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Abstract

Missing data are a common occurrence in real datasets. For epidemiological and
prognostic factors studies in medicine, multiple imputation is becoming the standard route
to estimating models with missing covariate data under a missing-at-random assumption.
We describe ice, an implementation in Stata of the MICE approach to multiple imputation.
Real data from an observational study in ovarian cancer are used to illustrate the most
important of the many options available with ice. We remark briefly on the new database
architecture and procedures for multiple imputation introduced in releases 11 and 12 of
Stata.

Keywords: missing data, multiple imputation, chained equations, continuous variables, cate-
gorical variables.

1. Introduction

In large datasets, missing values commonly occur in several variables. Multiple imputation
by chained equations (MICE), nicely motivated and described in the context of a medical
application by van Buuren et al. (1999), is a practical approach to creating imputed datasets
based on a set of imputation models, one model for each variable with missing values. MICE
is an increasingly popular method of doing multiple imputation (MI, Sterne et al. 2009).

Useful literature on MI includes a primer (Schafer 1999), a critical review (Kenward and
Carpenter 2007), and reviews of applications (Barnard and Meng 1999) and software (Horton
and Kleinman 2007). White et al. (2011)’s recent tutorial article offers practical advice on
the use of MICE. It includes several examples based on real and simulated datasets.

The aim of the present paper is to describe, with a practical focus, an implementation of
MICE in Stata (StataCorp. 2009) called ice (Royston 2004, 2005a,b, 2007, 2009). Rather
than formally describe the syntax and features of ice, we proceed by example with a real
dataset in ovarian cancer. The structure of the paper is as follows. We first outline the MICE
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algorithm. We then review implementation of MI software in Stata, including some comments
on Stata version 11, which had a major new MI component. Proceeding to a little more detail,
we discuss imputation models available in ice for different types of variables with missing data.
We next describe the example dataset, and go on to exemplify a simple imputation situation
with just one incomplete variable. The example allows us to exhibit the basic operations of ice.
We follow that up with three alternative ways of doing imputation of a continuous variable in
a univariate setting. We go on to consider a more complex multivariate imputation, focusing
on how ice handles categorical variables. Finally, we briefly describe other useful features of
ice not covered in the examples, and conclude with a short discussion.

2. Multiple imputation by chained equations (MICE)

Here, we outline the MICE algorithm for a set of variables, x1,...,x, some or all of which
have missing values. Initially, all missing values are filled in at random. The first variable with
at least one missing value, x; say, is then regressed on the other variables, xsa,...,zr. The
estimation is restricted to individuals with observed x;. Missing values in z; are replaced by
simulated draws from the posterior predictive distribution of x1, an important step known as
proper imputation. The next variable with missing values, say xo9, is regressed on all the other
variables, x1,x3, ..., . Estimation is restricted to individuals with observed x5 and uses the
imputed values of x1. Again, missing values in x5 are replaced by draws from the posterior
predictive distribution of xo. The process is repeated for all other variables with missing values
in turn: one such round is called a cycle. To stabilize the results, the procedure (similar to a
Gibbs sampler) is usually repeated for about ten cycles to produce a single imputed dataset.
van Buuren et al. (1999) suggest 20 cycles but say that 10 or even 5 may be adequate. We
have performed some simple experiments on the convergence of the sampling distribution of
imputed variables (data not shown). We find that only if variables with missing values to be
imputed are highly correlated (say, > 0.6) are more than 10 cycles needed for convergence.
In most applications we encounter, such high correlations are rarely seen.

The entire procedure is repeated independently M times, yielding M imputed datasets. Stan-
dard texts on MI suggest that small numbers of imputed datasets (M = 3 to 5) are adequate.
Recent opinion has shifted towards larger values of M. For example, White et al. (2011)
suggest a rule of thumb that M should be at least equal to the percentage of incomplete cases
in the dataset. If 80% of cases had complete data on all relevant variables, the rule would
indicate M = 20. As opposed to what is appropriate in data analysis, to control Monte Carlo
error in studies comparing methods, even larger values of M, perhaps in the range 100 to
1000, are needed.

Because each variable is imputed using its own imputation model, MICE can handle different
variable types (for example, continuous, binary, unordered categorical, ordered categorical).
Suitable choices of imputation models are discussed in a Stata context in Section 4.

3. An overview of MICE and MI estimation in Stata

3.1. MICE and the analysis model
Royston (2004) introduced mvis, the first implementation of MICE for Stata. The name of
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the main command was changed to ice (imputation by chained equations) in Royston (2005a).
Three updates of ice have followed (Royston 2005b, 2007, 2009).

The current ice system comprises three ado-files: ice, ice_ and uvis. An ‘ado-file’ is Stata-
speak for a Stata add-on program. Such programs are placed where Stata can ‘see’ them, and
thereby they become seamlessly integrated into the Stata environment. The ice command
performs multiple, multivariate imputation. ice calls ice_ which in turn repeatedly calls
uvis to do proper imputation of a single incomplete variable on its own or on one or more
complete variables.

