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Abstract

Correspondence analysis (CA) is a popular method that can be used to analyse rela-
tionships between categorical variables. Like principal component analysis, CA solutions
can be rotated both orthogonally and obliquely to simple structure without affecting the
total amount of explained inertia. We describe a MATLAB package for computing CA.
The package includes orthogonal and oblique rotation of axes. It is designed not only
for advanced users of MATLAB but also for beginners. Analysis can be done using a
user-friendly interface, or by using command lines. We illustrate the use of CAR with one
example.

Keywords: correspondence analysis, biplot, orthogonal rotation, oblique rotation, simple struc-
ture, MATLAB.

1. Introduction

This paper provides a MATLAB (The MathWorks Inc 2007) package that implements corre-
spondence analysis. The package aims to be useful for both beginners and advanced users of
MATLAB. The package incorporates a user-friendly interface that helps to control the whole
analysis by (a) reading data, (b) selecting variables and the corresponding labels, (c) specify-
ing the axis model and rotations, and (d) configuring the numerical and graphical outcome.
The analysis can also be carried out using just a few MATLAB command lines.

Other packages to compute CA are available in the literature (for example, Venables and Rip-
ley 2002; Nenadić and Greenacre 2007; or de Leeuw and Mair 2009). However, these packages
were not developed in MATLAB. In addition, our package is the first one that implements
orthogonal and oblique rotation of axes.

The remaining sections briefly describe the methodological background to CA and axis ro-
tation (Section 2), and the main technical features of CAR (Section 3). In Section 4, an
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illustrative example is provided to demonstrate the use of CAR. Finally, Section 5 provides a
brief summary.

2. Methodological background in a nutshell

In this section we give a brief overview of the general concepts of correspondence analysis and
axis rotation. If the reader is not familiar with CA, the handbook by Greenacre and Blasius
(1994) is advisable reading. Particularly important is the chapter on how to compute CA
(Greenacre 1994). It should be noted that CAR outcomes are based on the same notation
as that proposed in this book. For a more profound understanding of the methodology of
axis rotation in the context of CA, we refer to (a) Van de Velden and Kiers (2003, 2005),
and (b) Lorenzo-Seva, Van de Velden, and Kiers (2009) for orthogonal and oblique rotation,
respectively.

2.1. Correspondence analysis

Let F be an n× p contingency table divided by the total number of observations, 1i an i× 1
vector of ones, r = F1p, c = F′1n and Dr and Dc are diagonal matrices with the elements
of r and c on the diagonal, respectively. The idea is to analyze a standardized contingence
matrix with deviations from independence defined as,

F̃ = D−1/2
r (F− rc′)D−1/2

c . (1)

The weights (i.e., matrices D−1/2
r and D−1/2

c ) in expression (1) are taken in such a way that
rows and columns corresponding to relatively few occurrences receive larger weights than rows
and columns corresponding to a large number of occurrences. The aim in correspondence
analysis is to find k dimensional coordinate matrices X and Y, for row and column points,
respectively, in such a way that the loss function

φ(X,Y) = ‖F̃−D1/2
r XY′D1/2

c ‖2 (2)

is minimized subject to X′DrX = I and Y′DcY = I, where ‖H‖2 denotes the sum of squared
elements of H. Let

F̃ = KΓV′ (3)

be the singular value decomposition of matrix F̃, where Γ is a diagonal matrix with singular
values on the diagonal, in weakly descending order, and K′K = V′V = I. As Van de Velden
and Kiers (2005) pointed out, φ(X,Y) is minimized by

X = D−1/2
r KkΓαk (4)

and

Y = D−1/2
c VkΓ1−α

k , (5)
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where Kk and Vk are, respectively, the n × k and p × k matrices of singular vectors corre-
sponding to the k largest singular values in the k × k diagonal matrix Γk. Finally, α is the
parameter that determines the type of coordinates in X and Y. Three choices are usually
considered for α:

1. α = 1: The column coordinates Y are referred to as principal coordinates and the row
coordinates X as standard coordinates.

