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Abstract

This article details a Bayesian analysis of the Nile river flow data, using a similar
state space model as other articles in this volume. For this data set, Metropolis-Hastings
and Gibbs sampling algorithms are implemented in the programming language Ox. These
Markov chain Monte Carlo methods only provide output conditioned upon the full data
set. For filtered output, conditioning only on past observations, the particle filter is
introduced. The sampling methods are flexible, and this advantage is used to extend the
model to incorporate a stochastic volatility process. The volatility changes both in the
Nile data and also in daily S&P 500 return data are investigated. The posterior density
of parameters and states is found to provide information on which elements of the model
are easily identifiable, and which elements are estimated with less precision.
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1. Introduction

In this article we analyze the Nile data from a Bayesian perspective using Ox (Doornik 2009).
The initial model in Section 2 is the standard local level model. As the model is linear and
Gaussian, the Kalman filter equations (see Commandeur, Koopman, and Ooms 2011) allow
directly for a classical analysis. The added value of a Bayesian analysis, however, is that full
information on the uncertainty of the parameters is obtained from the posterior density, and
that problems with multimodality of the (likelihood or posterior) density surface are tackled
more easily.

The aim of this article is not to provide the most thorough analysis of the Nile river flow
data set, but instead describe the basic steps of a Bayesian analysis of the model, together
with details on the implementation of the algorithms in Ox. The algorithms are chosen for
the insight they give, not necessarily always for being the most advanced, quickest, or most
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precise option at hand. The article is complemented with a set of programs (see the listing
in Appendix B) for performing the analysis.

Two different sampling algorithms are presented. The Metropolis-Hastings algorithm (Sec-
tion 2.2) is appropriate for the basic local level model. For illustrative purposes, a Gibbs
sampling scheme is proposed in Section 2.3. Section 2.4 presents a particle filter for the
model in which filtered estimates of the level component are evaluated. A filtered estimate is
conditional on the past and concurrent observations while the smoothed estimate is based on
all observations. The Bayesian sampling schemes from Sections 2.2 and 2.3 produce smoothed
estimates. Using the estimate of the likelihood from the particle filter, the marginal likelihood
is also obtained. The Gibbs sampler and particle filter are used in Section 3 to extend the
local level model allowing for stochastically varying variance in the observation equation.

The algorithms are applied first on the Nile data set, with empirical results in Section 2.5.
Further empirical results for the case with stochastic volatility are provided in Section 3.3, and
an application on a financial data set concerning daily S&P 500 returns follows in Section 4.
Section 5 provides concluding remarks.

2. The local level model applied to the Nile data

2.1. Setting up the model and prior

In order to analyse the local level model for the Nile data using a Markov chain Monte Carlo
(MCMC) setup, first an analysis of the parameters occuring in the model and their possible
sampling schemes is needed. For ease of reference, the model that interests us here is

yt = µt + εt, εt ∼ NID(0, σ2ε), (1)

µt+1 = µt + ξt, ξt ∼ NID(0, σ2ξ ), (2)

for t = 1, . . . , T . The model contains two parameters, θ = (σε, σξ), and one vector of unob-
served states µ = (µ1, . . . , µT ).

A Bayesian analysis is performed by combining prior information on the parameters with the
information from the likelihood function, according to Bayes’ formula

P(θ|YT ) ∝ L(YT ; θ)π(θ), (3)

where L(YT ; θ) is the likelihood of data YT = (y1, . . . , yT ) evaluated at the vector of parameters
θ, and π(θ) is the prior density.

As we shall see later, a convenient prior density for the standard deviations σε and σξ is the
Inverted Gamma-1 (IG-1) density (see e.g., Bauwens, Lubrano, and Richard 1999),

fIG-1(σ; r, a) =
2ar

Γ(r)σ2r+1
exp

(
− a

σ2

)
with expectation and variance
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This IG-1 density is the so-called conjugate density, implying that the posterior density of
the parameters in this model is available in closed form if this specific form of prior density
is chosen.

For the present linear Gaussian model, the likelihood function L(YT ; θ) can be calculated
from the output of the Kalman filter (KF, see Harvey 1989; Durbin and Koopman 2001).
Therefore, a sample from the posterior density of σε, σξ|YT can be obtained using a Metropolis-
Hastings (MH) approach (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953; Chib
and Greenberg 1995). This will be detailed in Section 2.2. Alternatively, a Gibbs sampling
approach (Smith and Gelfand 1992) with data augmentation would consider the state µ
as part of the parameter space, and successively draw from the full-conditional densities
P(µ|YT , σε, σξ),P(σε|YT , µ, σξ) and P(σξ|YT , µ, σε). Such an approach has the advantage that
also a sample from the posterior density of the states is obtained, and that it is easily extended
to include elements breaking the linearity or Gaussianity of the model. This latter approach
is presented in Section 2.3.

Both the MH and Gibbs samplers result in a posterior density of the parameters conditional
on the full data set YT . At times, the filtered states µt|Yt, σε, σξ are of interest. Section 2.4
presents a particle filter for this purpose, and is followed by Section 2.5 with empirical results
on the Nile data.