Although uvis is a stand-alone program and can be used as such for certain tasks, in the
present article we concentrate on ice. A user who learns how to use ice effectively need not
care at all about the details of uvis.

MI is incomplete without considering also the analysis model (or models) that one plans
to fit to the imputed data. The whole purpose of MI is to enable, under the missing-at-
random assumption (Little and Rubin 2002), more efficient and less biased estimation of
model parameters than by using complete cases. We do not rehearse the arguments for MI
here. As is well known, the correct approach is to apply Rubin’s rules to combine estimates of
interest (e.g., regression coefficients) across the M imputed datasets. To obtain such overall
estimates and their standard errors in Stata, a separate user-written program called mim is
required. Although we make use of mim here, we do so with a minimum of explanation, since
the command is quite transparent; readers interested in details should consult Carlin et al.
(2008); Royston et al. (2009) and the online help for mim.

The ‘official’ releases of ice (version 1.7.3), ice_ (version 1.1.3) and uvis (version 1.5.5),
as described by Royston (2009), and of mim (version 1.2.5), as described by Royston et al.
(2009), may be installed within Stata using

. net from http://www.stata-journal.com/software/sj9-3
. net install st0067_4.pkg, replace
. net from http://www.stata-journal.com/software/sj9-2
. net install st0139_1.pkg, replace

The replace option causes the existing installation (if any) of the software on the user’s media
to be overwritten. The latest version of the ice package (at the time of writing, versions 1.9.5,
1.3.1 and 1.7.1 for the three components, ice, ice_ and uvis, respectively) and of mim (version
2.1.6) are available on the first author’s webpage, and may be installed as follows:

. net from http://www.homepages.ucl.ac.uk/ ucakjpr/stata/
. net install ice.pkg, replace
. net install mim.pkg, replace

The programs are updated as needed from time to time. Descriptions of updated or new
features are published in The Stata Journal when enough significant changes have accrued to
make such publication worthwhile.

3.2. MI in Stata 11

The ice program was written for Stata version 9.2 and above. At the time this article
was accepted, Stata version 11 was newly released (StataCorp. 2009). One of the major new
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Method Description mi impute uvis
method method
regress  Linear regression for a continuous variable yes yes
pmm Predictive mean matching for a continuous variable yes yes*
logit Logistic regression for a binary variable yes yes
ologit Ordinal logistic regression for an ordinal variable yes yes
mlogit Multinomial logistic regression for a nominal variable  yes yes
intreg Interval censored regression for a continuous variable no yes
nbreg Negative binomial regression for a count variable no yes
bootstrap Estimates regression coefficients in a bootstrap sample no yes*™*

Table 1: Comparison of mi impute with uvis for univariate imputation of missing values.
(* available via the match option. ** available via the boot option.)

features of Stata 11 was its MI system. The system comprised a new database architecture for
imputed datasets, utilities for manipulating, checking and validating such datasets, a sequence
of commands for doing imputation, and one command for combining results using Rubin’s
rules. Many of the imputation models available in uvis were replicated in new commands of
the form mi impute XXX, where XXX is a keyword such as regress for linear regression.
The main multivariate imputer in Stata 11 was mi impute mvn, which performed multivariate
normal imputation along the lines of Schafer’s norm program (Schafer 1997; Novo and Schafer
2010); a version under the name inorm has been ported to Stata by Galati and Carlin (2009),
and may be downloaded in Stata using ssc install inorm. Also available in Stata 11 was
mi impute monotone, a multivariate imputer which requires that the incomplete variables
exhibit a monotone missingness pattern. Thus, ice was not replicated in Stata 11 and was
still needed for performing MICE for data with arbitrary missingness patterns.

Table 1 compares the main features of mi impute and uvis for univariate imputation of
missing values in Stata 11, the building blocks of the MICE algorithm.

Combining results using Rubin’s rules may be done using the mi estimate command. The
latter overlaps the feature set of mim, but mim has some facilities that were not provided by
mi estimate or elsewhere in Stata 11 mi. A notable example is the mcerror option of mim,
which quantifies the Monte Carlo error in estimates and in other statistics, and is available
in Stata 12 mi.

The mi import ice and mi export ice commands make it easy to transport data into and
out of the existing ice data format. Also available from the first author’s webpage, under
the heading mi_ice, is a Stata program mi ice, which is essentially an mi-aware wrapper for
ice.

At the time of writing, Stata 12 has just been released (StataCorp. 2011). It includes ex-
tensions of the mi impute system, notably mi impute chained, which, in principle like ice,
performs multiple imputation by chained equations. However, a description of the new facil-
ities is beyond the scope of the present article.