2. α = 0: The column coordinates Y are referred to as standard coordinates and the row
coordinates X as principal coordinates.

3. α = 0.5: Both column and row coordinates are referred to as symmetrical coordinates.

An important feature of X and Y is that for any choice of α, the matrix product D1/2
r XY′D1/2

c

optimally approximates F̃, in the sense that the sum of squared differences between this
product and F̃ is as small as possible. In addition, this equals the biplot model. Hence, these
solutions can be interpreted as so-called biplots.

The models corresponding to α = 0 and α = 1 are often referred to as asymmetric models,
whereas the model corresponding to α = 0.5 is referred to as the symmetric model. Another
common model in correspondence analysis involves two asymmetric models: the rows of X
when α = 1 , and the rows of Y when α = 0. Such a model is often referred to as the French
symmetrical model. It must be noted that the French symmetrical model does not satisfy the
biplot requirements.

The distinction between principal, standard and symmetrical coordinates is fundamental in
CA:

1. Principal coordinates are the coordinates of the set of (column or row) variables that
are studied. If α = 0, these coordinates are related to column variables, and if α = 1 ,
to row variables.

2. Standard coordinates are the coordinates of the set of (column or row) variables that
help to describe the set of variables studied. If α = 0, these coordinates are related to
row variables; and, if α = 1, to column variables.

3. When symmetrical coordinates are chosen, both column and row coordinates are de-
scribed.

2.2. Supplementary rows and columns

An important and useful property of the CA solution concerns the close relationship between
row and column points. In particular, one can calculate one set of coordinates from the other.
Let Xs denote the set of standard row coordinates (i.e., row coordinates as in (4) with α = 0).
Then, principal coordinates for the columns, Yp, can be obtained from

Yp = D−1
c F′Xs, (6)

and, using similar notation, principal row coordinates can be obtained from
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Xp = D−1
r FYs. (7)

These formulae are often referred to as transition formulae. A proof and derivation can be
found in Van de Velden (2000).

The transition formulae can be used to plot additional rows or columns into the CA map. Let
fsp denote the p × 1 vector with the frequencies for the p column categories for the supple-
mentary row. The k-dimensional coordinates for this supplementary row can be calculated
as:

xsp =

[
1/
( p∑
j=1

fj

)]
f ′spYs. (8)

For supplementary column points we can derive a similar formula. Obviously, supplementary
points do not play a role in the determination of the CA map and they are therefore also
referred to as passive points.

2.3. Diagnostics

To assess the quality of a CA solution, the percentage of total variance, or, as one calls it
in CA, inertia, accounted for by the k-dimensional solution can be considered by calculating
γk/γT where γk =

∑k
i=1 γ

2
i , γT =

∑K
i=1 γ

2
i , and k denotes the rank of F̃.

In addition to this overall measure of fit, which is equal to Pearson’s chi squared statistic for
testing independence in a contingency table times the total number of observations, we can
assess the quality of the row and column coordinates by further decomposing the inertia.

Let X denote the k dimensional matrix of principal row coordinates. By dividing the weighted
squared principal coordinates through the inertias, we obtain so-called absolute contributions
for the row coordinates. Thus, the absolute contribution of the i-th row to the j-th axis is
defined as

ωij = (ri/γ2
j )x2

ij . (9)

The term absolute refers to the weights ri, which are equal to the total number of observations
in a row, that play a role in the calculation of the contributions of points. The absolute
contributions indicate how much a coordinate contributed to the inertia described along the
corresponding axis. They are often used to assign appropriate labels to the k axes in the CA
approximation (see, for example, Greenacre 2007). A relatively high absolute contribution for
a certain row indicates that the row had an important influence on determining the position
of the axis. Hence, the axes can be labeled in terms of subsets of variables that have a high
contribution.

