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Abstract

Canonical correlations analysis (CCA) is an exploratory statistical method to high-
light correlations between two data sets acquired on the same experimental units. The
cancor() function in R (R Development Core Team 2007) performs the core of computa-
tions but further work was required to provide the user with additional tools to facilitate
the interpretation of the results. We implemented an R package, CCA, freely available
from the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/), to
develop numerical and graphical outputs and to enable the user to handle missing values.
The CCA package also includes a regularized version of CCA to deal with data sets with
more variables than units. Illustrations are given through the analysis of a data set coming
from a nutrigenomic study in the mouse.
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1. Introduction

Canonical correlation analysis (CCA) is a multidimensional exploratory statistical method
in the same vein as Principal Components Analysis (PCA): both methods lie on the same
mathematical background (matrix algebra and eigen analysis) and results can be illustrated
through similar graphical representations.

The main purpose of CCA is the exploration of sample correlations between two sets of
quantitative variables observed on the same experimental units, whereas PCA deals with one
data set in order to reduce dimensionality through linear combination of initial variables.

http://www.jstatsoft.org/
http://CRAN.R-project.org/
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When performing CCA, mathematical arguments compel data to have more units than vari-
ables in each set. In practice, the number of units should be greater that the total amount
of variables in both sets what is not always possible. In particular, in the context of high
throughput biology, a set of variables may be one set of genes whose expression has been
measured by means of microarray technology (see for example Muller and Nicolau 2004) on
few experimental units. In this case, the number of genes can easily reach several hundreds or
thousands whereas the number of units to be monitored cannot be so large. Note that similar
situations can be found in other fields, for instance chemistry with recent developments in
spectroscopy and chemometrics (Mullen and van Stokkum 2007). When other variables are
acquired on these same units in order to highlight correlations, classical CCA cannot be per-
formed. One solution consists in including a regularization step in the data processing (Bickel
and Li 2006) to perform a regularized canonical correlation analysis (RCCA).

Another well known method can deal with the same kind of data: Partial Least Squares (PLS)
regression (Mevik and Wehrens 2007). However, the object of PLS regression is to explain
one or several response variables in one set, by way of variables in the other one. On the other
hand, the object of CCA is to explore correlations between two sets of variables whose roles
in the analysis are strictly symmetric. As a consequence, mathematical principles of both
methods are fairly different.

Statistical softwares usually propose CCA computations (cancor() in R, proc cancorr in
SAS, . . . ). We noticed that cancor() outputs are very limited and needed to be completed to
be used in an efficient way. We developed an R package with three purposes: 1) to complete
numerical as well as graphical outputs, 2) to enable the handling of missing values and 3) to
implement RCCA.

Mathematical background of CCA and RCCA is presented in the second section: computa-
tions and graphical representations are described in both cases. In the third section, CCA is
used on one data set available in the package.

2. Canonical correlation analysis

2.1. Notation

Let us consider two matrices X and Y of order n × p and n × q respectively. The columns
of X and Y correspond to variables and the rows correspond to experimental units. The jth

column of the matrix X is denoted by Xj , likewise the kth column of Y is denoted by Y k.
Without loss of generality it will be assumed that the columns of X and Y are standardized
(mean 0 and variance 1). Furthermore, it is assumed that p ≤ q (in other words, the group
which contains the least variables is denoted by X). We denote by SXX and SYY the sample
covariance matrices for variable sets X and Y respectively, and by SXY = S>

YX
the sample

cross-covariance matrix between X and Y . The notation A> means the transpose of a vector
or a matrix A.

2.2. Principle

Classical CCA assumes first p ≤ n and q ≤ n, then that matrices X and Y are of full column
rank p and q respectively. In the following, the principle of CCA is presented as a problem
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solved through an iterative algorithm.

The first stage of CCA consists in finding two vectors a1 = (a1
1, . . . , a

1
p)
> and b1 = (b11, . . . , b

1
q)
>

that maximize the correlation between the linear combinations

U1 = Xa1 = a1
1X

1 + a1
2X

2 + · · ·+ a1
pX

p

and
V 1 = Y b1 = b11Y

1 + b12Y
2 + · · ·+ b1qY

q ,

assuming that vectors a1 and b1 are normalized so that

var(U1) = var(V 1) = 1 .

In other words, the problem consists in solving

ρ1 = cor(U1, V 1) = max
a,b

cor(Xa, Y b) ,

subject to the constraint
var(Xa) = var(Y b) = 1 .