4. Imputation models for different types of variable

As we have discussed in Section 2, the essence of the MICE algorithm is regression of an
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Variable Name Type Levels % missing
Albumin (outcome variable) alb Continuous (rounded) 30 33.0
Grade of tumour grade Ordinal 3 11.6
Residual disease resdis  Ordinal 3 6.8
Performance status ps Ordinal 4 42.7
Presence/absence of ascites ascites Binary 2 5.4
Age (exact years) age Continuous - 0.0
FIGO stage figo Nominal 4 1.8
Histology histol  Nominal 7 0.0
Chemotherapy regimen ctype Nominal 3 0.0
Surgery (yes/no) surg Binary 2 0.0
CA125 (a cancer antigen) cal2b Continuous - 36.7
Alkaline phosphatase alp Continuous - 33.1
All variables - - - 70.1

Table 2: Variables and their missingness in the ovarian cancer dataset.

incomplete variable on other variables. The types of incomplete variable and their associated
regression commands (methods) are listed for univariate imputation with uvis in Table 1.
They carry over directly to ice. The default method is logistic regression (logit) when there
are two distinct values of the variable to be imputed, multinomial logistic regression (mlogit)
when there are 3-5 values and linear regression (regress) otherwise. Methods for imputing
different variable types may be left to the default, may be specified through the cmd () option
of ice, or in the case of nominal or ordinal categorical variables, may conveniently be specified
using a prefix syntax — see Section 7.2.

5. Data

We used data from the 1,189 patients with primary epithelial ovarian cancer diagnosed at
the Western General Hospital (Edinburgh, Scotland) between 1984-01-01 and 1999-12-31.
Patients were aged between 15 and 90 years at the time of diagnosis. The original analysis of
the dataset (Clark et al. 2001) was aimed at developing a prognostic model for survival with
ovarian cancer based on patient and tumour characteristics. In the present paper, we ignore
the time-to-event outcome and concentrate on imputing missing values of albumin, one of
the prognostic factors. Clinical details of the available variables are given in Table 1 of Clark
et al. (2001). We summarize the salient features in Table 2.

Albumin was reported to the nearest integer and has only 30 distinct values recorded. FIGO
stage was treated as nominal for illustration purposes, but could also be viewed as ordinal.
Strikingly, the percentage of cases complete for all variables is only about 30%.

6. Imputing a single variable with missing values

6.1. Preliminaries

We begin with a simple example: imputing missing values of a continuous variable from an-
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other continuous variable. We exemplify features of ice through the relationship between
albumin (alb) and age (age) in the patients with ovarian cancer. We concentrate on esti-
mating the linear regression coefficient, 5, of alb on age. Later on, in Section 7, we address
the more difficult task of estimating 8 adjusting for confounders which are a mix of binary,
nominal, ordinal and continuous variables, most of which have missing values.

6.2. Imputation assuming normality

We first assume that alb is normally distributed given age. An ice command to impute
M = 100 complete datasets and its output are as follows:

ice alb age, m(100) seed(11) clear noverbose

#missing |
values | Freq. Percent Cum.
____________ o
0 | 797 67.03 67.03
1] 392 32.97 100.00
____________ o
Total | 1,189 100.00
Variable | Command | Prediction equation
____________ o
alb | regress | age
age | | [No missing data in estimation sample]
Imputing

[Only 1 variable to be imputed, therefore no cycling needed]
[note: imputed dataset now loaded in memory]
Warning: imputed dataset has not (yet) been saved to a file

In the ice syntax, all variables, whether complete or incomplete, involved in the imputa-
tion model(s) are listed before the first comma. Items after the comma are (in Stata-speak)
‘options’; here, m(100) sets M to 100, seed(11) sets Stata’s random number seed to the (ar-
bitrary) value 11, clear permits the existing dataset to be augmented in the workspace with
the imputed datasets, and noverbose suppresses messages about the progress of the imputa-
tions. Use of the seed() option ensures that if required, imputed values can be reproduced
in a later, identical run.

The first table of output notes the missingness status of the dataset; of the 1189 observations,
there are 797 complete cases and 392 cases with 1 missing value (in fact, of alb). The
second table reports the imputation model applied to each incomplete variable; by default,
all variables are included in the model for any variable with missing data. Here, regress
(linear regression) with normally distributed errors is used to ‘predict’ missing values of alb.
Missing values are imputed in ‘proper’ fashion, as mentioned in Section 2.

The message Only 1 variable to be imputed, therefore no cycling needed is posted
because the imputation is univariate; there is no need to cycle iteratively among regressions
for different incomplete variables.
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Figure 1: Relationship between alb and age. Panel (a): original data. Panels (b) to (f):
imputed values of alb in the first imputed dataset, according to five different methods (see
text for details).

Figure 1 shows the relationship between alb and age (a) in the original data and (b) in the
missing data according to the conditionally normal imputation model.

The relation with age is nicely preserved. The only possible concern is that the distribution
of imputed alb looks somewhat different from the distribution of the original observations.
Shortly, we will consider three alternative imputation methods whose results are represented
by panels (c) to (e) in Figure 1. The imputation method used in panel (f) differs from the
other three and is described in Section 6.8. First, we discuss the format of a multiply imputed
dataset and how to fit the analysis model.