In addition, by considering the squared principal coordinates relative to the weighted sum of
squared coordinates over the k dimensions, we obtain the so-called relative contributions for
the rows. That is, the relative contribution for the j-th axis to the i-th row is

σij =
x2
ij∑k

l=1 x
2
il

. (10)
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In this case, the weights ri are divided out. The relative contributions are the squared
correlations between a (in this case) row and the principal axes. They can be interpreted
geometrically as the squared cosines of the angles between each row profile and each principal
axis. The relative contributions indicate how well a certain point is represented by a particular
axis. They can be interpreted as the amount of inertia that an axis contributed to the inertia
of a point. The sum of the first k relative contributions gives an indication of the quality of
the representation of a point in the k dimensions.
Absolute and relative contributions for the column coordinates can be obtained in a simi-
lar fashion. For a more elaborate treatment, as well as a geometrical interpretation of the
contributions, see Greenacre (2007).

2.4. Orthogonal and oblique rotation

Row and column coordinates, X and Y, are usually inspected in order to explain the meaning
of the k dimensions. As in exploratory factor analysis (EFA), the best possible solution is the
one which is easiest to interpret. Note that expressions (4) and (5) do not ensure simplicity
in the coordinates. However, rotation can be used to maximize the simplicity in rotated row
coordinates, X̃, and rotated column coordinates, Ỹ. If simplicity is maximized in X̃ and Ỹ,
the interpretation of the dimensions may also be simplified.
Van de Velden (2000) and Van de Velden and Kiers (2005) proposed an orthogonal rotation
procedure for matrices X and Y. As has been pointed out above, X and Y satisfy the biplot re-
quirement that D1/2

r XY′D1/2
c optimally approximates F̃. In the orthogonal rotation proposed

by Van de Velden and Kiers (2005), the rotated matrices still satisfy the requirement: if T is
an orthogonal rotation matrix (T′T = TT′ = I), then D1/2

r XTT′Y′D1/2
c = D1/2

r XY′D1/2
c .

Note that both matrices X and Y are post-multiplied by T, so the same rotation matrix is
used to rotate both matrices. This can be exploited in such a way that only one or both
matrices are rotated to simplicity using a joint criterion.
In oblique rotation, it is more straightforward to rotate either X or Y to simplicity than both
X and Y. This is because, unlike orthogonal rotation, X and Y are not rotated by the same
rotation matrix if the biplot requirement is to be satisfied.
Let us first consider the case in which we wish to rotate Y to maximal simplicity. We use
standard coordinates for X (i.e., α = 0), and search an oblique rotation matrix U, which
maximizes simplicity in the matrix Ỹ = Y(U′)−1, where X̃ = XU. As is customary in
oblique factor rotation, we impose the constraint diag(U′U) = I, where diag(H) denotes the
diagonal matrix with the diagonal elements of H on its diagonal. The rotation matrix U can
be obtained by maximizing simplicity in Ỹ in terms of, for example, the quartimin criterion
(Jennrich and Sampson 1966; see also Clarkson and Jennrich 1988). Analogously, when we
wish to have simplicity in X̃, we take standard scores for Y (i.e., set α = 1) and we search for
an oblique rotation matrix U that maximizes simplicity in X̃, where X̃ = X(U′)−1, Ỹ = YU
and diag(U′U) = I so that the rotated standard coordinates Ỹ are standardized. Note that,
by following this procedure, the biplot requirement is still satisfied after rotation.
Now we turn to the procedure for rotating both X and Y to maximal joint simplicity. This
procedure is appropriate when X and Y have similar roles: that is, when α = 0.5 and
coordinates are symmetrical. In this case, we wish to find an oblique rotation matrix U such
that a joint simplicity criterion in terms of X̃ and Ỹ is optimized. Lorenzo-Seva et al. (2009)
proposed maximizing the joint simplicity of the above rotated loading matrices X̃ and Ỹ,
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subject to the constraint diag(Φ) = diag(U′U) = I, where X̃ = X(U′)−1 and Ỹ = Y(U′)−1

denote rotated loading matrices, while Φ is a matrix with unit diagonal. After the oblique
rotation of axes, D1/2

r XY′D1/2
c = D1/2

r X̃ΦỸ′D1/2
c .

