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Abstract

Results of ecological models differ, to some extent, more from measured data than from
empirical knowledge. Existing techniques for validation based on quantitative assessments
sometimes cause an underestimation of the performance of models due to time shifts,
accelerations and delays or systematic differences between measurement and simulation.
However, for the application of such models it is often more important to reproduce
essential patterns instead of seemingly exact numerical values.

This paper presents techniques to identify patterns and numerical methods to measure
the consistency of patterns between observations and model results. An orthogonal set of
deviance measures for absolute, relative and ordinal scale was compiled to provide infor-
mations about the type of difference. Furthermore, two different approaches accounting
for time shifts were presented. The first one transforms the time to take time delays
and speed differences into account. The second one describes known qualitative criteria
dividing time series into interval units in accordance to their main features. The methods
differ in their basic concepts and in the form of the resulting criteria. Both approaches
and the deviance measures discussed are implemented in an R package. All methods are
demonstrated by means of water quality measurements and simulation data.

The proposed quality criteria allow to recognize systematic differences and time shifts
between time series and to conclude about the quantitative and qualitative similarity of
patterns.
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1. Introduction

Dynamic simulation models are important tools in environmental science and environmental
management. For both, scientists and decision makers, the validity of the model and its re-
sults are of high importance, in particular if private persons and/or economy are affected by
decisions based on the model results. A commonly used definition of model validation is the
substantiation that a computerized model within its domain of applicability possesses a satis-
factory range of accuracy, consistent with the intended application of the model (Schlesinger
et al. 1979). However, the question what is accurate enough might depend on very different
features for different applications.

The general framework of this paper is the problem to compare a (more or less deterministic)
computer simulation model of a nonstationary ecological process with a real world realization
of the same process. Typically, we have measurements yt at times τt of the real world process
and corresponding simulated values ŷt, which are the output of the simulation model. Thus
we assume that the process is dominated by its deterministic laws and not by its negligible
stochastic variation. On one hand we assume that the deterministic simulation model (among
other simulation models) is one of our best understandings of the process, but on the other
hand we are well aware of the fact that it is just a model and can not describe the process
completely or even completely up to measurement errors. Although the yt and εt := yt − ŷt

are random, we can not model them as a realization of a stationary or otherwise describable
stochastic process, because this would imply a model on the difference of our best model and
the reality.

Commonly used validation methods include visualization techniques, where experts, if avail-
able, evaluate the quality of the results and quantitative assessment criteria, where the dis-
tance between measured and simulated values is analyzed. However, visual and quantitative
methods can deliver contrasting results, as soon as processes have different velocities, shifts
in time, or when systematic differences between measurement and simulation exist.

1.1. An introductory example

A simple example with three time series (Figure 1) will illustrate the problem (see also Höpp-
ner 2002b). In an ecological context, let’s assume these curves were, for example, time series
of an observed algae development over time (yt) and the outputs (ŷt,A and ŷt,B) of two alter-
native models A and B.

Asking humans to decide which model is more appropriate to describe the observed pattern,
they would probably prefer model A over model B. Using a common deviance measure, e.g.
mean absolute error (MAE, described below), yields B closer to the observation than A. The
resulting assessment based on numerical differences (B is better than A), does not match
with the human decision (A is better than B). The reason is that people do not decide about
similarity by numerical values, but instead identify similar patterns. While both time series,
yt and ŷt,A consist of two segments, an increasing and a decreasing part, the time series ŷt,B

contains only one single linearly increasing segment. Quantitative validation methods do not
consider such patterns. The high numerical difference between time series yt and ŷt,A is a
result of the shift of the maximum of the series in time. When yt reaches its maximum, ŷt,A

is still small, and when yt is at maximum ŷt,A is small again.

If a shift in time leads quantitative methods to underestimate the quality of one model can-
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Figure 1: Similarity of time series: Using the mean absolute error (MAE) model B is closer
to the observation than model A.

didate, but the other is preferred only by subjective decision, which of the models would you
trust for the predictions of the water quality in next autumn?

In full accordance with this, Grimm et al. (1996) proposed that the main focus of ecological
models should not be to deliver each measured detail, but instead to reproduce the observed
patterns (see also Levin 1992; Wiegand et al. 2003). In this context, it is necessary to de-
velop qualitative methods for the validation of the simulated patterns in addition to existing
assessment techniques.

1.2. Approach

The qualitative comparison methods proposed are based on comparing the information re-
maining, when several quantitative aspects of the actual series yt and ŷt are ignored. In a first
step we discuss ignoring location, scale and distance of values, in a second step we discuss
ignoring exact time and speed, and in last step we discuss ignoring even inequality relations
and time continuity. In this way we build up a system of descriptive index values, called
deviance measures and similarity measures, which allow to describe, quantify, and investigate
various types of qualitative and semiquantitative similarity.

These index values can be used in various ways: We can select the deviance measure describing
best the type of accuracy needed for our application to select the model performing best
with respect to this deviance measure. We could calculate and compare different similarity
measures to identify the qualities in which model and reality differ. We can also take a random
sample of real systems, calculate a deviance measure with respect to several models, and use
inferential statistics to compare the different models. However, the aim of this paper is not
to give brewing recipes what to do with the index values but to give the systematics and to
provide the software.

Section 2 introduces the example data used to demonstrate the proposed methods. A brief
overview of common validation methods and a support to identify essential differences between
measurement and simulation are given in Section 3. Sections 4 and 5 present adequate
deviance measures for different cases and qualitative validation criteria accounting for time
shifts. Finally, inferential considerations and a discussion are offered in Sections 6 and 7.
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2. Data set and data preparation

2.1. Example data set

The new R (R Development Core Team 2007) package for qualitative validation (qualV)
provides time series with measured and predicted lake phytoplankton concentrations (phyto)
in Bautzen Reservoir 1994 (Saxony, Germany).

R> library("qualV")

R> data("phyto")

The data set phyto contains two corresponding data frames obs and sim. The data frames
include a time code t, and corresponding observed and simulated phytoplankton biovolume y
(mg/L), respectively (Figure 2). The observed data are vertical mean values of phytoplankton
biovolume, derived from microscopic cell counting (see Benndorf et al. 2001, for details about
motivation and data). The respective simulated data are generated using a recent version of
the dynamic lake model SALMO (Simulation of an Analytical Lake MOdel, Benndorf and
Recknagel 1982).

This model belongs to a class of ecological models which predict time series of state vari-
ables (e.g. concentrations of nutrients, phytoplankton, zooplankton and oxygen) by means
of ordinary differential equations, see the mass balance equation of phytoplankton (Y ) as an
example (with P photosynthesis, R respiration, S sedimentation, G zooplankton grazing, I
import and export):

dY

dt
= P −R− S −G + I

The applied model version consists of 13 state variables and an extensive set of nonlinear
algebraic equations. The latter are used to describe functional relationships between state
variables and external forcings (meteorology, matter import, physical structure of the water
body). A short description of the model and required inputs can be found in Petzoldt and
Uhlmann (2006).