2.2. Implementing a random walk Metropolis approach

For the Metropolis-Hastings approach, the general algorithm follows the steps:

1. Initialize, start with a vector of parameters θ(0), set i = 1;

2. Draw a candidate value θ∗ ∼ q(θ|θ(i−1));

3. Accept the new draw with probability

αMH(θ∗, θ(i−1)) = min

[
P(θ∗|YT ) q(θ(i−1)|θ∗)

P(θ(i−1)|YT ) q(θ∗|θ(i−1))
, 1

]
. (4)

If the draw is accepted, set θ(i) = θ∗, else θ(i) = θ(i−1);

4. Increase i, and repeat from Step 2. until the sample is sufficiently large.

The candidate density q(θ|θ(i−1)) can be chosen freely, though a density which is related to
the target density would lead to better acceptance rates. Here, a random walk Metropolis
scheme is used, taking the candidate q(θ|θ(i−1)) to be a multivariate normal density with
expectation θ(i−1) and a prespecified covariance matrix,

q(θ|θ(i−1)) ∼ NID
(
θ(i−1),Σq

)
.

As this candidate density is symmetric, it drops from Equation 4, simplifying the sampling
further.

Basic code for the sampler itself could be implemented as in Tables 1–2, using the program-
ming language Ox (Doornik 2009) and the package SsfPack (Koopman, Shephard, and Doornik
1999, 2008). The routine EstBayesMH() of Table 1 draws a sample of size iS, using random
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EstBayesMH(const amTheta, const avP, const vY, const mPrior,

const iS, const vSRW)

{

decl i, iA, vPC, dLnDens, dLnDensC, dU;

iA= 0; // Initialize acceptance counter

amTheta[0]= zeros(2, iS); // Storage space for sample

dLnDens= LnPosterior(avP[0], vY, mPrior); // Prepare posterior

for (i= 0; i < iS; ++i)

{

vPC= avP[0] + rann(2, 1) .* vSRW; // Draw candidate

dLnDensC= LnPosterior(vPC, vY, mPrior);

dU= ranu(1, 1); // Check acceptance

if (dU < exp(dLnDensC - dLnDens))

{

++iA; // Accept draw

avP[0]= vPC;

dLnDens= dLnDensC;

}

amTheta[0][][i]= avP[0]; // Store draw

}

return iA/iS; // Return acceptance rate

}

Table 1: The random walk Metropolis scheme in Ox.

walk candidate standard deviations as specified in vSRW, and using a function LnPosterior()

providing an evaluation of the logarithm of the posterior density (see Table 2). As output, the
EstBayesMH() routine places the posterior sample of θ into a matrix at the address amTheta.1

It returns the fraction of accepted drawings. Before discussing the results, the next section
first provides a simple implementation of a Gibbs approach using data augmentation, followed
by a particle filter scheme.

2.3. Implementing a Gibbs approach with data augmentation

For the second approach, the parameter space is augmented with the vector of states µ =
(µ1, . . . , µT ), and successively a draw is made from the full conditional densities. The algo-
rithm follows the steps:

1. Initialize, start with vectors θ(0) and µ(0), and set i = 1;

1In Ox, a routine can receive the address amTheta= &mTheta as a function argument. At the location of
the address, amTheta[0], the routine can leave output values. The routine EstBayesMH() for instance fills the
matrix column-by-column referring to amTheta[0][][i], for successive value of i.
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LnPosterior(const vP, const vY, const mPrior)

{

decl ir, i, dLnPost, dVar, mPhi, mOmega, mSigma;

mPhi= <1; 1>; // Prepare local level model

mOmega= diag(sqr(vP));

mSigma= <-1; 0>;

ir= SsfLik(&dLnPost, &dVar, // Likelihood evaluation

vY, mPhi, mOmega, mSigma);

for (i= 0; i < 2; ++i) // Prior evaluation

dLnPost+= lndensigamma1(vP[i], mPrior[i][0], mPrior[i][1]);

return ir ? dLnPost : M_NAN;

}

Table 2: Evaluating the log posterior density.

2. Sample new states µ(i) ∼ P(µ|YT , θ(i−1)) using the simulation smoother. For a descrip-
tion see Appendix A or Durbin and Koopman (2002);

3. Sample σ
(i)
ε ∼ P(σε|YT , µ(i), [σ(i−1)

ξ ]). This density is a IG-1 density, as can be seen from

P(σε|YT , µ(i), [σ(i−1)
ξ ]) ∝ L(YT ;µ(i), σε)π(σε)π(σ

(i−1)
ξ )

∝ σ−Tε exp

(
− 1

2σ2ε
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i=1

(
yt − µ(i)t

)2) 2arεε
Γ(rε)σ

2rε+1
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− aε
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∝ 1

σ2rε+T+1
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≡ IG-1

(
r = rε +

T

2
, a = aε +

1

2

∑(
yt − µ(i)t

)2)
;

4. Sample a new σ
(i)
ξ ∼ P(σξ|µ(i), [YT , σ

(i)
ε ]). This density is again a IG-1 density, with

P(σξ|µ(i), [YT , σ(i)ε ]) = IG-1

(
r = rξ +

T − 1

2
, a = aξ +

1

2

T∑
i=2

(
µ
(i)
t − µ

(i)
t−1

)2)
;

5. Increase i, and repeat from Step 2. until the sample is sufficiently large.

The implementation of the algorithm is nothing more than a loop, similar to Table 1, around
the three samplers introduced above. An implementation of the simulation smoother code is
presented in Appendix A, with detailed explanations. For the standard deviations, a routine
as in Table 3 can draw new values from the IG-1 distribution. Notice that the Inverted
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SimSigmaIG1(const vE, const vRA)

{

decl dr, da, dH;

dr= vRA[0] + sizerc(vE)/2;

da= vRA[1] + sumsqrr(vE)/2;

dH= rangamma(1, 1, dr, da); // Simulate precision 1/s2 ~ G(r, a)

return 1 / sqrt(dH); // Return standard deviation ~ IG1(r, a)

}

Table 3: Simulating the standard deviations in Ox.