6.3. Format of a multiply imputed dataset

If the original dataset had N observations (rows), a multiply imputed dataset produced by
ice has (M + 1) N observations. It is organized as shown below for the ovarian cancer data:

e +
| alb age _mi _mj |
| ————— |

1. | 45.6783 1 0 |
2. | 42 70.10815 2 0 |
3. | . 82.65572 3 0 |
4. | 41 46.98426 4 0 |
5. | 36 65.72485 5 0 |
1190. | 36.92373 45.6783 1 1|
1191. | 42 70.10815 2 1]

1192. | 39.09165 82.65572 3 1|
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1193. | 41  46.98426 4 1
1194. | 36 65.72485 5 1]

Of the first 5 observations in the data (indexed by _mi = 1,...,5 and _mj = 0, variables
created automatically by ice), observations 1 and 3 of alb are missing, and imputations of
them are seen in observations 1190 and 1192. The latter belong to the first imputation (_mj
= 1). Complete observations are copied from the original to each of the imputed datasets.

The format used by ice is identical to the flong (full long) ‘style’ in Stata’s mi system, except
that the observation and imputation identifiers _mi and _mj are called _mi_id and _mi_m,
respectively. The mi system has three other MI data formats (flongsep, wide and mlong).
In addition, mi has a variable called _mi_miss which marks observations with any missing
values.

6.4. Fitting the analysis model

We use mim to combine the estimated coefficients B for linear regression of alb on age across
the 100 imputed datasets according to Rubin’s rules:

. mim: regress alb age

Multiple-imputation estimates (regress) Imputations = 100
Linear regression Minimum obs = 1189
Minimum dof =  252.7

alb | Coef. Std. Err. t P>|t] [95% Conf. Int.] FMI
___________ +————————rrrrrrrrrrrrrrr e — - —
age | -.146285 .017189 -8.51 0.000 -.180137 -.112433 0.483

cons | 46.5035 1.0357 44.90 0.000 44.4643 48.5426  0.464

The combined B\ is —0.146 (SE 0.017), close, as expected, to the complete-cases estimate of
—0.147 (SE 0.017). To assess how much of the uncertainty in the reported quantities is due
to Monte Carlo error, we request mim’s mcerror option:

. mim, mcerror

Multiple-imputation estimates (regress) Imputations = 100
Linear regression Minimum obs = 1189
Minimum dof =  2562.7

[Values displayed beneath estimates are Monte Carlo jackknife standard errors]

alb | Coef. Std. Err. t P>t [95% Conf. Int.] FMI
____________ +________________________________________________________________

age | -.146285 .017189 -8.51 0.000 -.180137 -.112433 0.483
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.001186 .000473 0.24 2.7e-13 .00166 .001499 0.029

46.5035 1.0357 44.90 0.000 44 .4643 48.5426 0.464
.070062 .027479 1.20 5.1e-69 .089819 .089738 0.029

The Monte Carlo SE of B and its SE are only 0.001 and 0.0005, respectively. Their small
magnitude comes from creating a relatively large number of imputations. See White et al.
(2011) for further discussion of Monte Carlo error.

6.5. Transformation toward normality

As described by Royston (2005b), to satisfy the normality assumption for a continuous vari-
able, a transformation toward normality may be effective. Although, strictly speaking, con-
ditional normality is required, in practice ensuring (approximate) marginal normality is often
sufficient. A shifted log transformation of a variable z is one approach that we recommend; a
positive or negative number + is estimated such that In (£z — ) has zero sample skewness. If
z is negatively skewed, the appropriate transformation is In (—z — =), otherwise it is In (z — 7).

We illustrate the approach with alb. The parameter v may be estimated and the resulting
shifted log transformation applied by using Stata’s 1nskew0O command:

. InskewO lalb = alb

Transform | k [95% Conf. Intervall] Skewness
_________________ e

In(-alb-k) | -64.1545 (not calculated) -.0001185
(392 missing values generated)

Since 1nskewO has reported the transformation as 1n(-alb-k), we deduce that alb is nega-
tively skewed (it actually has v/b; = —0.52). The estimate of v which approximately removes
the negative skewness (the remaining skewness is —0.0001185) is k = —64.1545. Thus the
created variable 1alb equals 1n(-alb+64.1545). The inverse transformation, needed to back-
transform imputed values of 1alb to the original scale (alb), is 64.1545 - exp(lalb). The
ice command which does the imputation is simply

ice lalb age, m(100) seed(11) clear
[output omitted)

Variable | Command | Prediction equation
____________ e
lalb | regress | age
age | | [No missing data in estimation sample]

We then need to apply the inverse transformation to recover imputed values of alb on the
original scale. We first use the genmiss subcommand of mim to create an indicator variable
(_mim_lalb) which marks originally missing values of 1alb in all the imputed datasets, and
then replace the appropriate values of alb:
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. mim: genmiss lalb
. replace alb = 64.1545 - exp(lalb) if (_mim_lalb == 1) & (_mj > 0)

The distribution of alb is more similar between the observed and imputed subsets than for
the normal model (compare Figure 1 (c) with 1 (a) and 1 (b)). The combined estimate of
is slightly larger than before, at —0.151 (SE 0.018).