The resulting variables U1 and V 1 are called the first canonical variates and ρ1 is referred as
the first canonical correlation.

Higher order canonical variates and canonical correlations can be found as a stepwise problem.
For s = 1, . . . , p, we can successively find positive correlations ρ1 ≥ ρ2 ≥ · · · ≥ ρp with
corresponding vectors (a1, b1), . . . , (ap, bp), by maximizing

ρs = cor(U s, V s) = max
as,bs

cor(Xas, Y bs) subject to var(Xas) = var(Y bs) = 1 ,

under the additional restriction

cor(U s, U t) = cor(V s, V t) = 0 for 1 ≤ t < s ≤ p .

2.3. Mathematical aspects

From a geometrical point of view, let us define

PX = X(X>X)−1X> =
1
n
XS−1

XX
X> and PY = Y (Y >Y )−1Y > =

1
n
Y S−1

YY
Y >

the orthogonal projectors onto the linear spans of the columns of X and Y respectively.

It is well known (Mardia et al. 1979) that:

Proposition 2.1. .

� canonical correlations ρs are the positive square roots of the eigenvalues λs of PXPY

(which are the same as PY PX ): ρs =
√
λs;

� vectors U1, . . . , Up are the standardized eigenvectors corresponding to the decreasing
eigenvalues λ1 ≥ · · · ≥ λp of PXPY ;
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� vectors V 1, . . . , V p are the standardized eigenvectors corresponding to the same decreas-
ing eigenvalues of PY PX .

2.4. Regularized CCA

CCA cannot be performed when the number of experimental units is less than the greatest
amount of variables in both data set (n ≤ max(p, q)). Actually, when the number of vari-
ables increases, greatest canonical correlations are nearly 1 because of recovering of canonical
subspaces that do not provide any meaningful information. Therefore, a standard condition
usually advocated for CCA (Eaton and Perlman 1973) is n ≥ p+ q + 1.

Furthermore, when variables X1, . . . , Xp and/or Y 1, . . . , Y q are highly correlated, i.e. nearly
collinear, matrices SXX and/or SY Y respectively, tend to be ill-conditioned and their inverses
unreliable.

One way to deal with this problem consists in including a regularization step in the calcu-
lations. Such a regularization in the context of CCA was first proposed by Vinod (1976),
then developed by Leurgans et al. (1993). A recent reference deal with the application of the
regularization to linear discriminant analysis (Guo et al. 2007). A survey about regularization
in statistics is proposed in Bickel and Li (2006).

In this framework, SXX and SY Y are replaced respectively by ΣXX (λ1) and ΣY Y (λ2) defined
by

ΣXX (λ1) = SXX + λ1Ip and ΣY Y (λ2) = SY Y + λ2Iq.

This method rises a new problem: how to set “good” values for the regularization parameters?
This problem is addressed in the next section through a rather standard cross-validation
procedure.

2.5. Cross-validation for tuning regularization parameters

Let us denote λ = (λ1, λ2). For a given value of λ, denote by ρ−iλ the first canonical correlation
of CCA computed from the units with rows Xi and Yi removed. Let a(−i)

λ and b
(−i)
λ be the

corresponding vectors defining the first canonical variates. We do this for i = 1, . . . , n and
obtain n pairs of vectors

(
a

(−1)
λ , b

(−1)
λ

)
, . . . ,

(
a

(−n)
λ , b

(−n)
λ

)
.

The leave-one-out cross validation score for λ = (λ1, λ2) is then defined by Leurgans et al.
(1993):

CV (λ1, λ2) = cor
({
Xia

(−i)
λ

}n
i=1

,
{
Yib

(−i)
λ

}n
i=1

)
.

Then we choose the value of λ1 and λ2 that maximizes this correlation:

λ̂ = (λ̂1, λ̂2) = arg max
λ1,λ2

CV (λ1, λ2) .

Note that λ̂1 and λ̂2 are chosen with respect to the first canonical variates and are then fixed
for higher order canonical variates.
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There are two tuning parameters in the regularized CCA, so the cross-validation is performed
on a two-dimensional surface. Directly searching for a maximum on the two-dimensional
parameter surface ensure to obtain the optimal value for λ, but may require intensive com-
puting. An alternative consists in building a relatively small grid of “reasonable” values for
λ1 and λ2, to evaluate the cross validation score at each point of the grid, and then to choose
the value of λ = (λ1, λ2) that gives the largest CV -score (Friedman 1989; Guo et al. 2007).