2.2. Smoothing

Interpolation is required whenever the time steps of measurements and simulation differ.
Furthermore, smoothing may be required in order to reduce the noise of the measured data.
The problem is, however, that smoothing depends critically on bandwidth and the selected
smoothing kernel. In order to avoid subjectivity we strongly suggest to apply automatic
bandwidth selection methods.

In the following, we propose a pure exemplary preprocessing step for (ecological) time series,
which does not rely on the R package qualV. A Gaussian kernel and an automatic bandwidth
selection method based on the plug-in methodology (dpill) after Ruppert et al. (1995) are
used (package KernSmooth, see Wand and Ripley 2006) to smooth obs:

R> bobs <- dpill(obs$t, obs$y)

R> n <- tail(obs$t, n = 1) - obs$t[1] + 1
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Figure 2: Measured (circles), smoothed measurement (black line), and simulated (gray line)
phytoplankton data for Bautzen Reservoir (Data: TU Dresden, Workgroup Limnology)

R> obss <- ksmooth(obs$t, obs$y, kernel = "normal", bandwidth = bobs,

+ n.points = n)

R> obss <- as.data.frame(obss)

R> names(obss) <- c("t", "y")

R> obss <- na.omit(obss[match(sim$t, obss$t), ])

The result is a new data frame obss containing smoothed data y at a daily time step t aligned
to sim$t (Figure 2).

In the following, these example data are used to demonstrate the proposed qualitative model
criteria implemented in the package qualV and to show their performance in practice.

3. Model validation methods

Numerous methods for the validation of models already exist. They are described and dis-
cussed by authors of different disciplines, for example Balci and Sargent (1982), Rykiel (1996)
or Sargent (2003). It is probably impossible to list all the methods, which have been proposed.

3.1. Classification of methods

Following Mayer and Butler (1993), we can divide the methods into the four groups“subjective
assessment”, “visual techniques”, “deviance measures” and “statistical tests”.

Examples for subjective assessment are face validity and Turing tests. Here experts are
asked whether a model and its behavior are reasonable and whether it is possible to distinguish
between real data and modeled output. These tests show if a model is feasible and how close
measured and simulated data match in graphical display (Rykiel 1996).
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Visual techniques are associated with subjective assessment. They are used to present
values as time series, cumulative sums or two- or three-dimensional diagrams (e.g. predicted-
observed plots). Here simulation ŷ and measurement y are plotted against each other, and
an identity of the lines y = ŷ illustrates the best fit.
Deviance measures can be regarded as numerical validation techniques, which provide a
measure of difference (or similarity) between measured and simulated values and are typically
applicable if the values can be paired in space and/or time.
Specific statistical tests can also be used for model validation, if the design and the values
satisfy the conditions of these tests. Most of them require independent and evenly distributed
values. This assumption does often not hold for real-world data and, in particular, is not
adequate in ecological models. In cases where the conditions can be met, the power of the
test will be low due to the small sample size.
Since subjective assessment and visual techniques are subjective and since the applicability
of tests is limited as discussed in Section 6, this paper will focus on deviance measures.

3.2. Classification of measures

To compare a simulated and a real time series semiquantitatively or qualitatively, it is impor-
tant to define what type of difference is considered essential. Many values, like concentrations,
amounts, energies, speeds or flows can only be positive. In this case relative errors are of-
ten more important than absolute differences. Similar consideration can be found in more
detail in Pawlowsky-Glahn et al. (2003), van den Boogaart and Tolosana-Delgado (2007) or
Tolosana-Delgado and Pawlosky-Glahn (2007). Examples for absolute and relative scale are
given in Figures 3 and 4. Adequate deviance measures for different situations are proposed
in Chapter 4 and summarized in Table 1. The following questions should help to select
appropriate measures:

1. Is the actual level of values of the simulation important or do we consider a scaled or
shifted simulation qualitatively equivalent? Typically, such simple scaling or shifting
can be realized by changing parameters of the simulation. However, for a simulation
based on many different externally validated parameters, one would not intend to change
parameters just to increase the fit for one single dataset. Such differences can be ignored
by centering or scaling the datasets before being compared as discussed in Section 4.1.

2. Are absolute (arithmetic) errors or relative (geometric) errors important? Is the differ-
ence from 1g/L to 1.01 g/L 100 times more or 10 times less important than the difference
of 1mg/L to 1.1mg/L? Relative errors can be considered by using log-transformed data
instead of the data itself and by downweighting differences of higher values as discussed
in 4.2.

3. Are the actual values of the simulation important or only their relation? It might be a
qualitative criterion that the second maximum is smaller than the first, but the precise
value of the two maxima might be considered as a quantitative artifact. If the values
are not important, but only their order relations, we might use a rank transform first,
as discussed in Section 4.3.

4. Should deviance be measured absolutely or relatively to the inherent variation of the
process? In the first case we can interpret the outcome in terms of the original units
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but not relative to other examples. In the second case we can compare the goodness
of fit for very different systems. The corresponding similarity measures are discussed in
Section 4.5.

5. Is the precise timing and speed of the process important? Qualitatively similar pro-
cesses can be quantitatively very different, when the speeds of different subprocesses
are not modeled precisely enough. Related deviance measures ignoring precise speeds
of processes are discussed in Section 5.1.

6. Are the relations and curvature of the process only locally of interest? We may think
that it would be a qualitative feature to have two clear maxima at specific points in
time, but want to disregard which maximum is higher because we think they are not
comparable. In this case we propose the use of local features as discussed in Section 5.2.

4. Deviance measures

In this section we will systematically list and introduce deviance measures for all possible
combinations of answers to the first 4 questions and answering the penultimate with yes and
the last with no (Table 1). Methods for different answers in the last two questions will be
discussed in later sections.

Since each measure produces different values for quite similar or very different time series we
need a comparative value with a simple interpretation. Thus we will report for each measure
the value of the deviance measure for a best fitting constant process, which is a reference
value for “totally unrelated” processes, using the phrase “comparable to”.

4.1. Classical deviance measures for absolute scale

We assume yt to be the measurement of a nonstationary typically time continuous real world
process and ŷt simulated values of the same process at the same times τ1, . . . , τn. We only
consider real valued yt and not vectors. Concerning the methods of this section multiple
outcomes can be studied individually.

