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Abstract

In this paper we present the R package gRain for propagation in graphical indepen-
dence networks (for which Bayesian networks is a special instance). The paper includes
a description of the theory behind the computations. The main part of the paper is an
illustration of how to use the package. The paper also illustrates how to turn a graphical
model and data into an independence network.
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1. Introduction

The gRain package (Højsgaard 2012a) is an R package, (R Development Core Team 2011) for
probability propagation in gRaphical independence networks which are also denoted proba-
bilistic networks or Bayesian networks. gRain is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=gRain.

A Bayesian network is often taken to be a graphical model based on a directed acyclic graph
(DAG). The DAG, however, is only used to give a simple way of specifying a multivariate dis-
tribution by combining (conditional) univariate distributions. The key to efficient probability
propagation is to exploit conditional independencies in an undirected graph which is derived
from the DAG. Hence, methods for building undirected graphical models can also be used for
constructing probabilistic networks. Put differently, if we infer an undirected graphical model
from data then we can convert the model to a probabilistic network and use this network for
computation of conditional probabilities. As a concrete example, Tamayo et al. (2011) used
gRain for probability propagation in model for clinical prediction in brain cancer. Throughout

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=gRain
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the paper we shall use the term network for a graphical independence network.

The networks available in gRain are restricted to consisting of discrete variables, each with a
finite state space. The propagation algorithm currently available in gRain is that of Lauritzen
and Spiegelhalter (1988) which we denote the LS algorithm. For brevity we refer to the paper
Lauritzen and Spiegelhalter (1988) as L&S.

To our knowledge there are two other R packages for probability propagation. One is the
GRAPPA suite of functions (Green 2009) and the other is RHugin (Konis 2011). Neither of
these packages are on CRAN.

The paper is organized as follows: Section 2 briefly reviews Bayesian networks through the
chest clinic example of L&Sand the section also provides a very short presentation of some
of the functionality of gRain. Section 3 describes the concepts and computational steps of
L&Sand Section 4 then describes the gRain implementation of these steps. Section 5 describes
methods for building networks from data and Section 6 describes additional features of gRain
which includes methods for prediction, simulation and building networks from repeated pat-
terns. Finally, Section 7 gives an overview of the software structure while Section 8 contains
a discussion.

2. An introductory example: The chest clinic

This section reviews the chest clinic example of L&S (illustrated in Figure 1) and shows
one way of specifying the network in gRain. Details of the steps will be given in Section 4
(additional ways of specifying a network are described in Section 5). L&S motivate the chest
clinic example by the following narrative:

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bron-
chitis, or none of them, or more than one of them. A recent visit to Asia increases
the chances of tuberculosis, while smoking is known to be a risk factor for both
lung cancer and bronchitis. The results of a single chest X-ray do not discriminate
between lung cancer and tuberculosis, as neither does the presence or absence of
dyspnoea.”

2.1. Specifying a network through conditional probability tables

Let X = XV = (Xv; v ∈ V ) be a discrete random vector where V is a set of labels of the
variables. The levels of Xv are generically denoted by xV so the levels of X are denoted
x = xV = (xv, v ∈ V ). Each variable Xv has a finite number of levels.

In this section we outline one way of building a network. The starting point is a multivariate
probability distribution constructed by combining univariate (conditional) distributions using
the structure of a directed acyclic graph (hereafter denoted a DAG) with vertices V . The
parents of a vertex v is denoted pa(v). A joint distribution can be given as

p(xV ) =
∏
v∈V

p(xv|xpa(v)) (1)

where p(xv|xpa(v)) is a function defined on Xv×Xpa(v). This function is non-negative and satis-
fies that

∑
xv
p(xv|x∗pa(v)) = 1 for each parent configuration x∗pa(v) of xpa(v). Hence p(xv|xpa(v))
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Figure 1: Chest clinic example from L&S.

becomes the conditional distribution of Xv given Xpa(v). In practice p(xv|xpa(v)) is specified
as a table called a conditional probability table (hereafter denoted a CPT). Thus, a Bayesian
network can be regarded as a complex stochastic model built up by putting together simple
components (conditional probability distributions).

For the chest clinic example we write the variables as A = Asia, S = smoker, T = tuberculosis,
L = lung cancer, B = bronchitis, D = dyspnoea, X = X-ray and E = either tuberculosis or
lung cancer. Notice that we are using X with two different meanings here. Notice also that
E is a logical variable which is true if either T or L are true and false otherwise.