6.6. Ordinal logistic regression

Provided it is appropriate to impute missing values of z from among the observed values of
z, a convenient and often effective imputation model for z is ordinal logistic regression. In
the present example, the approach is appealing since alb has been reported rounded to the
nearest integer, giving only 30 distinct values. The ice command is as follows:

. ice o.alb age, m(100) seed(11l) clear

A special feature of ice syntax is used here: o.alb. Details of the o. prefix are given in
Section 7.2. Briefly, o.alb tells ice to impute alb using ordinal logistic regression. The
results are illustrated in Figure 1 (d). The combined estimate of B is similar to that with the
normal model for alb given age, namely —0.149 (SE 0.016).

6.7. Predictive mean matching

Predictive mean matching (PMM) imputes missing values of a continuous variable z such that
imputed values are sampled only from the observed values of z by matching predicted values
as closely as possible. The resulting distribution of imputed z often closely matches that of
observed z. PMM should be avoided when imputation appropriately involves extrapolation
beyond the observed range of z or when the sample size is small. Mathematical details of how
PMM is done are given by White et al. (2011, Section 4.2). In the terminology of the latter
description, the value ¢ of the match pool-size, i.e., the number of observations potentially
available for matching predictions, is by default set to 3 in ice and uvis. It can be altered
by using the matchpool () option. Older versions of the software did not have a matchpool ()
option and implicitly used matchpool(1).

PMM is implemented in ice as the match() option, for example:
. ice alb age, m(100) seed(11) clear match(alb)

The distribution of imputed values (see Figure 1 (e)) resembles that from ordinal logistic
regression (Figure 1 (d)). Using PMM as above, the combined estimate of 5 is —0.145 (SE
0.016).

6.8. Imputing an interval-censored variable

We illustrate here a slightly unusual but worthwhile feature of ice: the ability to impute on a
continuous scale a metric variable that is recorded only in categories. Commonly encountered
examples are age (recorded as age-groups) and salary (recorded as income brackets).

Suppose that age in the ovarian cancer data had been recorded only in the 5 age groups
< 40, [40,50), [50,60), [60,70), > 70. Let us assume that the lowest and highest possible ages
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for contracting ovarian cancer are 10 and 100 years, respectively. We create two categorical
variables, say age_11 and age_ul, to store the lower and upper limits of each age group:

. recode age 0/39.999=10 40/49.999=40 50/59.999=50 60/69.999=60 *=70,
> generate(age_11)

. recode age_11 10=40 40=50 50=60 60=70 70=100, generate(age_ul)

. generate age2 = .

The character ‘>’ denotes a long line that has been wrapped. The first recode creates the
new variable age_11 storing the lower boundaries of the age groups. The second creates
age_ul, the corresponding upper boundaries. (If we had preferred not to impose limits, we
could have specified the lower boundary of the lowest age group and the upper boundary of
the highest age group as missing.) We generate a third new variable, age2, initially as missing
values, later to hold the newly created imputed continuous values of age. The model for age2
assumes an underlying normal distribution, conditional on alb.

The ice command and the first part of its output are as follows:

ice alb age2 age_11 age_ul, m(100) seed(11l) clear
> interval(age2: age_ll age_ul)

#missing |
values | Freq. Percent Cum.
____________ o
1| 797 67.03 67.03
| 392 32.97 100.00
____________ o
Total | 1,189 100.00
Variable | Command | Prediction equation
____________ o
alb | regress | age2
age2 | intreg | alb
age_11 | | [Lower bound for age2]
age_ul | | [Upper bound for age2]

ice uses Stata’s intreg command to obtain maximum likelihood estimates of the parameters
of the normal model for age2 as a function of alb. The distribution of imputed values in one
imputed dataset is shown in Figure 1 (f). With the imputed data, the combined estimate of
3 for regressing alb on age?2 is —0.142 (SE 0.016).

Note that here we have a truly multivariate (in fact, bivariate) imputation process. Although
the variables age_11 and age_ul are both complete, nevertheless ice treats age2 as 100%
missing. It uses the MICE algorithm to switch between linear regression of alb on (imputed)
age2 and interval-censored regression of (age_11, age_ul) on (observed and imputed) alb.
Remarkably, despite the considerable loss of information caused by categorizing age, the MI
regression of alb on age?2 gives almost exactly the same result as for the original age variable
(see Figure 3).
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Figure 2: Relationship between age2 and age in the first imputed dataset, based on interval-
censored regression.

The relationship between age2 and age in the first imputed dataset (_mj = 1) is shown in
Figure 2.

While the overall Pearson correlation is quite high (0.91), there is by construction no true
correlation within each age group. The correlations of age and age2 with alb are about the
same (—0.29 and —0.32, respectively).

6.9. Summary

We have presented five different solutions with ice to the problem of imputing a continuous
variable with missing data (alb) from a complete continuous variable (age). A sixth possibility
is complete cases analysis. Figure 3 shows the resulting estimates of the coefficient, B, and
its 95% CI in the analysis model, which is linear regression of albumin on age.