Gamma-1 density relates directly to the more standard Gamma density: If h ∼ Gamma(r, a),
then σ = 1/

√
h ∼ IG-1(r, a). This relationship is applied here to enable the use of the Ox

function rangamma() for generating the standard deviation.

The Gibbs algorithm results in a sample from the state vector µ and parameters σε, σξ, all of
them conditional on the full data set YT = (y1, . . . , yT ). For the MH approach of the previous
section, no posterior sample of the states was available. What however is missing for both the
MH and Gibbs samplers, is information on the filtered quantities, like the prediction errors
or the filtered state, and also the value of the likelihood. In the case of the Nile data, with
the basic local level model, these quantities can be obtained from the KF. The next section
describes the basic approach of particle filtering, which can deliver similar output on filtered
states and the likelihood as the KF, but is not restricted to linear and Gaussian state space
models.

2.4. A particle filter

For the fully linear unobserved components model (1)–(2), the standard Kalman filter routines
can be used to extract filtered quantities. If the model is extended to include non-linear or
non-Gaussian components as well, then a precise Kalman filter is no longer available, and an
approximative simulation method has to be used. Cappé, Godsill, and Moulines (2007) give
an overview of possible particle filter implementations. A simple version is provided here.

The main idea of the particle filter is to sample a cloud of particles, m
(i)
t , i = 1, . . . ,M such

that they together describe the density of the state µ at time t given the data up to and
including yt. The most basic particle filter is described by the following steps:

1. To initialize, simulate m
(i)
1 |y1 ∼ NID(y1, σ

2
ε), i = 1, . . . ,M , where it is assumed that the

prior density of the states is diffuse, such that the first observation contains all possible

information on the first state. Set weights ω
(i)
1 ≡ 1/M , as the particles are sampled

precisely from the correct density. Set t = 2, and commence the loop;

2. Choose M particles with replacement from the current set, using weights ω
(i)
t−1, and call

these m̃
(j)
t−1, j = 1, . . . ,M ;
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3. Propagate the particles according to a (candidate) transition density, sampling

m
(i)
t ∼ q(mt|m̃(i)

t−1, yt),

with corresponding weights

ω̃
(i)
t =

p(yt|m(i)
t )p(m

(i)
t |m

(i)
t−1)

Mq(m
(i)
t |m

(i)
t−1, yt)

, ω
(i)
t =

ω̃
(i)
t∑M

j=1 ω̃
(j)
t

, i = 1, . . . ,M ;

4. Increase t, and repeat from Step 2. while t ≤ T .

The candidate transition density q(mt|m̃(i)
t−1, yt) can make use of the observation yt, such that

a set of new particles is sampled which take the newest observation into account. A simple
choice, however, is to take

q(mt|m̃(i)
t−1, yt) ≡ p(mt|m̃(i)

t−1) ∼ NID
(
m

(i)
t−1, σ

2
ξ

)
.

In the latter case, the weights in Step 3. simplify, and only contain the likelihood contribu-
tions. The alternative is to implement a single step of the filtering equation of the Kalman
filter, and sample from the resulting density. This would lead to a better set of particles, with
more uniformly distributed weights, at the cost of a slight increase in difficulty of implemen-
tation. In Bos and Shephard (2006) the particles even consist of the first two moments of the
states, updated using the Kalman equations, and hence an exact filter results for a linear and
Gaussian unobserved components model.

In case a certain observation is not available, the weights can obviously not be calculated. In
such a situation, equal weights are set, and the algorithm continues. This is the way that a
forecast from the state can be made, straight from the particle filter.

From the particle filter, output on the filtered particles can be collected. A basic implemen-
tation of the particle filter is provided in Table 4. The mean and standard deviation of the
particles is collected during the filter, and based on the propagated particles before resampling

using weights ωt (e.g., mt =
∑

i ω
(i)
t m

(i)
t ). Alternatively, the mean and standard deviation

could be constructed from the particles after resampling (i.e., mt = 1
M

∑
i m̃

(i)
t ), but this

latter option induces a loss of efficiency due to the resampling.

One of the outputs of the above particle filter is the loglikelihood contribution of each observa-
tion, which equals the logarithm of the sum of non-normalized weights (see Pitt and Shephard
1999). The sum of the loglikelihood contributions delivers the loglikelihood of the data for
a given set of parameters, integrating out the unobserved states. The likelihood L(YT ; θ) in
turn can be used as input for computing the marginal likelihood M(YT |M) of a model M,
which is the likelihood of the model integrating out the parameters with respect to the prior
π(θ):

M(YT |M) =

∫
θ
L(YT ; θ)π(θ)∂θ ≡ L(YT ; θ)π(θ)

P(θ|YT )
. (5)

In this formula, the value of the posterior density P(θ|YT ) needs to be computed including the
integrating constant. Several methods exist, but a simple one uses a Laplace approximation



8 A Bayesian Analysis of Unobserved Component Models Using Ox

PartFiltLL(const amMS, const avLL, const avVarW,

const vP, const vY, const iM)

{

...

vM= vY[0] + dSEps * rann(1, iM); // Init m ~ N(y, s2Eps)

vW= ones(1, iM)/iM;

avLL[0][0]= 0; // No likelihood contribution of y(0)

amMS[0][][0]= meanr(vM)|sqrt(varr(vM)); // Store mean and sdev

for (i= 1; i < iT; ++i)