In this situation some major deviance measures are defined by:

• mean absolute error : MAE = 1
n

∑n
t=1 |yt − ŷt|

is comparable to the median absolute deviation: MAD(yt) := 1
n

∑n
t=1 |yt −median(yt)|

• mean squared error : MSE = 1
n

∑n
t=1(yt − ŷt)2

is comparable to the variance: var(yt)

• root mean squared error : RMSE =
√

1
n

∑n
t=1(yt − ŷt)2

is comparable to the standard derivation: sd(yt)

MAE, MSE and RMSE deliver absolute, but scale dependent measures of model performance,
i.e. they can only be used for a relative comparison between different models. These deviance
measures are zero if and only if the values are identical (Figure 3). A useful interpretation
of the scale can be achieved when the deviance of a model is compared to the deviance of
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Figure 3: Deviance measures for absolute scale for special setups. f(t) represents the un-
derlying function (thick line) and g(t) its modifications (thin line) for t ∈ [0, 1] of length
n.

a simpler model, e.g. to the simple model of a constant process. The deviance to a best
fitting constant process is often computable by a simple statistical property of the dataset
and reported with each deviance measure.

However, for qualitative comparison a simulation on a different base level or a different scaling
might be considered as a qualitatively equivalent shape (Figure 3 Shift, Shift+Scaling). In
order to remove the difference in mean, we could center the data beforehand by subtracting
the mean for the datasets to be compared. We will encode this by the letter“C”for“centering”
and get a set of deviance measures ignoring shifts:

• centered mean absolute error : CMAE = 1
n

∑n
t=1 |yt − ŷt −median(yt − ŷt)|

is comparable to MAD(yt) and to differences of yt-values.

• centered mean squared error : CMSE = 1
n−1

∑n
t=1(yt − ŷt −mean(yt − ŷt))2
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is comparable to var(yt).

• root centered mean squared error : RCMSE =
√

1
n−1

∑n
t=1(yt − ŷt −mean(yt − ŷt))2

is comparable to sd(yt) and to differences of yt-values.

The centering of MAE is done with the median, to ensure that the resulting measure is
minimized among all possible centerings. For squared error based measures the usual degrees
of freedom for the residuals are used.

Should scaling be ignored, we can proceed to standardize the datasets beforehand. To ensure
comparability of the deviance of different models we need to guarantee that scaled or shifted
model values are always giving the same deviance. We thus need to find parameters a, b, a′, b′

for zt = ayt + b and ẑt = a′ŷt + b′, which minimize the deviance measure for zt and ẑt under
such constraint. It is design decision to select the scaling of such a quantity, since we could
select every scaling. We decided to keep the scaling of the reference part (e.g. the observed
data) and to find an optimal fitting of the models to be compared, i.e. we fix a = 1. Thus if
rt denote the residuals of regression of yt depending on ŷt, we would define using the letter
“S” for “scaled”:

• scaled mean absolute error : SMAE = 1
n

∑n
t=1 |rt|

is comparable to MAD(yt) and to differences of yt-values.

• scaled mean squared error : SMSE = 1
n−2

∑n
t=1 r2

t

is comparable to var(yt).

• root scaled mean squared error : RSMSE =
√

1
n−2

∑n
t=1 r2

t

is comparable to sd(yt) and to differences of yt-values.

Again the degrees of freedom need to be adjusted such that we get n− 2 rather than n− 1 as
denominator.

If comparability between different datasets for the same model is desired one could exchange
the role of data and model for these measures.

4.2. Deviance measures for relative scale

We consider data to be in a relative scale if they are strictly positive and the importance
of the difference is given by the ratio and not by the arithmetic difference (see Figure 4 for
an example). For positive data with a relative scale different measures have been defined in
literature. The qualV package supports two of them:

• mean absolute percentage error : MAPE = 100
n

∑n
t=1

|yt−ŷt|
|yt|

is comparable to a percentage.
The major problem is that the influence of total underestimation (e.g. saying 0) is
limited, while radical overestimation can have unbounded influence on this deviance
measure.
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• geometric reliability index :

GRI =
1 +

√
1
n

∑n
t=1

(
ŷt−yt

ŷt+yt

)2

1−
√

1
n

∑n
t=1

(
ŷt−yt

ŷt+yt

)2
.

according to Leggett and Williams (1981). GRI is a statistical method to determine the
reliability of a model. The index is a number GRI ≥ 1, e.g.:

R> GRI(obss$y, sim$y)

[1] 3.483178

One possible interpretation of GRI is that the simulation is accurate within a multi-
plicative factor, i.e. in our example the observed values fall between 1/3.48 and 3.48
times of the corresponding predicted values.

MAPE cannot be determined if measured values yt are equal to zero and it tends to in-
finity if measurements are small or near to zero. This is a typical behavior, when relative
errors are considered. The analysis of positive data with log-transforms has a long tradi-
tion and got a solid theoretical justification by the Euclidean space approach developed by
Pawlowsky-Glahn and coauthors for compositional data (see Pawlowsky-Glahn and Egozcue
2001; Pawlowsky-Glahn 2003), and has recently been extended to positive data with a rela-
tive scale (Pawlowsky-Glahn et al. 2003; Pawlowsky-Glahn and Mateu-Figueras 2005; Egozcue
2005; van den Boogaart and Tolosana-Delgado 2007). A basic consequence of this work is
that the relative character of the data is perfectly honored by the application of classical
methods for real values to the log of positive observations. Eventually results need to be
back-transformed after the analysis for a better interpretation. We can thus use the following
quantities as deviance measures for the relative scale (Figure 4). The names are generated by
adding an “L” for “logarithmic” in front of the “E” for “error”:

• mean absolute logarithmic error : MALE = 1
n

∑n
t=1 | log(yt/ŷt)|

is comparable to MAD(log(yt)) and to log-ratios of values of yt.

• mean squared logarithmic error : MSLE = 1
n

∑n
t=1 log(yt/ŷt)2

is comparable to var(log(yt)).

• root mean squared logarithmic error : RMSLE =
√

1
n

∑n
t=1 log(yt/ŷt)2

is comparable to sd(log(yt)) and to log-ratios of values of yt.

The interpretation of the values is difficult because we have no feeling for expectations of
absolute logs. However, the exponential of a mean log-ratio can be interpreted as a geometric
mean of scaling factors. We therefore define “Geometric” rather than “Logarithmic” measures
as deviance measures that can be interpreted as multiplicative factors:

• mean absolute geometric error : MAGE = exp
(

1
n

∑n
t=1 | log(yt/ŷt)|

)
is comparable to ratios of values of yt.
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Figure 4: Deviance measures for relative scale for special setups. f(t) represents the un-
derlying function (thick line) and g(t) its modifications (thin line) for t ∈ [0, 1] of length
n.

• root mean squared geometric error : RMSGE = exp
(√

1
n

∑n
t=1 log(yt/ŷt)2

)
is comparable to ratios of values of yt.

