Monotone Likelihood Ratio for the Sum of Independent
Bernoulli Random Variables.” Psychometrika, 59, 77-79.

Junker BW, Sijtsma K (2000). “Latent and Manifest Monotonicity.” Applied Psychological
Measurement, 24, 65-81.

18 Mokken Scale Analysis in R

Meijer RR, Baneke JJ (2004). “Analyzing Psychopathology Items: A Case for Nonparametric
Item Response Theory Modeling.” Psychological Methods, 9, 354-368.

Mokken RJ (1971). A Theory and Procedure of Scale Analysis. De Gruyter, Berlin, Germany.

Mokken RJ, Lewis C (1982). “A Nonparametric Approach to the Analysis of Dichotomous
Responses.” Applied Psychological Measurement, 6, 417-430.

Molenaar IW (1991). “A Weighted Loevinger H-Coefficient Extending Mokken Scaling to
Multicategory Items.” Kwantitatieve Methoden, 12(37), 97-117.

Molenaar IW (1997). “Nonparametric Models for Polytomous Responses.” In WJ van der
Linden, RK Hambleton (eds.), “Handbook of Modern Item Response Theory,” pp. 369-380.
Springer-Verlag, New York.

Molenaar IW, Sijtsma K (2000). User’s Manual MSP5 for Windows. IEC ProGAMMA,
Groningen, The Netherlands.

Oosterveld P (1989). “ACL: verkorting en unidimensionaliteit [ACL: Reduction and Unidi-
mensionality].” Unpublished manuscript, University of Amsterdam.

Rasch G (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Nielsen
and Lydiche, Copenhagen, Denmark.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Samejima F (1969). “Estimation of Latent Ability Using a Response Pattern of Graded
Scores.” Psychometrika Monograph, 17.

Sijtsma K, Hemker BT (1998). “Nonparametric Polytomous IRT Models for Invariant Item
Ordering, With Results for Parametric Models.” Psychometrika, 63, 183—200.

Sijtsma K, Junker BW (1996). “A Survey of Theory and Methods of Invariant Item Ordering.”
British Journal of Mathematical and Statistical Psychology, 49, 79-105.

Sijtsma K, Molenaar IW (2002). Introduction to Nonparametric Item Response Theory. Sage,
Thousand Oaks, CA.

van Abswoude AAH, van der Ark LA, Sijtsma K (2004). “A Comparative Study of Test
Data Ddimensionality Assessment Procedures Under Nonparametric IRT Models.” Applied
Psychological Measurement, 28, 3—24.

van der Ark LA (2001). “Relationships and Properties of Polytomous Item Response Theory
Models.” Applied Psychological Measurement, 25, 273-282.

van der Ark LA (2005). “Stochastic Ordering of the Latent Trait by the Sum Score Under
Various Polytomous IRT Models.” Psychometrika, 70, 283—-304.

Vorst HCM (1992). [Responses to the Adjective Checklist] Unpublished raw data.

http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 19

Weesie J (1999). “MOKKEN: Stata module: Mokken scale analysis.” Software Compo-
nents RePEc:boc:bocode:sjw31, RePEc EconPapers. URL http://econpapers.repec.org/
software/bocbocode/sjw31.htm.

Affiliation:

L. Andries van der Ark

Department of methodology and Statistics

Tilburg University

P. O. Box 90153, 5000 LE, Tilburg, The Netherlands
E-mail: a.vdark@uvt.nl

URL: http://spitswww.uvt.nl/~avdrark/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 20, Issue 11 Submitted: 2006-10-01

May 2007 Accepted: 2007-02-22

http://econpapers.repec.org/software/bocbocode/sjw31.htm
http://econpapers.repec.org/software/bocbocode/sjw31.htm
mailto:a.vdark@uvt.nl
http://spitswww.uvt.nl/~avdrark/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Mokken scale analysis
	Nonparametric IRT models
	Scalability coefficients
	Automated item selection algorithm
	Investigation of latent monotonicity
	Investigation of nonintersection
	Method pmatrix
	Method restscore

	Description of the functions in mokken
	Example
	The data
	Scalability coefficients
	Investigation of latent monotonicity
	Investigation of nonintersection
	Method pmatrix
	Method restscore

	Automated item selection algorithm