{

vSel= ranmultinomialindex(iM, vW); // Resample

vM= vM[vSel] + dSXi * rann(1, iM); // Propagate

vE= (vY[i] - vM)/dSEps; // Compute weights

vW= exp(-0.5*sqr(vE)) / (iM * dSEps * sqrt(M_2PI));

avLL[0][i]= log(sumr(vW)); // Log of sum non-normalized weights

vW/= sumr(vW); // Normalize weights

if (ismissing(vY[i])) // Reset weights if Y missing

vW= ones(1, iM)/iM;

amMS[0][0][i]= sumr(vW .* vM); // Store mean and sdev

amMS[0][1][i]= sqrt(sumr(vW .* sqr(vM)) - sqr(amMS[0][0][i]));

avVarW[0][i]= varr(vW); // Store particle weight variance

}

return meanr(avLL[0]);

}

Table 4: The particle filter in Ox.

for P(θ|YT ) at the posterior mode. Evaluating this approximation at the posterior mode itself
gives P(θ̃|YT ) ≈ (2π)−k/2|Σθ|−1/2 exp(−1

2 × (θ̃− θ̃)) = (2π)−k/2|Σθ|−1/2, with k the dimension
of the parameter vector and Σθ the posterior covariance, see also Table 5. For small dimensions
of the parameter vector and near-Gaussian posterior densities, this Laplace approximation
of the marginal likelihood can be sufficiently precise (Kass, Tierney, and Kadane 1990; Bos
2002).

The Bayes factor B12 (Jeffreys 1961) is calculated using the marginal likelihood from two
competing models M1 and M2, as in

B12 =
M(Y |M1)

M(Y |M2)
.

This odds ratio is the factor by which the data considers M1 more probable than the alter-
nativeM2. Kass and Raftery (1995) consider twice the difference in log-marginal likelihoods,
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MargLiklLP(const vMode, const mS2, const dLnPdf, const mPrior)

{

decl dDS2, dLnPost, iK, i;

iK= sizerc(vMode);

dDS2= determinant(mS2);

dLnPost= dLnPdf;

for (i= 0; i < iK; ++i)

dLnPost+= lndensigamma1(vMode[i], mPrior[i][0], mPrior[i][1]);

return (iK/2)*log(M_2PI)+0.5*log(dDS2)+dLnPost;

}

Table 5: Marginal loglikelihood using Laplace approximation in Ox.

θ0 r a θ σθ

σε 120 2.66 30,000 125 (50)
σξ 30 2 5,000 63 (33)

Table 6: Starting values and prior density for parameters Nile data.

and describe that a difference of 2 < 2B12 < 6 gives ‘positive evidence’ for model 1, and
2B12 > 10 gives ‘very strong evidence’. These marginal likelihoods and their differences will
be used in Section 3 and later to decide whether there is evidence in the data for the inclusion
of a stochastic volatility effect in the model.

2.5. Empirical results on samplers for Nile river flow

Both the Metropolis and the Gibbs sampler depend on the specification of the prior density for
the parameters. The conjugate IG-1 density was chosen for the two standard deviations in the
model. Table 6 provides the starting values θ0, the parameters of the IG-1 prior density, and
the corresponding prior mean θ and standard deviation σθ. The priors are chosen such that
their expectation is somewhat in the neighbourhood of the classical estimates, with standard
deviations which allow for a considerable amount of uncertainty. For the Metropolis sampler,
the random walk standard deviation is taken to be one tenth of the prior standard deviation.

With these values, the two samplers were run, both first for 10,000 iterations to allow the
sampler to burn-in, then for 100,000 further iterations to collect the final sample. This was
found to be a sufficiently large sample to obtain convergence. The posterior mean θ, standard
deviation σθ, and inefficiency measure RB of the parameters are displayed in Table 7, together
with maximum likelihood estimates θ̂, σθ of the parameters in the first two columns. Figure 1
plots the posterior densities together with the prior densities and the autocorrelations of the
sample.
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ML MH Gibbs

θ̂ σθ θ σθ RB θ σθ RB
σε 122.876 (12.81) 118.799 (10.90) [57.7] 118.694 (11.10) [4.5]
σξ 38.332 (16.72) 47.665 (11.31) [90.5] 48.011 (11.65) [12.9]

Loglikelihood KF -632.546
Loglikelihood PF -632.669 -632.723 -632.639
Acceptance rate 0.792

Duration 0.53s 2.66s 4.75s

Table 7: Estimation results of local level model on Nile data.
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Figure 1: Prior and posterior densities for σε (panel (i)) and σξ (panel (ii)) for the Nile data,
with autocorrelations in panel (iii), comparing MH and Gibbs results.
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Figure 2: Nile data, with smoothed state and 90% confidence interval (panel (i)), standardized
prediction errors (panel (ii)), and filtered state plus forecast with 50% confidence interval
(panel (iii)).

The Nile data is found to be little informative on the precise location of the parameters, with
large standard deviations for σε and σξ. Figure 1 shows that, especially for the state transition
standard deviation σξ, the prior influences the location of the posterior. The posterior densi-
ties of the MH and Gibbs samplers are similarly shaped, though the autocorrelation functions
of the sample show how the Gibbs chain in this case delivers a sample with lower autocorre-
lation between successive draws. This lower autocorrelation also is apparent from the values
for the inefficiency measures RB in columns 5 and 7 of Table 7. These inefficiency measures
display the relative variance of the posterior sample draws when adapting for the correlation
between iterations, as compared to the variance without accounting for correlation. In these
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calculations, a bandwidth B of 10% of the sample size is used. See Kim, Shephard, and Chib
(1998) or Geweke (1992) for a further background on these measures.

Table 7 also reports the loglikelihood as it is calculated through the Kalman filter, and the
value that results from the particle filter of Section 2.4, using 10,000 particles. The likelihood
of the particle filter is virtually equal to the one computed using the Kalman filter, with the
difference due to remaining sampling variation.