The quantitative interpretation of RMSGE2 and MAGE2 is quite similar to the interpretation
of GRI. However, all three measures are differently sensitive to large relative errors. MAGE
and RMSGE are sensitive to outliers just like MAD and variance. For GRI a difference of
several orders of magnitude in 50% of the data can still produce a GRI-index of 6. The latter
is similar to a mean simulation error by a multiplicative factor of 2.5. This is adequate when
considering a qualitative simulation. It might be seen as “extreme robustness against” or as
“pure ignorance of” extreme differences, when doing a qualitative comparison.
For data with a relative scale, zero is a special value. Centering is thus not an option when
comparing such datasets. Thus there are no centered deviance measures for relative scale.
However, scaling is similar to a centering on the log scale and thus the scaled deviance
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measures for relative data are technically centered deviance measures on log-scale:

• scaled mean absolute logarithmic error :
SMALE = 1

n

∑n
t=1 | log(yt/ŷt)−median(log(yt/ŷt))|

is comparable to MAD(log(yt)).

• scaled mean squared logarithmic error :
SMSLE = 1

n−1

∑n
t=1(log(yt/ŷt)−mean(log(yt/ŷt)))2

is comparable to var(log(yt)).

• root scaled mean squared logarithmic error : RSMSLE =
√

1
n−1

∑n
t=1 log(yt/ŷt)2

is comparable to sd(log(yt)).

• scaled mean absolute geometric error :
SMAGE = exp

(
1
n

∑n
t=1 | log(yt/ŷt)−median(log(yt/ŷt))|

)
is comparable to ratios of yt-values.

• root scaled mean squared geometric error : RSMSGE = exp
(√

1
n−1

∑n
t=1 log(yt/ŷt)2

)
is comparable to ratios of yt-values.

4.3. Deviance measures for ordinal scale

Two time series can be compared as ordinal sequences of ranks, when we want to ignore
the precise values and real geometry in the comparison. We propose transforming ranks to
portions:

pt :=
rank(yt)− 1

n− 1

p̂t :=
rank(ŷt)− 1

n− 1
The measures for absolute scale, applied to portions, will then result in new interpretable
deviance measures for ordinal scale. We use the letter “O” for “ordinal” to mark this type of
deviance measures:

• mean absolute ordinal error : MAOE = 1
n

∑n
t=1 |pt − p̂t|

is comparable to MAD(pt) := 1
4 . The value can be interpreted as the mean portion of

values between the modeled and the observed rank.

• mean squared ordinal error : MSOE = 1
n

∑n
t=1(pt − p̂t)2

is comparable to var(pt) = 1
4 .

• root mean squared ordinal error : RMSOE =
√

1
n

∑n
t=1(pt − p̂t)2

is comparable to sd(pt) = 1
2 and to a portion of values.

4.4. Example

For the example data phyto described above a semiquantitative comparison with respect to
several criteria can be produced by:
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absolute scale relative scale
raw centered scaled ordered raw scaled ordered

mad-type MAE CMAE SMAE MAOE MALE SMALE MAOE
as ratio MAGE SMAGE

var-type MSE CMSE SMSE MSOE MSLE SMSLE MSOE
sd-type RMSE RCMSE RSMSE RMSOE RMSLE RSMSLE RMSOE

as ratio RMSGE RSMSGE

Table 1: Adequate deviance measures for different situations: the columns specify the aspects
to be ignored (raw: original values are compared, centered: differences in mean are removed,
scaled: scaling is ignored, ordered: ordinal geometry is used), the rows indicate how distances
are been measured (mad-type: mean absolute distances, var-type: squared distance, sd-type:
root of mean squared distances).

R> sqc <- compareME(obs$y, sim$y, obs$t, sim$t, type = c("normalized"))

The table of normalized deviance measures calculated for various grid cells is given by:

R> print(sqc, digits = 3)

$normalized
time fixed
ignore raw centered scaled ordered

geometry measure
real mad 0.855 0.703 0.723 0.731

var 0.389 0.356 0.342 0.219
sd 0.624 0.597 0.585 0.468

logarithmic mad 0.240 0.815 0.815 0.731
var 1.087 0.644 0.644 0.219
sd 1.043 0.803 0.803 0.468

geometric mad 0.945 0.702 0.702 0.731
var 1.108 0.620 0.620 0.219
sd 1.108 0.620 0.620 0.468

ordinal mad 0.731 0.731 0.731 0.731
var 0.219 0.219 0.219 0.219
sd 0.468 0.468 0.468 0.468

R> compareME(type = "name")

$name
time fixed
ignore raw centered scaled ordered

geometry measure
real mad MAE CMAE SMAE MAOE

var MSE CMSE SMSE MSOE
sd RMSE RCMSE RSMSE RMSOE
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logarithmic mad MALE SMALE SMALE MAOE
var MSLE SMSLE SMSLE MSOE
sd RMSLE RSMSLE RSMSLE RMSOE

geometric mad MAGE SMAGE SMAGE MAOE
var RMSGE RSMSGE RSMSGE MSOE
sd RMSGE RSMSGE RSMSGE RMSOE

ordinal mad MAOE MAOE MAOE MAOE
var MSOE MSOE MSOE MSOE
sd RMSOE RMSOE RMSOE RMSOE

The latter command shows the names of deviance measures. Here time fixed indicates
that actually the time is not transformed. The row ignore specifies the aspects of data
to be ignored, where raw compares original values, centered removes differences in mean,
scaled ignores scaling, ordered uses ordinal geometry. The column geometry indicates the
geometry to be used for the data and the output. Here real corresponds to arithmetic
differences and means, logarithmic handles relative data on a logarithmic scale, geometric
determines geometric differences and means, and ordinal compares values as ordinal sequence
of ranks. The column measure specifies how distances are been measured, i.e. as mean
absolute distances (mad), as squared distances (var), or as root of mean squared distances
(sd).

Reasonably small values with less than 50% deviance can be found for the variance measures
on the ordinal and the real scale. We can thus assume that the simulated data have quite
high relative errors, but fit reasonably well in general shape and in terms of mean squared
differences.

4.5. Similarity measures

Often similarity measures, such as the coefficient of correlation according to Pearson,
measuring in a dimensionless way the linear relationship between two variables, are preferred
to deviance measures, because a direct interpretation of the value exist. A value of 1 always
means complete similarity and 0 always means unrelated dissimilarity.

Classical similarity measures are:

• The Pearson correlation coefficient:

r =
∑n

t=1(xt − x̄)(yt − ȳ)√∑n
t=1(xt − x̄)2

√∑n
t=1(yt − ȳ)2

,

where xt and yt are continuous random variables for t = 1, . . . , n, and x̄ as well as ȳ are
the corresponding means. It is assumed that xt and yt are independent of each other
as well as normally distributed. The correlation coefficient ranges between −1 and 1,
where −1 is a perfect negative correlation, 0 denotes no correlation, and 1 is a perfect
positive correlation. The correlation coefficient r is a statistical standard function in R
(see function cor for more informations).

• The rank correlation coefficient according to Spearman is similar to Pearson’s correla-
tion. However, instead of the data itself, the ranks are used. It is a non-parametric
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measure of correlation. In general, it is capable to assess monotonic and also nonlinear
relationships without any assumptions about the frequency distribution of the data.