After the coordinate matrices have been rotated, X̃ and Ỹ can be used to name the dimen-
sions, and to decide which (row and column) variables are best related to each dimension.
In the oblique rotation, matrix Φ reveals how strongly the dimensions are correlated to one
another. It is important to consider which coordinate values in the rotated loading matrices
must be interpreted in order to name the dimensions. Lorenzo-Seva et al. (2009) proposed
computing the mean of the squared coordinates for each dimension in each rotated loading
matrix. Then, each squared coordinate is compared to its corresponding mean: only coordi-
nates whose squared values are larger than the mean are considered to be salient coordinates.
Labels can be assigned to the dimensions depending on the characteristics of the variables
with salient coordinates in the dimension.

In the context of EFA, loading matrices are frequently weighted before rotations are com-
puted. After rotation, the original distances of points from the origin are reestablished, so the
interpretation is not affected by the weights applied. For example, Kaiser (1958) proposed
to weight the rows of the pattern matrix so that all the rows have the same influence in the
final position of the rotated axes. This is a usual practice nowadays when computing orthog-
onal Varimax rotation, and it is computed as a default in most statistical packages. This
kind of weighting schemes is also applied in the context of oblique rotation (see, for example,
Lorenzo-Seva 2000).

In the context of CA, other weighting schemes may also be applicable. Let Wx and Wy

be diagonal matrices, with weights on the diagonal and zeros elsewhere. Wx and Wy are
weighting matrices related to the coordinate matrices X and Y, respectively. The aim is to
weight the rows of X and Y during the rotation, so the products WxX and WyY are rotated
(instead of X and Y). Three options for Wx and Wy can be considered:

1. Each weighting matrix is defined as an identity matrix. With this option, no weight is
actually applied.

2. Due to the specific weighting in correspondence analysis, infrequently observed points
are sometimes positioned relatively far from the origin. In this situation, these particular
points may play an important role in determining the rotation angle. To prevent this
from happening, the coordinates can be rescaled using the corresponding masses, i.e.,
Wx = W1/2

r and Wy = W1/2
c (Greenacre 2006). This weighting procedure places

infrequent points close to the origin, while others remain a long way from it.

3. In the context of EFA, it is common practice to carry out a row-wise normalization of
the matrix to be rotated. In CA, this procedure involves rescaling the coordinates using
Wx = diag(X′X)−1/2 and Wy = diag(Y′Y)−1/2. With this scheme, all the rows have
the same influence on the final position of the axes.

3. Main technical features of the CAR package

The CAR package comprises these three main components:
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1. Car(): it starts the user-friendly interface that controls the other components in the
package. If this function is used, the user does not need either of the other two compo-
nents in the package.

2. Canalysis(): it computes CA. As output, it produces a structure matrix which contains
all the matrices related to the analysis. This output can be conveniently printed using
PrintDescriptives() and PrintCoordinates() functions. It should be noted that
these functions print the matrices that are relevant to the coordinate model specified
by the user in the Canalysis() function. In addition, a graphical representation of the
dimensions can be obtained using the Map() function.

3. ComputeRotation(): it computes the orthogonal and oblique rotation of axes. Again,
as output, it produces a structure matrix which contains all the matrices related to the
rotation. This output can be conveniently printed using the function PrintRotation().
This function prints the matrices that are relevant to the rotation specified by the user
in the ComputeRotation() function.

To use the CAR package, one basic step must be carried out in MATLAB: the folder in which
the package is stored must be defined as the current directory. This can be done by using the
current directory window in the MATLAB environment, or the following command line in the
MATLAB prompt:

>> cd C:\users\desktop\car

if CAR is stored in the folder C:\users\desktop\car . After this, the user can decide whether
to use the user-friendly interface, or the MATLAB command lines to execute Canalysis()
and ComputeRotation() functions.