The fifth row displays the acceptance rate of the random walk Metropolis candidate drawings,
which is 80%. The duration of the programs (on a 2.67Ghz Xeon X5550 processor) indicates
that for such a small data set, running time is not a problem.

Figure 2 displays the Nile data together with the smoothed state estimate and the 90%
confidence interval of the state in the first panel; this graph should be directly comparable
to the smoothed estimates in other articles in the present special issue. The standardized
prediction errors in the second panel stem from output of the particle filter: Using the filtered
state, a further prediction step is taken, and the standardized prediction errors are extracted.
The last panel displays the filtered state since 1950, extending the sample until 1980 to provide
a forecast with a 50% confidence bound.

3. Introducing time varying volatility

3.1. Extending the model

The unobserved components model for the Nile data as described above is a linear Gaussian
state space model. This simplifies the analysis considerably, as the Kalman filtering equations
can be used directly. One could however wonder whether the volatility of the annual flow
volume of the Nile for example is constant over time. As the flow will depend on matters
like population, water use for irrigation, or the construction of dams in the river, one could
expect changes in the process of the flow series.

Note that looking back at Figure 2, for example, where the data itself was plotted, does
not give a clear indication of changes in volatility. Besides, the number of observations
(T = 100) is relatively low for detecting variance changes. Hence this second case will serve
as a preparation for the last application, where volatility in financial returns is studied.

To introduce a simple variant of the local level model, with a second unobserved state for the
stochastic volatility, the observation equation (1) is adapted to

yt = µt + εt, εt ∼ NID(0, σ2ε exp(ht)). (1’)

A second state equation is added, describing the evolution of the (log) volatility ht as

ht+1 = ht + νt νt ∼ NID(0, σ2ν), (6)

initializing h1 ≡ 0. With this specification, the initial variance of the observation equation is
set to σ2ε , whereas at later time periods the log-variance can change according to a random
walk.
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3.2. Implementing the extended sampler

Using the Gibbs approach with data augmentation, we have a parameter vector consisting of
θ = (σε, σξ, σν) together with state variables µ and h. Conditional on h and σν , the previous
Gibbs sampler works well, as the unobserved components model is still conditionally linear
and Gaussian. The algorithm however needs two additional steps, one for simulating h|YT , µ, θ
and one for σν |YT , µ, h, σε, σξ. The adapted sampling scheme becomes:

1. Initialize, start with a drawing θ(0), µ(0) and h(0), and set i = 1;

2. Sample µ(i) ∼ P(µ|YT , h(i), θ(i)) using the simulation smoother, taking the time varying
variances into account;

3. For t = 2, . . . , T , the single-site volatility sampler draws successively

h
(i)
t ∼ P(ht|h(i)t−1, h

(i−1)
t+1 , yt, µ

(i)
t )

using an acceptance-rejection scheme (Kim et al. 1998). This is performed by sampling
a candidate hct using

hct ∼ NID

(
h∗t +

1

2
v2
((

yt − µ(i)
)2

exp(−h∗t )− 1

)
, v2
)
,

h∗t ≡
1

2

(
h
(i)
t−1 + h

(i−1)
t+1

)
, v2 =

1

2
σ2ν .

Such a candidate draw is accepted with probability

α(hct) =

exp

(
−1

2

(
yt − µ(i)t

)2
exp(−hct)

)
exp

(
−1

2

(
yt − µ(i)t

)2
(exp(h∗t )(1 + h∗t )− hct exp(−h∗t )

) .
If the candidate hct is accepted, set h

(i)
t = hct , else continue drawing a new candidate

hct . Note that when t = T , there is no ht+1 available, and hence h∗t and v2 have to be
adapted slightly;

4. Sample σ
(i)
ε ∼ IG-1

(
r = rε + T

2 , a = aε + 1
2

∑ (
yt−µ(i)t

)2

exp(h
(i)
t )

)
;

5. Sample σ
(i)
ξ ∼ IG-1

(
r = rξ + T−1

2 , a = aξ + 1
2

∑T
i=2

(
µ
(i)
t − µ

(i)
t−1

)2)
;

6. Sample σ
(i)
ν ∼ IG-1

(
r = rν + T−1

2 , a = aν + 1
2

∑T
i=2(h

(i)
t − h

(i)
t−1)

2
)

;

7. Increase i, and repeat from Step 2. until the sample is sufficiently large.

Implementing Step 3 is relatively straightforward. Table 8 gives an example implementation
of this single-site volatility sampler for ht. Notice however that the present algorithm now
contains an outer loop to sample a large collection of parameters, and within an inner loop
over t it samples h. This implies that the code within the single-site sampler is executed very
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SampleHAR(const avH, const vE, const dSNu, const iMax)

{

...

dV2= sqr(dSNu)/2;

iC= 0;

for (i= 1; i < iT; ++i)

{ // Set moments

if (i == iT-1)

{ // last observation, single-sided

dHx= avH[0][i-1];

dV2= sqr(dSNu);

}

else

dHx= 0.5*(avH[0][i-1] + avH[0][i+1]);

dMu= dHx + 0.5*dV2*(sqr(vE[i]) *exp(-dHx) - 1);

iC0= 0;

do

{ // Repeat until acceptance

dHC= dMu + sqrt(dV2) * rann(1, 1);

dLnFx= -0.5*sqr(vE[i]) * exp(-dHC);

dLnGx= -0.5*sqr(vE[i]) * (exp(-dHx)*(1+dHx)-dHC*exp(-dHx));

dU= ranu(1, 1);

++iC0; // Count acceptances + rejections

}

while ((dU >= exp(dLnFx - dLnGx)) && (iC0 < iMax));

avH[0][i]= dHC;

iC+= iC0;

}

return (iT-1) / iC; // Acceptance rate

}

Table 8: The single-site volatility sampler for ht|ht−1, ht+1, et in Ox.

often. The routine in Table 8 would be a first candidate for moving into a lower-level language
like C, in order to decrease the running time of the algorithm considerably. This however lies
beyond the scope of the present article.