• The efficiency factor of Nash and Sutcliffe (1970) is also a dimensionless statistical
measure, which directly relates model predictions to observed data:

EF = 1− (SS over y = ŷ)
(improved SS over y)

= 1−
∑n

t=1(yt − ŷt)2∑n
t=1(yt − y)2

,

where SS is the sum of squares. The efficiency factor takes values between minus
infinity and 1, whereas negative values do not recommend for the model and values
near 1 indicate good model performance. EF is implemented in qualV as function
EF(o, p) with two vectors o and p as data to be compared.

The advantage of similarity measures are the easy interpretation of 1 as the maximum pos-
sible similarity and 0 as the absence of similarity. Possible negative values indicate opposite
behavior. Such a measure of similarity can be defined for each of the deviance measures given
above by a simple formula: Let D be a deviance measure and C a comparative value for the
similarity to a constant as given for each of the deviance measures above. We could get a
normalized deviance measure N according to:

N =
D

C
,

which is 0 for perfect similarity and 1 for absence of similarity (i.e. the similarity to a well
chosen constant). To get a corresponding similarity measure S one could easily change the
sign:

S = 1− D

C
.

The squared Pearson correlation coefficient is conceptually related to a similarity measure of
SMSE, as Spearman correlation is to MSOE and the efficiency factor with MSE.
For multivariate time series similarity measures for different dimensions could be combined
by taking the mean similarity.

5. Qualitative validation criteria

5.1. Time transformation method

Commonly used quantitative deviance measures often show a large dissimilarity of patterns,
which are just shifts or different speeds in time between observation and simulation. To
define deviance and to measure model performance independent of time shifts and time speed
changes, we could transform the time of the simulation, i.e. to run the time faster or slower,
in a way that the deviance of the measured time series and the transformed predicted time
series gets minimal.
A time transformation is thus an increasing, bijective mapping of an interval of time (e.g.
[0, 1]) to itself. Our package provides three types of time transformations (compare Figure 5):
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Figure 5: Transformation functions and the influence of parameters on the time transforma-
tion models. The C0-Spline is parameterized by (3,2,1) and increases proportional to epi . The
Beta-CDF with parameters p1 = 0.5 and p2 = −0.2 is on both sides asymptotically propor-
tional to a power. The Bezier-Curve is parameterized by the vectors (0.3,0.1) and (0.5,0.8)
and asymptotic to corresponding segments. Proportionality constants are denoted by k, k0,
and k2.

• Increasing C0-Splines (transSimplex):
C0-Splines are a very simple method to approximate a function. The Spline is parame-
terized by (pi)i=1,...,d−1 ∈ Rd−1. The time of the simulation is split into d intervals of the
same length. The duration of the i-th interval in observation time is than proportional
to exp(pi), where pd is set to 0.

• The Beta Cumulative Distribution Function (transBeta):

CDF(x;α, β) :=

∫ x
0 uα−1(1− u)β−1du∫ 1
0 uα−1(1− u)β−1du

is a simple two parametric family of strictly increasing functions on the interval [0, 1],
defined for α > 0, β > 0, and u ∈ R. We therefore parameterize the function as α = ep1

and β = ep2 for p ∈ R2.

• Bezier-Curves (transBezier):
Bezier-Curves (e.g. Aumüller and Spitzmüller 1993) are general purpose free form curves
from computer graphics, which handle the x and y coordinates interchangeably. Bezier-
Curves of order n are parameterized by a starting point c0 = (0, 0), an end point
cn := (1, 1), and a sequence of n− 1 control points ci := (p2i−1, p2i). Roughly speaking
the Bezier-Curve is a smoothed version of the segmented curve going near c0, . . . , cn

in sequence. We thus parameterize a Bezier-Curve by p ∈ [0, 1]2(n−1). However, there
is no guarantee that this corresponds to a function or is increasing for n ≥ 3. This
transformation method is nevertheless useful for a fine tuned curve with small variation
from the identity function.

This idea would lead to a definition of a time shifted version of some mean error ME (e.g.
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MSE, SMAGE, . . . ) given by formula like:

TME1((y(ti))i, (ŷ(ti))i) := inf
T∈Transformations

ME((y(ti))i, (ŷ(T (ti)))i),

where T is the time transformation, y(ti) the observed and ŷ(ti) the predicted time series
for i = 1, . . . , n. Here ME is any of the deviance measures defined in Chapter 4 and chosen
depending on our perception of the space of values. Adding the possibility of a time shift is
an orthogonal concept and can be applied to each of the measures defined in the preceding
chapter.

However, such a naive definition leads to two practical problems:

• ŷ(T (ti)) is typically difficult to compute for a general time transformation T .
Say, we would like to compare a time series (y(ti))i=1,...,n of observations with a time
series (ŷ(sj))j=1,...,m of predictions calculated at different times. To resolve this problem,
we propose to interpolate both time series at all data points available in one or the other
time series, and compare each pair. Thus let z(t) denote an interpolation of the observed
time series, ẑ(t) an interpolation of the predicted time series, and xk = tk, k = 1, . . . , n
and T (xk) = sk−n+1 or xk = T−1(sk−n+1) respectively for k = n + 1, . . . , n + m to
extend the definition to:

TME2((y(ti))i, (ŷ(ti))i) := inf
T∈Transformations

ME((z(xk))k, (ẑ(T (xi)))k).

• Extreme transformations are sometimes quantitatively optimal
Sometimes, especially with MSE or very flexible time transformations, a minimal de-
viance is produced by compressing one of the time series into a very short range of the
other. However, these “best fits” solutions are pure artifacts and do not reveal any-
thing about the qualitative true similarity. For avoiding such extreme deformations it
is sometimes useful to penalize the fitting by a deviance measure for the time:

TME((y(ti))i, (ŷ(ti))i) := inf
T∈Transformations

(ME((z(xk))k, (ẑ(T (xi)))k)

+ αMEt((xk)k, (T (xi))k)),

which is the final definition for a time shifted version of some ME. The previous definition
TME2 can be found as a special case for α = 0. The choice of the second deviance
measure MEt and of the weighting α is a tricky task. The choice of α tackles the
objectivity of the measure. We therefore use α = 0 as default option.

Regardless of α there is no need to do any time transformation for a constant time series.
The reference value for a TME is thus the same as for ME itself.

For multivariate time models the individual outcomes could either be studied individually or
using a joint criterion and a common time transformation. However, this second approach is
currently not implemented in our package.

Example

Using the smoothed data obss we can generate a comprehensive table of deviance measures
by:
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R> sqc <- compareME(obss$y, sim$y, obss$t, sim$t, time = c("fixed",

+ "transform"), measure = "var", geometry = c("real",

+ "logarithmic"), type = c("normalized"), trials = 5,

+ col.vars = "ignore")

The command allows you to specify each independent parameter (time for the optional time
transformation, measure for the measure of dissimilarity being used, geometry for the as-
sumed geometry of the data, type for the type measure being used, and col.var to specify
the display in the columns of the resulting table) of the deviance measures separately. In case
of multiple choices the measures for all possible combinations are given.