2.6. Graphical representations

As in PCA, two kinds of graphical representations can be displayed to visualize and interpret
the results of CCA: scatter plots for the initial variables Xj and Y k and scatter plots for the
experimental units. If d (1 ≤ d ≤ p) is the selected dimension for results of CCA, graphical
representations can be drawn for every pair (s, t) of axes such that 1 ≤ s < t ≤ d. For a
given pair (s, t), variables plots and units plots can be considered with respect either to U s

and U t or to V s and V t. If the canonical correlations are close to one, then the graphical
representations on the axes defined by (U s, U t) and (V s, V t) are similar.

Choosing the dimension

Like in PCA, it is advocated to choose a small value for dimension d (1 ≤ d ≤ p). In practice,
this value is very often 2, 3 or 4. Note that small canonical correlations are not relevant: they
do not express linear relationships between columns of X and Y and can be neglected.

For great values of p, we suggest an empirical approach for choosing the dimension based on the
joint examination of two graphical representations: the scree graph of canonical correlations
and the scatter plots of variables. The scree graph is the plot of canonical correlations versus
the dimension; a clear gap between two successive values suggest to select for d the rank
of the greatest one. On the other hand, we consider the scatter plot of variables according
to axes (U s, U s+1) for the first values of s and we neglect axes such that almost all points
representing either X-variables or Y -variables are within the circle of radius 0.5 (that is
correlations between variables Xj or Y k and canonical variates U s or V s are less than 0.5).

Representations of the variables

The variables plot is of interest because it allows to discern the structure of correlation between
the two sets of variables X and Y . Coordinates of variables Xj and Y k on the axis defined
by U s are Pearson correlations between these variables and U s. As variables Xj and Y k are
assumed to be of unit variance, their projections on the plane defined by the axes (U s, U t)
are inside a circle of radius 1 centered at the origin, called the correlation circle. On this
graphic two circumferences are plotted corresponding to the radius 0.5 and 1 to reveal the
most salient patterns in the ring defined between these two circumferences. Variables with a
strong relation are projected in the same direction from the origin. The greater the distance
from the origin the stronger the relation. The principle and interpretation are similar as
the “correlation loadings” plot provided by the pls package in the context of PLS regression
(Mevik and Wehrens 2007).

Representations of the units

The representation of the units can be useful to clarify the interpretation of the correlation
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matcor
img.matcor

rcc
(X,Y,λ1,λ2)

cc
(X,Y)

plt.cc
plt.var - plt.indiv

X (n×p)
Y (n×q)

n >> p+q

estim.regul
img.estim.regul

loo
comput
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Step 1 : 
preliminary

Step 2 : optional 
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Step 3 : computation based 
on cancor() R function

Step 4 : graphical 
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Figure 1: Schematic view of the canonical correlation analysis process using CCA. Functions
in italic font are internal functions the user does not have to call. In bold face, the cancor()
R function around which the package is built.

between variables. This representation of units is possible by using the axes defined by
(U s, U t): the coordinate of the ith unit on the axis U s is U si (the ith coordinate of the sth

canonical variate).

The relationships between the two plots (variables and units) drawn on the matching axes
can reveal associations between variables and units.

3. Using CCA

CCA is freely available from the Comprehensive R Archive Network (CRAN, http://CRAN.
R-project.org/). Once loaded into R, CCA provides the user with functions to perform
CCA and one data set for illustration purpose.

3.1. Implementation issues

Figure 1 provides a schematic view of the canonical correlation analysis process, from the
data to graphical displays, using the CCA package.

Each step is illustrated in the following sections using the nutrimouse data set.

3.2. nutrimouse data set

The nutrimouse data set comes from a nutrition study in mouse (Martin et al. 2007). Forty
mice were studied; two sets of variables were acquired:

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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Units
(40 mice)

Diet
(5 levels)

Genotype
(2 levels)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ?

fish coc lin sun ref fish coc lin sun ref

WT PPARα

Figure 2: Experimental design of the nutrition study.

� expressions of 120 genes measured in liver cells, selected (among about 30000) as po-
tentially relevant in the context of the nutrition study. These expressions were acquired
thanks to microarray technology (Muller and Nicolau 2004);

� concentrations of 21 hepatic fatty acids (FA) measured by gas chromatography.