Table 8 literally follows the proposed algorithm for sampling ht|ht−1, ht+1, yt, θ. New can-
didate values hct should be drawn until acceptance occurs. In some cases (especially for an
unlucky choice of starting values) the probability of acceptance can become very low, and it
is better to force acceptance after a limited number of trials. Here, the sampling continues
until at most a total of iMax candidates have been drawn. In well-specified situations, the
acceptance rate tends to be above 95%, and hence the do loop does not tend to reach a forced
end in normal situations.
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Figure 3: Prior and posterior density of σε (panel (i)), and σν (panel (ii)).
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Figure 4: Nile data with smoothed level states and 90% confidence interval (panel (i)), and
smoothed volatility with confidence interval (panel (ii)).

3.3. Empirical results on the volatility of Nile data

Some output of the sampler is provided in Figures 3–4. Again, a sample of 100,000 iterations
was collected, after a burn-in of 10,000 iterations. The same priors as in Table 6 were used,
with additionally π(σν) = IG-1(r = 2, a = 0.015), implying that E(σν) ≈ 0.1 with prior
standard deviation σ(σν) ≈ 0.05.

The posterior density of σε indicates already that this extensive time varying volatility model
might be too much to estimate from this small data set. The posterior density is bimodal,
implying that apart from the solution with σε ≈ 120 an alternative parameter setting with
σε ≈ 40 (and σξ ≈ 150, not displayed) could work: In that case, the state effectively follows
the observations very closely, with the observation equation allowing extra variability for
the outliers. In panel (ii) the standard deviation σν of the stochastic volatility increments is
depicted. As it was already hard to estimate a constant level of volatility, estimating volatility
of volatility is too much using a data set of 100 observations, and the posterior closely follows
the prior density.

Table 9 displays the posterior mode, the standard deviation and the inefficiency measure,
both for the model without stochastic volatility of the previous section and for the model
with time varying variance. The common parameters change little, though the uncertainty
on the parameters increases strongly. The large inefficiency measures for the LL-SV model
indicate that correlation in the chain is high, and effectively imply that the sampler did not
converge; cf. the bimodal posterior distribution for σε.
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LL LL-SV

θ̃ σθ RB θ̃ σθ RB
σε 121.079 (11.10) [4.5] 116.027 (29.88) [1266.9]
σξ 45.392 (11.65) [12.9] 41.522 (39.53) [1263.8]
σν 0.073 (0.04) [340.2]

Marginal loglikelihood −634.47 −633.77
Duration 4.25s 29.16s

Table 9: Estimation results comparing local level model without/with stochastic volatility,
on Nile data.

The standard deviation σν of the volatility equation is small, which is consistent with a smooth
volatility process. The row with the duration of the programs indicates that sampling the
volatility process is relatively costly, as a separate sampling step for each ht|ht−1, ht+1, yt, θ
has to be performed. The table includes a row reporting the marginal loglikelihood (see Sec-
tion 2.4). In this case there is only a minor difference between the two marginal loglikelihoods,
implying that the model with stochastic volatility does not fit the data much better than the
model with fixed volatility.

Figure 4 displays the smoothed level of the Nile data, in panel (i), and the extracted volatility
process, in panel (ii), both with 90% confidence intervals. Volatility appears constant until
around 1914, moving to a slightly lower level afterwards. Uncertainty about the volatility is
large, as was to be expected. It is unclear what exactly causes the drop in volatility. One
possible explanation is the building and extension of the Aswan dam. In 1912 an improvement
to the dam was made, which could have led to a better regulation of the river, leading to
lower volatility in the flows. The change in volatility however is minor, consistent with the
finding that the marginal likelihoods of the models with/without SV are virtually the same.

This section illustrates the relative ease with which the standard linear Gaussian unobserved
components model is extended to the case with stochastic volatility. Conditional on the
volatility, the sampler hardly changes; the only real change in the algorithm is the inclusion
of a sampler for the volatilities, and for the parameter σν in the volatility process.

Note that the present single-site volatility sampler is a relatively simple sampler. It may lead
to extensive correlation in the sampling chain as each of the T − 1 volatilities ht is sampled
successively, conditionally on past and future values ht−1, ht+1. Alternative approaches, like
the mixture sampler of Kim et al. (1998), could lower correlation between the draws in the
Markov chain.

4. Time varying volatility for S&P 500 returns

4.1. Introducing S&P 500 data

Figure 5 displays the S&P 500 index data (source: Yahoo finance) for the period 2000/1/3–
2009/12/30. The first panel displays the level of the series, followed by the returns in panel
(ii). From this second panel the strong differences in volatility are immediately apparent. The
third panel plots the average return and the average standard deviation of the S&P 500 series,
using a running window of one year. For the variance, the tranquil period between 2004–2008
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Figure 5: S&P 500 data over 2000–2009 in levels (panel (i)), returns (ii), and the yearly
average return and standard deviation (iii).