Beta (i.e., B) is the regression coefficient in the complete cases analysis and the combined
value (using Rubin’s rules) in the other analyses.

The Monte Carlo error in each B is of the order of 0.001. Although, therefore, there are real
differences among the estimates, they are of no practical significance whatsoever. We can see
this clearly in Figure 3.

7. Multivariate imputation

7.1. Preliminaries

We now turn to imputing missing values for use in a multivariable model in which alb is
linearly regressed on age adjusting for several confounding variables. We use all ten available
variables as potential confounders. The latter variables are grade, resdis, ps, ascites,
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Figure 3: Regression coefficients (with 95% confidence intervals) for albumin on age after six
different methods for imputing missing albumin. Key to horizontal axis labels: None, no im-
putation (complete cases); Normal, conditionally normal; Inskew0, shifted log transformation;
ologit, ordinal logistic regression; PMM, predictive mean matching; intreg, interval censored
age.

figo, histol, ctype, surg, cal25 and alp.

The two continuous variables, cal125 and alp, are both extremely positively skew. We reduce
the skewness by transforming them to their logarithms, 1ca125 and lalp, respectively. (Had
these two variables been of greater importance in the analysis model, we would probably have
transformed them more completely toward normality, for example, by applying a shifted log
transformation.) The missing values of 1ca125 and lalp are imputed assuming conditional
normality.

Of the two binary variables, ascites and surg, the first has 5.5% missing values and the
second is complete. No special treatment is required for these variables; ascites is imputed
using logistic regression.

One complete ordinal variable (ctype) and three incomplete ones (grade, resdis and ps) are
present. The latter are imputed using ordinal logistic regression.

One complete (histol) and one incomplete nominal variable (figo) are present. The latter
is imputed using multinomial logistic regression.

We first present the complete ice command for the problem, then comment on specific aspects.

7.2. The ice run

We create M = 100 imputations according to the following command:

ice alb age o.grade o.resdis o.ps ascites m.figo i.histol i.ctype surg
> 1lcal25 lalp, m(100) seed(11) saving(multivar)

13
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=> xi: ice alb age grade i.grade resdis i.resdis ps i.ps ascites figo i.figo
> i.histol i.ctype surg lcal25 lalp, cmd(figo:mlogit, grade resdis ps:ologit)
> substitute(grade:i.grade, resdis:i.resdis, ps:i.ps, figo:i.figo) m(100)

> seed(11) saving(multivar, replace)

The second group of lines is output by ice’s preprocessor. It is a ‘translation’ of the user-
entered command into the form that ice actually executes. The preprocessor recognizes three
special prefixes to variable names, namely i., m. and o., which ease the task of specifying
the imputation model for categorical variables.

A term of the form i.wvariable_name says (a) that wvariable_name has no missing values
and (b) that wvariable_name is a categorical variable to be converted to its dummy vari-
ables when wariable_name is used as a predictor in another variable’s imputation model.
The option substitute() associates variable_mame with its dummy variables. For exam-
ple, substitute(grade:i.grade) says ‘whenever grade is a predictor, substitute it with the
dummy variables created by xi:i.grade’. The ‘prefix command’ xi: is Stata’s dummy vari-
able generator. grade is a three-level ordinal variable taking values 1, 2 and 3. xi:i.grade
creates two dummy variables, which (according to its default naming conventions) happen
to be called _Igrade_2 and _Igrade_3. By default, xi: drops the dummy variable associ-
ated with the lowest value (1) of grade, creates _Igrade_2 equal to 1 when grade equals
2 and 0 otherwise, and creates _Igrade_3 equal to 1 when grade equals 3 and 0 otherwise.
The default behaviour of xi: may be modified in different ways, as described in the Stata
documentation of the command.

A term of the form m. variable_name says (a) that variable_name has at least one missing value,
(b) that variable_name is an unordered categorical variable to be imputed with multinomial
logistic regression using Stata’s mlogit command, and (c) that when wvariable_name is a
predictor in another variable’s imputation model, it is to be converted to its dummy variables,
as just described for the i. prefix.

The form o.variable_name is identical to m.variable_name except that variable_name is as-
sumed to be an ordinal variable to be imputed with ordinal logistic regression using Stata’s
ologit command.

As is clear from the above example, when several categorical variables are present, ice’s
preprocessor feature greatly reduces both the amount of typing and the likelihood of making
a syntax error. The tasks of mentioning all relevant variables ‘before the comma’ and of
correctly specifying the substitute() and cmd() options can be onerous.

Finally, the clear option has been replaced with the saving(filename [,replacel) option
which permanently stores the original and imputed data, here to a Stata-format file called
multivar.dta. We include the replace sub-option to overwrite multivar.dta in case it
happens to exist.