Biological units (mice) are cross-classified according to two factors (Figure 2):

� Genotype: study were done on wild-type (WT) and PPARα deficient (PPARα) mice.

� Diet: Oils used for experimental diets preparation were corn and colza oils (50/50)
for a reference diet (REF), hydrogenated coconut oil for a saturated FA diet (COC),
sunflower oil for an ω6 FA-rich diet (SUN), linseed oil for an ω3 FA-rich diet (LIN) and
corn/colza/enriched fish oils for the FISH diet (42.5/42.5/15).

This data set was used to present a survey of statistical methods applied in the context of
microarray data analysis (Baccini et al. 2005). Exploratory methods (PCA, multidimensional
scaling, hierarchical clustering), modeling (ANOVA, mixed models, multiple testing), learning
methods (random forests, Breiman 2001) were used to highlight a small sets of “interesting”
genes on which CCA were performed to explore correlations with the fatty acid data set.

The data set can be loaded into the R workspace by data("nutrimouse"). The description
of this data set is also available by calling help(nutrimouse).

To avoid problems in the computations, the user should convert the data into the matrix
format before performing CCA.

R> X <- as.matrix(nutrimouse$gene)
R> Y <- as.matrix(nutrimouse$lipid)

3.3. Preliminary

Canonical correlations analysis aims at highlighting correlations between two data sets. A
preliminary step may consist in visualizing the correlation matrices. The package CCA pro-
poses two ways to obtain this kind of representation: either the whole matrix concatenating X
and Y or by expanding the 3 correlation matrices as it is done in Figure 3 with the following
code.
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Figure 3: Correlation matrices for: X variables (upper-left), Y variables (upper-right), cross-
correlation X × Y (bottom). Increasing values are translated into colors from blue (negative
correlation) to red (positive correlation).

R> correl <- matcor(X, Y)
R> img.matcor(correl, type = 2)

Figure 3 highlights some significant correlations not only within each set of variables (squared
matrices 120×120 and 21×21 at the top) but also between both sets (the rectangular matrix
21×120 at the bottom) i.e. between gene expression and fatty acids concentration.

The work must be stopped here if images obtained are uniformly in light green color corre-
sponding to nearly null correlation.

3.4. Performing CCA

Classical CCA

When dealing with data sets in which the number of experimental units is greater than
the number of variables, the classical CCA can be performed with the cc() function. The
following command lines illustrate its use with a restricted number of genes from the X data
set.

R> Xr <- as.matrix(nutrimouse$gene[, sample(1:120, size = 10)])
R> res.cc <- cc(Xr, Y)
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R> barplot(res.cc$cor, xlab = "Dimension",
+ ylab = "Canonical correlations", names.arg = 1:10, ylim = c(0,1))
R> plt.cc(res.cc)

The explanation of the above command lines are:

1. first, we randomly choose 10 genes among the 120 and the data are stored as a matrix
in the object Xr;

2. canonical correlations analysis is performed with Xr (40×10) and Y (40×21);

3. the barplot of canonical correlations is displayed;

4. variables and units are plotted on the first two canonical variates (default values for d1
and d2 arguments of plt.cc).

Similar plots will be presented and discussed in the following section when dealing with the
complete case.

Regularized CCA

When dealing with the whole data set (X(40×120) and Y(40×21)), classical CCA cannot be
performed and the regularization step must be included in the data processing.

Choice of regularization parameters As mentioned in section 2.5, we opted to build a
grid around reasonable values for λ on which we detect the cell where the CV-score reached
its maximum.

The leave-one-out cross-validation process is implemented in the function estim.regul().
The default grid on which the CV-criterion is calculated is regular with 5 equally-spaced
discretization points of the interval [0.001, 1] in each dimension.

The experience can guide the user to refine the discretization-grid but one can also use the
estim.regul() function in a recursive way. First, use the default grid and locate an area
where the optimal value for λ1 and λ2 could be reached and then, determine a new grid
around these first optimal values.