θ0 r a θ σθ

σε 1 2 1.5 1.1 0.57
σξ 0.001 2 0.00015 0.011 0.0057
σν 0.1 2 0.015 0.11 0.057

Table 10: Starting values and prior density for parameters S&P500 data.

is clear, with a strong increase in variance over the last two years of the sample. The average
yearly return depicts roughly the opposite movement: When volatility is low, average returns
were higher, and vice versa especially in the period after 2008. The question is whether a
local level with stochastic volatility model on the returns of the S&P 500 would be able to
recover these two movements. Notice that in this case the volatility is the clear signal, as
that is easily detected from the movements in panel (ii). The differing average returns are
not apparent from the middle panel, and hence will be harder to estimate.

4.2. Volatility estimation on S&P 500 returns

The sampler from the previous section works without change for the present data set. The
only change needed in the program is the specification of the prior and the starting values of
the parameters. Table 10 displays these specifications for the S&P 500 data, cf. Table 6.

Results on the posterior sample are gathered in Table 11, again comparing the local level
model with the model including stochastic volatility. In both cases, a Gibbs sampler of 10,000
burn-in iterations, with a final sample size of 100,000 parameter vectors is run, followed by a
particle filter with 10,000 particles as before. Reported in the table are the posterior mode θ̃,
the posterior standard deviation σθ, and the inefficiency measure RB at a bandwidth of 10%
of the sample.

We first discuss the estimation results of the parameters. For the common parameters σε and
σξ, inclusion of the SV sequence makes little difference in the estimated values. The chain
delivers strongly correlated drawings from σξ, σν , as indicated by the high inefficiency values
for these parameters. Estimation using the Gibbs sampler took 8.5 times as long when the
stochastic volatility sequence was introduced: Sampling volatility is computationally hard.

Figure 6 displays the prior and posterior densities of these parameters, together with the
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LL LL-SV

θ̃ σθ RB θ̃ σθ RB
σε 1.39994 (0.0197) [0.5] 1.39755 (0.0198) [0.0]
σξ 0.00622 (0.0018) [399.5] 0.00544 (0.0013) [390.2]
σν 0.10866 (0.0120) [882.5]

Marginal loglikelihood -4424.44 -3783.28
Duration (Gibbs/PF) 1m29s/13s 12m41s/15s

Table 11: Estimation results for S&P 500 data.
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Figure 7: S&P 500 smoothed states, for the level (panel (i)), with 90% confidence bounds
and with the average yearly return superimposed, and for the volatility (panel (ii)).

autocorrelation functions, effectively giving the same information as the table. Here it is even
clearer that the transition standard deviation, in panel (ii), is hard to estimate, with the
posterior pushing downwards in comparison with the prior. The prior is informative in this
situation, as it forces the posterior away from zero.

The standard deviation σξ determines the smoothness of the state variable µt in the model.
Panel (ii) in Figure 7 displays the smoothed state estimate, which indeeds indicates what
periods tended to display positive or negative returns. The present estimate however is far
smoother than the running yearly average return. The 90% confidence bounds include the
value of zero over the full sample, indicating that at no period in time the expected return
was clearly positive or negative.
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Figure 8: Comparing smoothed and filtered state estimates, for the level (panel (i)) and
volatility (panel (ii)), according to the LL (h ≡ 0) and LL-SV models.

A different prior specification for σξ could force the level to be more or less smooth, by putting
more prior weight on smaller or larger values of σξ than the present choice of prior. Depending
on the purpose of extracting the expected returns, the flexibility of the Bayesian approach
can be an advantage in this respect, extracting a smoother or more volatile signal.

For the S&P 500 returns, the volatility is clearly changing over time. The period 2004–2008 is
found to display low variance, although the uncertainty slowly starts to rise in the second half
of 2007. According to these estimates, the peak in uncertainty was reached in the beginning
of 2009, with volatility retreating towards levels comparable to the years 2004-2007 at the
end of the sample.

In Section 2.4 a particle filter for the linear state space model was introduced. Extend-

ing it to allow for time varying volatility is straightforward: Sample new volatilities h
(i)
t ∼

NID(h
(i)
t−1, σ

2
ν) in each step, and adapt for the volatility in the calculated weights. Figure 8

displays the results for the states using 10,000 particles, evaluated at the posterior mean
estimates of the parameter as in Table 11.

Panel (i) compares the smoothed level from the Gibbs sampler, E(µt|YT ), to the smoothed
level from the Gibbs sampler for the LL model, E(µt|h = 0, YT ), as well as to the filtered
levels E(µt|Yt) and E(µt|h = 0, Yt). Additionally, the average yearly return,

∑249
i=0 yt−i/250

is plotted. For the first part of the sample, both the particle filtered states, E(µt|Yt) and
E(µt|h = 0, Yt), and the data-based average yearly return are fairly similar in structure. It is
only at the advent of the financial crisis that the estimates start to differ. As the volatility
increases, the signal-to-noise ratio drops strongly, and hence after 2008 the particle filter for
the LL-SV model does not adapt the state estimate much. The estimate E(µt|h = 0, YT ) is
adapted much more when the constant variance LL model is used.

Panel (ii) of Figure 8 compares the smoothed and filtered volatility estimates. Both estimates
agree closely, with the filtered estimate naturally being less smooth. It is however rather
remarkable to see how little difference there is between the volatility extracted conditional on
the full data set, or conditioning on only past data. The variance σ2ν of the volatility series
is such that ht is estimated mostly on the basis of present information, and both past and
future information are less important. For the level, in the first panel, the difference between
the smoothed and filtered estimates is far larger. As the data itself contains little information



Journal of Statistical Software 19

on the expected returns, information over a longer horizon is combined. If future information
is available, as in the smoothed estimate of the state, then this information can alter the
estimate of the state considerably.