Following (1), the DAG in Figure 1 dictates a factorization of the joint probability function
p(xV ) as

p(xV ) = p(xA)p(xT |xA)p(xS)p(xB|xS)x(xL|xS)p(xE |xT , xL)p(xD|xE , xB)p(xX |xE). (2)

2.2. Queries to networks

Suppose we are given a finding that a set of variables E ⊂ V have a specific value x∗E . With
this finding we are often interested in the conditional distribution p(xv|XE = x∗E) (or p(xv|x∗E)
in short) for some of the variables v ∈ V \E or in p(xU |x∗E) for a set of variables U ⊂ V \E.
Interest might also be in calculating the probability of a specific event, e.g., the probability
of seeing a specific finding, i.e., p(x∗E) = p(XE = x∗E).

In the chest clinic example, a finding x∗E could be a person who has recently visited Asia and
suffers from dyspnoea, i.e., xA = yes and xD = yes. Notice that E is used with two different
meanings in this example. Interest might be in p(xL|x∗E), p(xT |x∗E) and p(xB|x∗E), or possibly
in the joint (conditional) distribution p(xL, xT , xB|x∗E).

2.3. A one-minute version of gRain

A simple way of specifying the network for the chest clinic example is as follows (the steps
presented below will be explained in detail in Section 4).
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R> library("gRain")

R> library("Rgraphviz")

1. Specify conditional probability tables with values as given in L&S:

R> yn <- c("yes", "no")

R> a <- cptable(~ asia, values = c(1, 99), levels = yn)

R> t.a <- cptable(~ tub + asia, values = c(5, 95, 1, 99), levels = yn)

R> s <- cptable(~ smoke, values = c(5,5), levels = yn)

R> l.s <- cptable(~ lung + smoke, values = c(1, 9, 1, 99), levels = yn)

R> b.s <- cptable(~ bronc + smoke, values = c(6, 4, 3, 7), levels = yn)

R> x.e <- cptable(~ xray + either, values = c(98, 2, 5, 95), levels = yn)

R> d.be <- cptable(~ dysp + bronc + either,

+ values = c(9, 1, 7, 3, 8, 2, 1, 9), levels = yn)

R> e.lt <- ortable(~ either + lung + tub, levels = yn)

Notice that the + operator used above is slightly misleading in the sense, for example,
that the operator does not commute (the order of the variables is important). We use
the + operator merely as a separator of the variables. The following forms are also valid
specifications:

R> cptable(~ dysp | bronc + either,

+ values = c(9, 1, 7, 3, 8, 2, 1, 9), levels = yn)

R> cptable(c("dysp", "bronc", "either"),

+ values = c(9, 1, 7, 3, 8, 2, 1, 9), levels = yn)

Notice also that since E is a logical variable which is true if either T or L are true
and false otherwise, the corresponding CPT can be created with the special function
ortable().

2. Create an intermediate representation of the CPTs:

R> (plist <- compileCPT(

+ list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)))

CPTspec with probabilities:

P( asia )

P( tub | asia )

P( smoke )

P( lung | smoke )

P( bronc | smoke )

P( either | lung tub )

P( xray | either )

P( dysp | bronc either )

For example we have

R> plist$tub
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asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

3. Create the network from the list of CPTs:

R> gin1 <- grain(plist)

R> summary(gin1)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

4. The network can be queried:

R> querygrain(gin1, nodes = c("lung", "bronc"), type = "marginal")

$lung

lung

yes no

0.055 0.945

$bronc

bronc

yes no

0.45 0.55

Likewise, a joint distribution can be obtained.

R> querygrain(gin1, nodes = c("lung", "bronc"), type = "joint")

bronc

lung yes no

yes 0.0315 0.0235

no 0.4185 0.5265

5. Findings can be entered:

R> gin1.find <- setFinding(gin1, nodes = c("asia", "dysp"),

+ states = c("yes", "yes"))

6. The network with the findings incorporated can be queried:

R> querygrain(gin1.find, nodes = c("lung", "bronc"))

$lung

lung

yes no

0.09952515 0.90047485
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$bronc

bronc

yes no

0.8114021 0.1885979

7. The probability of the specific finding can be obtained:

R> getFinding(gin1.find)

Finding:

variable state

[1,] asia yes

[2,] dysp yes

Pr(Finding)= 0.004501375

3. Local computations

This section describes the algorithm for making efficient computations with networks while
the sections to follow will relate the facilities in gRain to the theory.

Returning to the chest clinic example, suppose interest is in p(xL|xD = “yes”) = p(xL, xD =
“yes”)/p(xD = “yes”), i.e., the probability of lung cancer given dyspnoea. A brute force
approach is to (i) carry out the multiplications in (2) (which would yield a 28 dimensional
table) and then (ii) marginalize the table onto the 22 table defined by L and D. Such an
approach is intractable for larger networks.