Here the comparison is done simultaneously for non-transformed ("fixed") and for trans-
formed time ("transform"). Note, that in compareME the beta distribution is applied as
default time transformation function. For arithmetic differences and means ("real") and on
logarithmic scale ("logarithmic") "normalized" squared distances ("var") are measured.
trials gives the number of random starting values that should be used during the opti-
mization of the time transformation. The argument col.vars = "ignore" just specifies the
column variables of the table output and is used here for formatting purpose only.

R> print(sqc, digits = 3)

$normalized
ignore raw centered scaled ordered

geometry measure time
real var fixed 0.4029 0.3549 0.3545 0.2353

transform 0.1852 0.0886 0.0687 0.1022
logarithmic var fixed 0.8794 0.5264 0.5264 0.2353

transform 0.8103 0.4703 0.4703 0.1021

See the example in Section 4.4 for the declaration of column and row names. The result shows
that a very good performance (0.069) of the model can be achieved in scaled real geometry,
if a time shift is allowed (Figure 6, dashed line). The comparable bad performance (0.47) on
relative logarithmic scale suggests that the model has high relative errors for small values.

The time transformation of simulated values using the beta distribution and the deviance
measure SMSE is determined by:

R> tt <- timeTransME(obss$y, sim$y, obss$t, sim$t, ME = SMSE,

+ time = "transform", type = "normalized", trials = 5,

+ timeME = MAE, timeMEtype = "dissimilarity")

result in an error totalME of:

R> print(tt, digits = 2)

totalME timeME
0.069 17.407
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Figure 6: Illustration of time transformation for phytoplankton data (circles: measured data,
solid black line: smoothed measurements, solid gray line: simulated data, dashed gray line:
time transformed simulation data)

The second output of the function timeTransME is a dissimilarity measure of the temporal
deformation determined as MAE in time between observation and simulation. For our ex-
ample the value can be interpreted that the similarity of the pattern of the phytoplankton
concentration increases with a difference in time of around 17 days.

In Table 2 a set of model evaluation criteria is selected to show the performance of the time
transformation.

5.2. Interval sequences

Note that the procedures of combining deviance measures and accepting a time shift still keep
one relation constant: They assume that the values are comparable in each time series of the
whole time sequence. However, sometimes we would assume that values more than some time
apart can not be compared directly any more. In this case the qualitative behavior of the
time series is defined by the sequence of its local shapes.

Interval sequences have been proven suitable to analyze and to compare the qualitative be-
havior of time series (Agrawal et al. 1995a; Höppner and Klawonn 2001; Höppner 2001, 2002b;
Cuberos et al. 2002). Similar methods are also used in genetics to search for DNA patterns
in large databases, and to localize frequently recurring patterns. Here the method of interval
sequences is used to compare two time series. Both time series are disaggregated into equal
segments. The segments are described by qualitative features. The features can be named
with symbols (like “A”, “B”, “C”, . . . ) resulting in one string for each time series, which repre-
sents the interval sequences. The comparison occurs on the basis of the two interval sequences.
Differently from the proposed methods in Sections 4 and 5.1 not the distance between the
values of two time series decides about the similarity, but their qualitative behavior.

In some cases it is useful to standardize the time series before dividing them into segments.
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Time transformation
Criterion Symbol before after
mean absolute error MAE 0.83 0.63
mean absolute percentage error MAPE 2.81 4.76
mean square error MSE 0.4 0.19
centered mean square error CMSE 0.35 0.09
scaled mean square error SMSE 0.35 0.07
mean square log error MSLE 0.88 0.93
scaled mean square log error SMSLE 0.53 0.49
mean square ordinal error MSOE 0.24 0.12
correlation coefficient r 0.8 0.97
model efficiency EF 0.6 0.81
geometric reliability index GRI 3.48 3.47
time MAE 0 0.17

Table 2: Selected model evaluation criteria for the example in Figure 6 before and after time
transformation using the beta distribution. All measures are given in their normalized version.

One common method is scaling into the interval [0, 1]. Thereby quantitative differences be-
tween time series are removed.

Possible features for defining interval sequences

Which features are used to define interval sequences depends on the application. No generally
accepted criteria exist. Here some possible features of time series are presented, which are
implemented within the package qualV.

One obvious possibility is the description of the time series using the first derivative (f.slope,
Höppner 2002b; Cuberos et al. 2002). The time series are separated into sequences which
increase, decrease or stay constant. This property provides a first impression of the rough
development of the values and distinguishes between the shapes “increase” and “decrease”.

The second derivative (f.curve) is another possible feature for interval sequences. This
property provides more detailed information about the shape of the time series - convex,
concave or linear. In combination with the first derivative, the time series can be qualitatively
described with terms like “convex decreasing” or “concave increasing” (see Höppner 2002b).

The characterization with various degrees of steepness (f.steep) is an alternative to the
second derivation, e.g. in terms like “very steep”, “steep”, and “not steep” (see Höppner 2001)
or low, moderate and high increasing or decreasing, and constant segments (see Cuberos et al.
2002).

Another possible feature arises from the categorization into high, middle and low values
(f.level, compare Höppner 2001). The thresholds for this property depend on the values
and the considered question. For example, are the values scaled into the interval [0, 1], all
values greater 0.8 can be considered as high and values below 0.2 as low. The purpose of this
feature is to distinguish quantitative differences independent of scaling.

For a multivariate time series features from several dimensions can be combined to joint
features. There is no generally applicable universal set of features. Using more features
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provides a more detailed comparison, but requires a higher degree of similarity of the time
series to give meaningful results.

Determination of similarity

After converting each time series into an interval sequence represented as string, a method is
required to determine the similarity. Cuberos et al. (2002) proposed the “quality similarity
index”(QSI) by dividing the length of a longest common subsequence (LCS) over the maximum
length of both interval sequences. A subsequence of a string is defined as a subset of characters
of the string, which maintain their original order, i.e. a subsequence does not need to consist
of neighboring characters of the string. A longest common subsequence of two finite strings is
defined as the longest accumulation of characters, which have the same order in both sequences
(Gusfield 1997). Thereby this method allows insertions and deletions, i.e. characters can be
ignored or missed. This behavior is complementary for the LCS of two strings, i.e. when
characters are skipped in one string, the characters are missing in the other string and vice
versa.

The LCS problem is that of finding a LCS of two given strings and to measure the length
of it. The LCS problem can be applied in many areas, e.g. in molecular biology to compare
DNA-sequences, or in computer science to compare two versions of one text. For solving the
LCS problem various dynamic programming algorithms are possible, as described by several
authors (e.g. Wagner and Fischer 1974; Hirschberg 1977; Nakatsu et al. 1982; Apostolico et al.
1992; Gusfield 1997). Paterson and Danč́ık (1994) give a survey of algorithms and their time
and space complexity. One common algorithm is provided by the package qualV.