3.1. User interface

To run the user-friendly interface, the following command line must be executed in the MAT-
LAB prompt

>> car

Figure 3.1 shows the user-friendly interface. This interface can be used to control the whole
package, and no further command lines are in fact needed.

To run an analysis, eight steps must be followed: (1) if data are not available in the MATLAB
workspace when the Car() function is initially run, they must be loaded; (2) the cross tabu-
lation matrix must be computed, or the matrix that contains it must be specified in case it is
not available in the data loaded; (3) the row and column labels must be defined, in case they
are available in the loaded data; (4) supplementary rows or columns in the cross tabulation
matrix must be defined in case some of the rows or columns are to be considered as supple-
mentary points; (5) the axis model, which includes the number of dimensions to be retained,
and the kind of axes that the user wants to analyze, must be specified; (6) if an axis rotation
needs to be computed, the kind of rotation should be specified, and details of the weighting
scheme and rotation method be given; (7) the output options should be defined; and, finally,
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Figure 1: User-friendly interface after a particular analysis has been specified.

(8) computing should start. To help users configure an analysis, the interface includes a help
menu that guides them through these eight steps. The help that accompanies the package is
in CHM and HLP Windows OS formats, and in an RTF document.

3.2. Input data

The analysis can be computed from raw data, or from contingency tables. Labels for rows
and/or columns are allowed. Some rows and columns in the cross tabulation matrix can also
be considered as supplementary points. The data stored in the MATLAB memory workspace
is in fact available in the user-friendly interface. However, data stored in MAT files can also
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be loaded. In addition, matrices stored in text files (ASCII) can be loaded using the interface.
The help that accompanies the package gives an in-depth explanation of the various data
formats that can be used.

For example, in Figure 3.1 the interface was configured to compute the analysis from a con-
tingency table that was already available in matrix N . The labels for rows and columns were
stored in the matrices labels.rows and labels.columns, respectively.

3.3. Model definition and rotations

The model definition includes decisions about (1) the number of dimensions to be retained;
(2) the kind of coordinates to be interpreted; and (3) whether the axes are to be rotated and, if
necessary, the weighting scheme and rotation method to be computed. The rotation methods
that can be used depend on the kind of coordinates to be interpreted: the main idea is that,
for each kind of coordinate, only rotations methods that have been proposed in the literature
are included in CAR. For example, when Symmetrical coordinates for rows and columns
(Biplot model) is specified, only orthogonal Varimax and oblique Quartimin rotations are
implemented; however, when Principal coordinates for rows and columns (French symmetrical
model) is specified, no rotations are implemented because nobody has yet proposed any kind
of rotation with this model specification.

3.4. Output

The output is stored in a text file, which, in Windows OS, is automatically shown in the
notebook application. To get diagnostic indices and a detailed outcome, you must select the
Detailed output option on the user interface. The MAP option displays the coordinates in a
bidimensional graph. It should be noted that, if more than two dimensions are retained, all
the possible bidimensional pairs of coordinates can be displayed using a tool bar in the graph.

3.5. Additional MATLAB command lines

As already pointed out, all the analyses in the CAR package can be computed using MATLAB
command lines. This means running the Canalysis(), PrintDescriptives(),
PrintCoordinates(), Map(), ComputeRotation(), and PrintRotation() functions from the
MATLAB prompt. The help included in the package carefully describes how these functions
can be used. In addition, there are a few additional commands in the CAR package if the
user-friendly interface is used. After executing the following two lines,

>> output = getappdata(0,'output');

>> rotation = getappdata(0,'rotation');

all the output matrices obtained during the analysis are available in output and rotation
MATLAB structures. After executing the following two lines

>> help canalysis;

>> help computerotation;

the matrices in the output and rotation structures are described.
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Folder Description

\car This is the main folder and contains the car.m file (the function
that executes and controls the user-friendly interface) and all the other
folders in CAR package.

\car\lib This contains all the MATLAB functions implemented in the CAR package.