Note that the o. prefix recognized by ice should not be confused with Stata 11’s internal
(rarely-used) o. operator. The latter specifies the term that should be dropped from the model
in the presence of collinearity. Also, the i.warname notation of ice should be distinguished
from the i. factor-variable notation introduced in Stata 11. ice uses the ‘old’ way of including
dummy variables via the xi: prefix.

7.3. Fitting the analysis model

An article primarily about imputation would be almost meaningless without an analysis model
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or models in mind. Having created the 100 imputations as just described, we use mim to fit
the MI regression of alb on age, adjusting for all available confounders:

. use multivar, replace

. xi: mim: regress alb age i.grade i.resdis i.ps ascites i.figo i.histol

> i.ctype surg lcal2b lalp
i.grade _Igrade_1-3 (naturally coded; _Igrade_1 omitted)
i.resdis _Iresdis_1-3 (naturally coded; _Iresdis_1 omitted)
i.ps _Ips_0-3 (naturally coded; _Ips_0O omitted)
i.figo _Ifigo_1-4 (naturally coded; _Ifigo_1 omitted)
i.histol _Ihistol_1-7 (naturally coded; _Ihistol_1 omitted)
i.ctype _Ictype_0-2 (naturally coded; _Ictype_O omitted)
Multiple-imputation estimates (regress) Imputations = 100
Linear regression Minimum obs = 1189
Minimum dof =  158.8
alb | Coef. Std. Err. t P>|t| [95% Conf. Int.] FMI
___________ o
age | -.081365 .016196 -5.02 0.000 -.113286 -.049444 0.528
_Igrade_2 | -.273271 .678623 -0.40 0.688 -1.61174 1.0652 0.567
_Igrade_3 | -.575581 .630612 -0.91 0.362 -1.81773 .666572 0.502
_Iresdis_2 | -.147188 .480532 -0.31 0.760 -1.09165 .797269 0.322
_Iresdis_3 | -.701506 .460626 -1.52 0.129 -1.60686 .203844 0.324
_Ips_1 | -1.86618 .394812 -4.73 0.000 -2.64297 -1.08938 0.413
_Ips_2 | -3.56228 .681297 -6.13 0.000 -4.70632 -2.41824 0.435
_Ips_3 | -5.45046 .896262 -6.08 0.000 -7.21877 -3.68216 0.583
ascites | .694876 .379975 1.83 0.068 -.052936 1.44269 0.434
_Ifigo_2 | -.31739 .635984 -0.50 0.618 -1.56886 .934076 0.423
_Ifigo_3 | -1.46409 .54969 -2.66 0.008 -2.54538 -.382797 0.397
_Ifigo_4 | -1.42044 .687881 -2.06  0.040 -2.7729 -.067978 0.355
_Thistol_2 | -.832649 .657984 -1.27 0.207 -2.12871 .463411 0.492
_Ihistol_3 | -.13152 .412615  -0.32 0.750 -.942362 .679323 0.330
_Ihistol_4 | -.61942 .624708 -0.99 0.322 -1.84894 .610097  0.437
_Ihistol_ 56 | -1.61377 .910045 -1.77 0.077 -3.40507 .177534  0.445
_Ihistol_6 | .074369 1.1317 0.07 0.948 -2.15752 2.30625 0.562
_Thistol_7 | -.895017 1.11046 -0.81 0.421 -3.07676 1.28673 0.284
_Ictype_1 | .180672 .551454 0.33 0.744 -.908458 1.2698 0.631
_Ictype_2 | 1.08158 .635551 1.70 0.090 -.171166 2.33433 0.533
surg | .977838  1.00073 0.98 0.330 -.994651 2.95033 0.531
lcal25 | -.451467 .126678 -3.56 0.000 -.700903 -.20203 0.469
lalp | -1.58529 .368222 -4.31 0.000 -2.30975 -.860833 0.411
_cons | 54.2405 2.40758 22.53  0.000 49.4963 58.9848 0.517

It is clear from the table of regression output that several of the confounders are strongly
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associated with alb in a multivariable context. The main message is that after adjustment,
the combined value of 3 for age has been approximately halved, from —0.146 (SE 0.017) to
—0.081 (SE 0.016).

If we fit the above regression model to the 358 complete cases available for the same variables
in the original data, we obtain 8 = —0.066 (SE 0.022). We have been able to use only 30%
of the observations. The complete-cases analysis is both potentially biased and inefficient.

To give an idea of timing, the total time taken by ice and mim to create 100 imputed datasets
and fit the analysis model on a 3GHz dual-core PC was 13.8 min.

8. Other features of ice

It would be inappropriate here to give a complete description of all the features and options of
ice. The help file of course provides most of the information, and the various articles on ice
already referenced expand and illustrate details. We restrict ourselves to mentioning briefly
a few distinctive features that are useful in practical applications.

8.1. Imputing with time-to-event data

Although the topic is not specific to ice, there is an issue as to how one should include
survival-time variables ¢ and d as predictors in the imputation model when the analysis model
is some kind of survival analysis. Here, ¢t denotes a possibly censored time to event and d the
censoring indicator. van Buuren et al. (1999) suggest heuristically using ¢, logt and d. White
and Royston (2009) showed that if the analysis model is a proportional hazards regression and
there is just one binary predictor, an appropriate functional form is the cumulative hazard
function for each individual and d.