The particle filter could also be used to construct a likelihood estimate, which in turn could
serve as input for the calculation of the marginal likelihood (see (5)). Table 11 reports the
values for the marginal loglikelihoods. The LL-SV model has a marginal loglikelihood which
is 641 points higher than that of the LL model. According to the scheme of Kass and Raftery
(1995), this log-difference of 641 is an indication that stochastic volatility is an indispensable
part of the model for S&P 500 returns.

5. Concluding remarks

The purpose of this article was to present methods, algorithms and implementations for
analysing the Nile river flow data using Ox in combination with Bayesian Markov chain
Monte Carlo techniques. Section 2 concludes that the Bayesian analysis is able to mimic
closely the results from a classical analysis, so one could think that the Bayesian approach
here is of little added value.

In Section 3 the extension towards a model with time varying variance is made. Within the
Gibbs sampler, such an extension is easily implemented. From the results, some indication is
found that volatility in the river flow dropped after 1916. Uncertainty about the volatility is
large, as the number of observations is very limited. The marginal likelihood indicated that
indeed the data does not favor a time varying volatility.

The posterior of the parameters in this case indicated multimodality of the density of σε
and σξ. The Bayesian approach gives a clear signal that different parameter settings could
describe the data well. In a classical approach, such multimodality is often hard to recognize,
and it is not always clear whether reported maximum likelihood estimates are from the global
or possibly from a local maximum.

The local level plus volatility model is applied in Section 4 on returns of the S&P500 data.
The existing programs could be used with little change to extract a heavily time varying
volatility for these financial index returns. For this series, extracting the expected return as
measured by the local level of the model is harder, as this data is more informative on the
volatility than on the level. The marginal likelihood in this case overwhelmingly favors the
local level model with stochastic volatility, instead of the standard linear Gaussian unobserved
components model with fixed variances.

In all these cases, an implementation in Ox was described in detail, and with short programs
these extensive models could be estimated without further problems. This serves to show the
flexibility of both the language and of the Bayesian MCMC approach applied here.
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A. The simulation smoother

In Durbin and Koopman (2002) a simple and efficient simulator for the states of a model in
state space is proposed. It can be implemented using a few lines of code in Ox as in Table 12.

Such code follows Algorithm 1 of Durbin and Koopman (2002) closely:

1. In the first step, a set of random disturbances is generated, which afterwards are run
through the recursion of (1)–(2) using the function SsfRecursion() from SsfPack.
Note that here the initial standard deviation should be provided in the last function
argument, instead of the variance in mSigma. This results in pseudo-data y+ and α+ in
the matrix mR.

2. Secondly, y∗ = y−y+ is calculated, the difference between the true and the pseudo-data.
This pseudo-data is smoothed, using SsfMomentEst(), resulting in α̂.

3. The simulated states are now the difference between the pseudo-states α+ and the
smoothed states α̂. This difference is returned from the function.

Here, the simulation smoother is implemented for the most simple state space model. With
minor changes similar code would work as well for models with e.g., time varying variances,
with intercepts, or other extensions to the basic local level model.

B. List of programs and routines

The algorithms described in this article have been implemented in Ox (Doornik 2009), mak-
ing use of a few routines in SsfPack 2.2 (Koopman et al. 1999). For graphical output, the

SimSmoDK(const vY, const mPhi, const mOmega, const mSigma)

{

decl vAlpha, mU, iT, mP, mR, mYStar, mD, ir;

iT= sizerc(vY); // Generate new pseudo-data

mU= rann(2, 1)~choleski(mOmega)*rann(2, iT);

// Don't use diffuse initialization for recursion

mP= mSigma[0][0] == -1 ? 1 : sqrt(mSigma[0][0]);

mR= SsfRecursion(mU, mPhi, mOmega, mP|mSigma[1][]);

mYStar= vY - mR[1][1:]; // Smooth the difference with y

SsfMomentEst(ST_SMO, &mD, mYStar, mPhi, mOmega, mSigma[0][]|0);

// The simulated state is the sum of pseudo-state and smoothed state

return mR[0][:iT-1] + mD[0][:iT-1];

}

Table 12: The simulation smoother in Ox.
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Section File Data SV Method

2.2 estnilemh.ox Nile - Metropolis-Hastings
2.3 estnilegb.ox Nile - Gibbs with data augmentation
2.4 estnilepf.ox Nile - Particle filter
2.5 estnileml.ox Nile - Maximum likelihood
3 estnilegbsv.ox Nile + Gibbs with data augmentation
3 estnilepfsv.ox Nile + Particle filter
4 estspgb.ox S&P500 - Gibbs with data augmentation
4 estsppf.ox S&P500 - Particle filter
4 estspgbsv.ox S&P500 + Gibbs with data augmentation
4 estsppfsv.ox S&P500 + Particle filter

Table 13: List of programs.

Table Section Routine Purpose

1 2.2 EstBayesMH The random walk Metropolis scheme
2 2.2 LnPosterior Logarithm of the posterior density
3 2.3 SimSigmaIG1 Simulating from the IG-1 density
4 2.4 PartFiltLL The particle filter
5 2.4 MargLiklLP Marginal likelihood using Laplace
8 3.2 SampleHAR The single-site sampler for ht|ht−1, ht+1, yt, θ
12 A SimSmoDK The simulation smoother

Table 14: List of routines.

professional version of Ox is needed; alternatively, the GnuDraw package of Bos (2003) can
be used.

The code for these algorithms is available at the website of the journal, together with the
necessary data. The code is split into several self-contained programs, as listed in Table 13.
The routines that have been discussed in more detail, including their Ox code, are listed in
Table 14.
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