\car\help This contains the help files in CHM and HLP Windows OS format, and a
structure of folders that contain the source files for compiling these two help
resources. It also contains the help.rtf file.

\car\data This contains some data sets that can be useful for learning how to use the
CAR package.

Table 1: Directory structure of the CAR package.

3.6. Directory structure

CAR consists of 106 files organized in four directories (or folders). They are structured as
shown in Table 1.

4. Illustrative example: Smoking habits

This example consists of artificial data on the smoking habits of different types of workers
in a company (Greenacre 1984, p. 55). Smoking habits were None, Light, Medium, and
Heavy; while the types of workers were Senior Managers, Junior Managers, Senior Employees,
Junior Employees, and Secretaries. The corresponding contingency table of order 4 × 5 was
analysed using the CAR package. Traditionally, two dimensions are retained with this data
set. Because we aim to describe both variables (smoking habits and employees) and how they
are related, we computed symmetrical coordinates (i.e., α = .5). In addition, we wanted the
axes to be obliquely rotated. As a weighting scheme, we rescaled the coordinates using the
corresponding masses. The configuration of the user interface for this analysis is shown in
Figure 3.1. Figure 4 shows the map of the unrotated coordinates.

The (detailed) output produced during the analysis consisted of 146 lines stored in an
output.txt file. To illustrate the output, Table 2 shows an extraction of the output re-
lated to the oblique axis rotation. Bentler’s simplicity index (1977) is computed in order to
assess whether the rotated solution is simpler than the unrotated solution. The index ranges
from zero to one, and is maximum only if each variable is generated by a single dimension
(i.e., a very simple solution is encountered). Table 2 shows the corresponding values of the
index for each matrix. The values of the simplicity index showed that the loading matrices
were the simplest matrices and, therefore, the most easily interpreted. Table 2 also shows the
rotated coordinates related to the loading matrices. Dimension d1 was a bipolar dimension,
and showed that Senior Employees had a tendency to non-smoking habits, whereas Junior
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Figure 2: User-friendly interface after a particular analysis has been specified.

Employees had a tendency towards smoking habits. Dimension d2 was a unipolar dimen-
sion, and showed that Managers, especially Junior Managers, had a tendency towards strong
smoking habits.

The correlation between dimensions was 0.25. If d1 and d2 are related to non-smoking habits
and strong smoking habits, respectively, these two dimensions would be expected to be or-
thogonal (i.e., a correlation of zero). However, it should be noted that the dimensions are
also related to the types of workers in the company, and that each type of worker was not so
simple as to be related to only one smoking behaviour. Secretaries were the most complex
group: they were between low and non-smoking habits. Senior managers were also a complex
group: they were close to strong smoking habits but some of them had no smoking habits.

5. Summary

We have presented the MATLAB package CAR for simple correspondence analysis. The
package contains all the features of commercially software packages as well as a new feature:
orthogonal and oblique axis rotations. It is designed for non-MATLAB users and advanced
users. For the former, a user-friendly interface was developed to control the whole analysis.
For the latter, the analysis can be performed using just a few command lines.
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ROTATION OF COORDINATES TO MAXIMIZE SIMPLICITY

Bentler's simplicity index (1977) before and after rotation

Before After
rotation rotation

Row coordinates 0.859 0.973
Column coordinates 0.782 0.968

Rotated row coordinates (pattern matrix)

Value Dimensions
1 2

Senior Managers 0.384 -0.599
Junior Managers -0.129 -0.874
Senior Employees 0.697 0.102
Junior Employees -0.497 0.102
Secretaries 0.252 0.325

Rotated column coordinates (pattern matrix)

Value Dimensions
1 2

None 0.747 0.043
Light -0.372 0.417
Medium -0.362 -0.047
Heavy -0.254 -0.740

Inter-dimensions correlation matrix

Dimensions 1 2
1 1.000
2 0.250 1.000

Table 2: Extraction of the output from the illustrative example.
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