QSI takes values between 0 and 1. An index equal to 0 indicates no match, i.e. the qualitative
behavior of two time series is completely different concerning the considered feature. An index
near to 1 characterizes a similar qualitative behavior. Note that an index equal to 1 does not
necessarily indicate identical values of both time series. Only the identity of the features is
considered.

Example

For the interval sequence comparison, we use the smoothed data obss like in the time trans-
formation method. Choosing from several possible features we use the most basic feature
(f.slope), which is essentially a measure of the first derivative:

R> obs_f1 <- f.slope(obss$t, obss$y)

R> sim_f1 <- f.slope(sim$t, sim$y)

The result is a character vector with, in this case, the symbols “A” for increasing, “B” for
decreasing and “C” for constant. The resulting sequences of the observed and simulated time
series are printed to give an impression:

R> cat(obs_f1, sep = "", fill = 76)

CCCCCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBCCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC
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Figure 7: Illustration of interval sequence comparison for phytoplankton data (triangles:
measured data, solid black line: smoothed measurements, solid gray line: simulated data,
color filled circles: matching intervals)

CBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCC

R> cat(sim_f1, sep = "", fill = 76)

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAA
AAAAAAACBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB
BBBBBCAAAAAAAAAAAACCCCBBBCCCCCCCBBBBBBCAAAAAAAAAAAAAAAAAAAACCBBBBBBBBBBBBBBB
BBBCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCBBBBB

Function LCS(a, b) is used to find the longest common subsequence using a dynamic pro-
gramming algorithm. The result of this function is a list with vectors a and b holding the
original interval sequences, LCS and LLCS are the longest common subsequence and its length,
respectively, QSI being the LCS based similarity index, va and vb containing a possible LCS
solution (visualized in Figure 7) for the input vectors a and b, respectively:

R> lcs <- LCS(obs_f1, sim_f1)

which results in lcs$QSI=0.72. The QSI is not affected by systematic deviations or shifts
in time, but the duration of the considered feature is of importance. In the example the
decreasing period of the first maximum is longer for the measurement than for the simulation
(compare the green parts in Figure 7). Thus, the observation contains additional segments,
which are not reproduced by the simulation. These interval sequences remain unconsidered
in the QSI.
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6. Inferential considerations

The deviance measures provided are descriptive and exploratory tools. With a clear idea
of the relevant difference we can select the appropriate deviance measure and describe the
difference between data and model numerically. This is similar to the use of a mean or
standard deviation to describe location and spread of a specific sample. Without this clear
idea one could calculate a whole set of deviance measures. This provides informations in
which aspects data and model are similar and in what quality they differ. We can also use
different data sets or different models to compare which of them are more similar to their
corresponding opposite. However, this is not an inferential comparison by a statistical test
but an exploratory comparison like the comparison of two sample means or two values in a
dataset. This is saying something in an exploratory context, but it needs confirmation by a
test to transform from an observation to a law.

Evidently it would be very nice to have some statistical tests for the qualitative comparison of
qualitative behavior of inhomogeneous time series. One might come up with simple statistical
tests such as a correlation test. However, the situation is more difficult. To establish inferential
statistical procedures, we need at least two things:

• A relevant scientific question.

• A valid model of the inherent randomness.

A clear source of randomness are the measurement errors, which might be modeled as inde-
pendent with known or unknown variances. Other sources of variation in transient random
systems are the variability of starting conditions, imprecise process parameters, simplifications
in the model description, incompletely known boundary conditions such as weather, and in-
deterministic or chaotic progression of subsystems. This sort of variability is stochastically
dependent by nature and has a complex unmodeled structure. To cope with this second type
of randomness, we either need a precise model of the inner structure of the system, which is
an approach far beyond the scope of this paper, or multiple independent realizations of the
system. A statistical modeling of the dependence by standard models like autoregressive or
moving average processes seems inappropriate for nonstationary times series. We thus have
no strong general model of error in the individual realizations of the system.

Several types of questions seem to be relevant:

• “Is the model somehow similar to nature?”
This is a very shy question of “is my model predicting anything” and would need a test
of the form:

H0 : S = 0 v.s. H0 : S > 0

where S is an appropriate measure of similarity and 0 has a meaning. For a single
sequence of data pairs this is e.g. done by correlation tests. However, these tests rely on
stochastic independence of the observations and thus is inappropriate for our situation.
A way out might be to read:

H0 : E[S] ≤ 0 v.s. H0 : E[S] > 0

or
H0 : P (S ≤ 0) ≤ 0.5 v.s. H0 : P (S ≤ 0) > 0.5
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instead and to draw a random sample from a statistical population of systems modeled
by our model and to check this by a t-test or a binomial test.

However, often 0 similarity is an abstract concept and has no true meaning. Thus maybe
the more appropriate question would be:

• “Is the prediction better than pure guesswork?”
In this case we could replace the H0 hypothesis by a model for guesswork. Since a
canonical pure guesswork does not exist, we have to consider different definitions of
guesswork: a) another simpler model, b) or the chosen model but in another time
sequence, c) the outcomes from a set of different models for different situations. For
a) the most simple model is that of a constant system, which is the inbuilt comparison
model for our similarity measures. Thus the question is equivalent to the first possibility.

We can get b) e.g. by reordering predicted outcomes by a random permutation. The
similarity measure S would get the test statistics. Its distribution under the 0 hypothesis
can be calculated by Monte-Carlo methods and the test would reject the 0 hypothesis
for high values of S. However, still both time series have in common to be somehow
correlated in time. This results in a higher probability of extreme values for S and
thus a falsely significant test. In conclusion approach b) could deliver significant results
simply based on the similarity of being both nonrandom.

We can get c) by pairing every prediction with every dataset and ask whether the sim-
ilarities of matching pairs are higher than the similarities of nonmatching pairs. This
can be done by the Wilcoxon-Rank-Sum-Test of matching similarities against the non-
matching similarities. However, this is a relative comparison checking that the matching
partner gives a better prediction than nonmatching. This answers the question: Is the
adaption to different situations pure guesswork?

In conclusion there is no generally satisfying concretization of the first problem.