Figure 4 was obtained by calculating the CV-criterion on the 51 × 51 grid by using the
estim.regul() function:

R> res.regul <- estim.regul(X, Y, plt = TRUE,
+ grid1 = seq(0.0001, 0.2, l=51),
+ grid2 = seq(0, 0.2, l=51))

It enables to evaluate the optimal values for λ1 and λ2 at respectively 0.008096 and 0.064.
These values are returned by the estim.regul() function with the value of the CV-criterion.

lambda1 = 0.008096
lambda2 = 0.064
CV-score = 0.8852923
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Figure 4: Image representing the CV-score for λ1 and λ2 on a 51 × 51 grid defined by
equally-spaced discretization points on the region: 0.0001 ≤ λ1 ≤ 0.2 and 0 ≤ λ2 ≤ 0.2.
Two kinds of contour plots are also displayed for values equal to {0-0.5-0.7} (in blue) and to
{0.8-0.85-0.88(∗)} (in green). (*) maximal value reached on the grid.

The computation is not very demanding. It lasted less than one hour and half on a “current
use” computer for the 51 × 51 grid.

Figure 4 were completed by adding contour plots on the image with:

R> contour(res.regul$grid1, res.regul$grid2, res.regul$mat, add = TRUE,
+ levels = c(0,0.5,0.7), col = "blue")

R> contour(res.regul$grid1, res.regul$grid2, res.regul$mat, add = TRUE,
+ levels = c(0.8,0.85,0.88), col = "darkgreen")

Regularized CCA computations Once regularization parameters are fixed, the user calls
the rcc() function with values for the parameters lambda1 and lambda2 instead of cc().

R> res.rcc <- rcc(X, Y, 0.008096, 0.064)

The scree graph of canonical correlations can be plotted as a barplot.

R> barplot(res.rcc$cor, xlab = "Dimension",
+ ylab = "Canonical correlations", names.arg = 1:21, ylim = c(0,1))
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Figure 5: Barplot of canonical correlations.

Figure 5 can lead to several arguable choices for d: 3, 6 and 9 reveal larger gaps between two
successive canonical correlations.

3.5. Graphical displays

In Figure 6, we focus on the first two dimensions for illustration purpose. Plots for larger
dimensions could be displayed and interpreted in a more detailed study.

R> plt.cc(res.rcc, var.label = TRUE,
+ ind.names = paste(nutrimouse$genotype, nutrimouse$diet, sep = "-"))

Arguments var.label and ind.names of the plt.cc() function are given to make easier the
interpretation of variables and units representation.

Some biological arguments are given on the basis of Figure 6 to focus on the relevancy of
graphical outputs provided by RCCA.

First, RCCA provides an integrated graphical representation of two data sets (gene expression
and fatty acid composition) which interpretation is fully in accordance with all the conclusions
drawn in Martin et al. (2007) by way of standard statistical methods applied separately on
each data set. The following two examples illustrate well this concordance:

1. the stronger effect of the genotype versus the dietary effects (see the clear separation of
the genotypes along the first canonical variate) which is mostly due to the accumulation
of linoleic acid (C18.2n.6) and CAR transcript in PPARα mice and the lower expression
of fatty acid metabolism genes in these animals (genes with high positive coordinates
on the first dimension) was previously underlined and discussed;

2. specific effects of the diets on FA composition and gene expression were reported and are
also well illustrated by RCCA through the second canonical variate. In particular, the
altered response of PPARα deficient mice to diet-induced changes in gene expression is
well illustrated by the less clear separations of the units corresponding to different diets
for PPARα mice (see the units with negative coordinates on the first dimension, right
panel of Figure 6).
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Figure 6: Variables (on the left) and units (on the right) representations on the plane defined
by the first two canonical variates.

4. Conclusion

In this article we have proposed an efficient way to perform canonical correlation analysis in
R. The functions provided in the CCA package outperform the cancor() R function according
to several points:

� the ability to handle missing values;

� the processing of data sets with more variables than units through the regularized
extension of the CCA;

� integrated solutions for graphical outputs.

These solutions were assessed on a real data set coming from a recent nutrition study.

We maintain a web page about canonical correlation analysis. It will always contain the
latest release of the CCA package: http://www.lsp.ups-tlse.fr/CCA/. Future versions of
CCA will aim at providing the user with additional tools. In particular, the cross-validation
procedure can be computationally improved on larger data sets by performing a K-fold version
instead of the leave-one-out one already implemented. Furthermore, other multidimensional
methods such as linear discriminant analysis will be included as specific cases of CCA.

Acknowledgments

The authors are grateful to Dr. Thierry Pineau for the availability of the data and for in-
teresting discussions about biological interpretation of the results. This work was partially
supported by grants from ACI IMPBio and ANR PNRA.

http://www.lsp.ups-tlse.fr/CCA/


Journal of Statistical Software 13

References
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