8.2. Stratified imputation

It is sometimes desirable to impute separate strata of a dataset independently. The ice option
by (variable_name) imputes in independent subsets according to the levels of variable_name.
Stratification may be appropriate in a randomized trial, when wvariable_name denotes treat-
ment arm and one wishes to allow for different relationships among the variables in the
different treatment arms. It amounts to allowing for interactions between treatment and the
other variables in the imputation model. Similar remarks apply when variable_name denotes
centers, countries or some other large grouping of individuals whose multivariate structures
are plausibly expected to differ. Clearly it should be avoided when the sample size may be
small in some groups, since unstable imputations may be obtained.

8.3. Conditional imputation

Consider a dataset comprising the variables age, female, and pregnant, where female is
coded 1 for females, 0 for males, and pregnant is coded 1 for pregnant, O for not pregnant.
Males are coded pregnant = 0. All three variables may have missing values. Since males
cannot be pregnant, we wish to impute missing values of pregnant using data only from
females. Code with ice is as follows:

ice age pregnant female, conditional(pregnant: female==1) clear



Journal of Statistical Software

The prediction equation for age is pregnant female, whereas the equations for pregnant and
for female are just age.

8.4. Monotone imputation

A monotone missing data pattern may be imputed in ice by specifying the monotone option.
By default, ice orders variables to be imputed in order of increasing missingness. For variables
x1,..., 2k thus ordered, the imputation equations are z1 on [nothing], x2 on z1, x3 on x; xg,

.., Tk ON T1,...,Tr_1. When the missingness pattern really is monotone, only one cycle of
MICE is required, so the default is cycles(1). In addition, ice reports a ‘non-monotonicity
score’. The score is defined as 100x (sum of numerators) / (sum of denominators), where the
sums are taken over all k — 1 pairs of adjacent variables in x1, ..., ;. Consider two variables,
x1 and z3. The numerator component for x; and 9 is the number of observations in the
estimation sample for which z; is missing and x5 is observed. If the numerator is positive, x1
and x5 show a non-monotone pattern. The denominator for ;1 and x5 is the the number of
observations in the estimation sample for which zs is observed.

A relaxed view is taken by ice when the non-monotonicity score is positive. It issues a warning
message, but goes ahead with the imputations anyway. Note, however, that non-monotone
imputed values have the wrong association with later variables, e.g., imputed values of x; are
independent of xo, unlike with the standard ice approach.

Note that monotone imputation can also be performed by Stata 11’s mi impute monotone
command.

8.5. Perfect prediction

A potential problem with MICE arises when a conditional regression model exhibits perfect
prediction. Perfect prediction affects logistic, ordered logistic and multinomial logistic regres-
sion models. In logistic regression, perfect prediction occurs when there is a category of any
predictor variable in which the outcome is always 0 (or always 1), i.e., if the two-way table of
a predictor variable by the outcome variable contains a zero cell. Perfect prediction results
in infinite parameter estimates and difficulties in estimating the variance-covariance matrix
of the parameter estimates. The result may be inappropriate imputations. The problem is
discussed in White et al. (2010).

Various solutions exist (White et al. 2010). The one implemented in ice involves ‘augmenting’
the data by adding a few extra, temporary observations to the dataset (with small weight) so
that no prediction is perfect. At the time of writing, perfect prediction still causes problems
in other software, including mi impute in Stata 11.

9. Comments and conclusions

We have illustrated some of the features and use of ice in multiple imputation of multivariate
missing data. Judging by the emails we receive, many people have used and are still using
ice to good effect in their practical work. The main advantages of ice are its flexibility
and wide range of options. We acknowledge, of course, that ice is work in progress and
has limitations. No facility is available automatically to simplify imputation model(s), for
example by stepwise deletion of variables. (Some would regard omission as a good thing!)

17
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Apart from models for interval-censored data, ice does not implement range restrictions on
imputed values. Imputing large numbers of variables in moderate-sized datasets is highly
likely to cause estimation difficulties in some of the imputation models; the only sensible
remedy is to prune the models, possibly quite severely. To facilitate the process, ice provides
eq() and eqdrop() options.

It is straightforward to specify a set of incompatible conditional distributions for which no
multivariate density exists (van Buuren 2007). In general, little is known theoretically or
practically about the effects of incompatible conditional distributions on the quality of im-
putations. However, van Buuren et al. (2006) performed some simulations under severely
incompatible models and observed that the adverse effects on the estimates following MI were
‘minimal’.

It is important to realize that all imputation methods can fail (see section 10 of White et al.
(2011) for further discussion). The user can and should carry out simple checks of the quality
of imputations, e.g., as in Figure 1.

Imputations are based on drawing parameter values in an imputation model from a normal
approximation to the distribution of the parameter estimates. An alternative, implemented
in the ice option boot, is the approximate Bayesian bootstrap.
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