• “Does the model fit nature?”
The mathematical concretization of this is: Does the model perfectly describe nature up
to acceptable sources of variation. This being the more sparse assumption it must serve
as the hypothesis of the test. However, this hypothesis is in general false, especially
in bio-related sciences, since a model is a model and not a perfect image of the truth.
The whole approach of qualitative comparison is based on accepting some deviations as
inevitable. The whole concept of accepting measurement errors and variation renders
the model as incomplete. The approach of providing the model as time series is not able
to represent such details. We thus consider this problem of “Does the model fit nature?”
as irrelevant and not answerable in the given context. However, the whole approach
focuses on comparison and thus the question of interest might be:

• “Is model A describing the observation better than model B?”
This is exactly the answer provided by the deviance measures. However, since each
realization of an observed time series is only one independent observation, we can not
prove a general law of one model being better than the other from a single comparison.
We thus need a whole independent sample of realizations of the system to choose which
model performs better for the whole statistical population of possible realizations. How-
ever, if we have such a set of different realizations we could compare each of them to
both models with our preferred deviance measure and get a dataset of paired deviances.
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These can be compared by a paired test like the sign-test or Wilcoxen-Signed-Rank-Test
depending on what the appropriate alternative of deviances seems to be.

We decided to put no tests into the package because the only appropriate tests are standard
tests to be performed on the outcome of our deviance measures for whole datasets of datasets.

7. Discussion

Dynamic models are useful tools for process understanding, for consistency checking of ex-
isting knowledge, for deriving hypotheses, and for making predictions. For both, theory and
applications, model validation is crucial. Validation is necessary for accepting a model and
for identifying the range of its applicability, as there are often uncertainties about the scope
of questions to be answered with one particular model (see Mayer and Butler 1993; Reckhow
1994; Elliott et al. 2000).

Numerous methods already exist for the evaluation of models, but for different reasons not
all methods are suitable for a certain model. In many cases a set of different techniques are
required in order to obtain an overall assessment of model performance, but there is no com-
bination of methods applicable to all models, which can be suggested as universal solution
(see Mayer and Butler 1993; Sargent 1998). The set of validation methods introduced in Sec-
tions 3.1 and 3.2 are without exception either subjective assessments or based on quantitative
measurements with corresponding values in space and time. In practice methods for the qual-
itative assessment of models by means of observed values are seldom used (Konstantinov and
Yoshida 1992; Agrawal et al. 1995a,b; Höppner and Klawonn 2001; Höppner 2002a; Cuberos
et al. 2002), but important, when numerical validation techniques do not apply.

McCuen and Knight (2006) investigated the behavior of the commonly used similarity measure
EF of Nash-Sutcliffe in more detail. They showed that outliers can significantly influence
sample values of EF. Furthermore time delays and bias in magnitude can have an adverse
effect on EF. They pointed out that EF can only be a reliable goodness-of-fit statistic if it is
properly interpreted.

Elliott et al. (2000) used a total of ten validation statistics to test the quality of a new model,
but these were all conventional methods based on a quantitative comparison (e.g. MAE,
MAPE, RMSE, EF, . . . ). For the authors the results of the evaluation were disappointing
and they refer to Grimm (1994) and Grimm et al. (1996) that it is not necessarily of interest
to simulate data in high precision for concentrating on the pattern observed. They concluded
that only some of the statistics they used were suitable and that they should be used in
combination with visual techniques, i.e. a subjective assessment.

The weak point in using only quantitative methods for validation is that in the case of time
delay the comparison fails in spite of similar patterns without identifying the reason (the time
delay). Here the orthogonal set of deviance measures that we propose is not only an approach
to complete commonly used deviance measures for model validation, but to identify the type
of difference. The complicate question which difference should be regarded as important can
not be answered by this method. That remains a user decision dependent on the application
of the model.

In case of time delays Marron and Tsybakov (1995) suggested an error criteria using “visual”
instead of vertical distances. They defined visual distance to be the shortest distance from a
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given point of the estimation to any point of the observation. This approach is applicable in
finding the “best” estimate close to visual impression.

Similarly the new proposed method of time transformation has a special focus on the problem
of shifts in time. In addition to the method of Marron and Tsybakov (1995) a value of the
goodness of fit can be determined as well as the size of the difference in time. For example
the pattern of the measured values in Figure 2 points two maxima of phytoplankton growth,
a large one in spring and a smaller one in the end of summer. The model also simulates two
maxima, but with a small time delay for the first peak, and the second one appears earlier in
comparison to the measurement. A statistical model evaluation with a correlation coefficient
of 0.8 and an efficiency factor of 0.6 already delivers a quite “good” model performance, but
may not satisfy everybody. Transforming the time of the simulation with the beta distribution
improves the model performance considerably (Figure 6). Now a correlation coefficient of 0.97
proves an increasing linear relationship. The efficiency factor has improved to 0.81, but in
relation to the high correlation coefficient it indicates systematic deviations, which is up to a
factor of 3.47 (geometric reliability index).

Konstantinov and Yoshida (1992) considered that measured values, which are afflicted with
measurement errors are volatile and never follow exactly the same pattern, and any attempt
to compare and analyze time profiles in a strict quantitative fashion will be inadequate. They
suggested to reduce the accuracy to an appropriate level of abstraction, preserving only the
underlying shape feature. Therefore they used a qualitative analysis, removed quantitative
details and determined the similarity by means of qualitative features. Analogously, Agrawal
et al. (1995b) developed a “shape definition language” to define the qualitative behavior of
time series. Similar to the method of interval sequence this approach translates the shape of
the time series into symbols. The symbols describe classes of transitions. Dividing measure-
ment and simulation into interval sequences by using the first derivative and determining the
similarity of the pattern with decreasing, increasing and constant features delivers a QSI of
0.72 for the above example. Here systematic deviations and shifts in time are downweighted.
The order of the features is kept and additional (insertions) or missing segments (deletions)
are allowed. Solely the duration of a feature affects the QSI.

Qualitative comparison of a model and nature can be based on rather different aspects of
similarity: Similar values (quantitative similarity), similar distribution (stochastic similarity),
similar processes (analogy), similar behavior (phenomenological similarity). The approach
of this paper is focused on phenomenological similarity of the qualitative behavior of the
outcome. We justify this as a pragmatic approach, since quantitative similarity is often not
within reach, stochastic similarity needs much data, and analogy of the process is typically the
basis the model has been build on originally. On the other hand if a model is both analog to
nature and phenomenological validated it might adequately present the qualitative behavior
of the modeled system.

We propose a system of elementary deviance and similarity measures in theory and software
for this special type of comparison. From the viewpoint of descriptive statistics the measures
allow a comparison of the modeling fitness between different models for the same situation,
between different situations simulated by one individual model, and with similarity measures
even between different models applied to different situations. For each situation the adequate
measure can be selected based on the answers to six simple questions. Important limitations
for inferential statistics in the given context were discussed in detail. However, in case of
representative samples of real world systems described by various models, common statistical
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tests can be used to compare the resulting quality measures and to assess the phenomenological
performance of the applied models. Moreover a combination of multiple deviance measures
used in an exploratory context can help to identify both, deficiencies and capabilities of given
and newly developed ecological models.
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Höppner F (2001). “Discovery of Temporal Patterns – Learning Rules About the Qualitative
Behaviour of Time Series.” In “PKDD: Proceedings of the 5. European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases,” pp. 192–203. Springer-Verlag.
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