The key to making efficient computations with networks is (a) to utilize the modular structure
of the model so that computations can be made locally and (b) to use the graph for identifying
this modular structure.

3.1. Conditional independence and graphs

Before describing the local computations in detail, we review the notions of conditional inde-
pendence and dependency graphs; see Lauritzen (1996) for further details. Let X = (Xv)v∈V
be a random vector with a joint density. Let A, B and C be subsets of V and letXA = (Xv)v∈A
and similarly forXB andXC . ThenXA andXB are conditionally independent givenXC (writ-
ten A ⊥⊥ B |C) if XA and XB are independent in the conditional distribution given XC = xc
for each possible value of xC of XC . If p() denotes a generic density or probability mass
function, A ⊥⊥ B |C if p(xA, xB |xC) = p(xA |xC)p(xB |xC). An equivalent characterization
is that the joint density of (XA, XB, XC) factorizes as

p(xA, xB, xC) = g(xA, xC)h(xB, xC), (3)

that is, as a product of two non-negative functions g() and h(), where g() does not depend
on xB and h() does not depend on xA. This is known as the factorization criterion.

Let G = (V,E) be an undirected graph with cliques C1, . . . Ck. If p(xV ) can be factorized as

p(xV ) =
T∏
i=1

ψCi(xCi)
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for some functions ψC1() . . . ψCT
() where ψCj () depends on x only through xCj then we say that

p() factorizes according to G. If all the densities under a given model factorize according to
G, then G encodes the conditional independence structure of the model, through the following
result (the global Markov property): whenever sets A and B are separated by a set C in G,
then A ⊥⊥ B |C under the model.

3.2. The moral graph

We may think of each of the conditional probability tables of the form p(xv|xpa(v)) in (2) as
a non-negative function of the variables it involves. We can make this explicit by writing
p(xv|xpa(v)) as ψv∪pa(v)(xv, xpa(v)) or even shorter as ψ(xv, xpa(v)). Following L&S we call
these functions evidence potentials or simply potentials and we may hence write (2) as

p(xV ) = ψ(xA)ψ(xT , xA)ψ(xS)ψ(xB, xS)ψ(xL, xS)ψ(xE , xT , xL)ψ(xD, xE , xB)ψ(xX , xE),

where ψ(xA) = p(xA), ψ(xT , xA) = p(xT |xA), ψ(xS) = p(xS), ψ(xB, xS) = p(xB|xS) and so
forth. Absorbing lower order terms into higher order terms allows us to write (2) as

p(xV ) = ψ(xA, xT )ψ(xS , xB)ψ(xS , xL)ψ(xE , xT , xL)ψ(xD, xE , xB)ψ(xX , xE) (4)

where, for example, ψ(xA, xT ) = p(xA)p(xT |xA).

The dependence graph of a Bayesian network is an undirected graph with vertices V , and this
graph is derived from these potentials. For example, the presence of the term p(xD|xE , xB)
implies that there must be edges between all pairs in {D,E,B}. The dependence graph can
algorithmically be formed from the DAG by moralization: The moral graph of a DAG is
obtained by first joining all parents of each node by an edge and then dropping directions
on the arrows. The moral graph for the chest clinic example is shown in Figure 2, left. The
edges added are between tub and lung and between either and bronc. The global Markov
property allows conditional independence restrictions implied by (4) to be read off the moral
graph.

Next we illustrate an approach to efficient computations. To find e.g., p(xL, xD) we need to
sum over all other variables. We are interested in making these summations locally so that
we do not create new potentials defined over large sets of variables because this is prohibitive
for large networks.

For example if we start by summing over xT then it follows from (4) that we will create a po-
tential which depends on (xA, xL, xE), namely ψ(xA, xL, xE) =

∑
xT
ψ(xT , xA)ψ(xE , xT , xL).

Summing over xA afterwards then amounts to finding
∑

xA
ψ(xA, xL, xE).

On the other hand, if we start by summing over xA then this means summing in a single
potential, namely ψ∗(xT ) =

∑
xA
ψ(xT , xA). This new potential can then be absorbed into

ψ(xE , xT , xL) by setting ψ(xE , xT , xL) ← ψ(xE , xT , xL)ψ∗(xT ). Thereby no new potential
has been created; only an existing potential has been modified. Summing over xT afterwards
then amounts to finding ψ∗(xE , xL) =

∑
xT
ψ∗(xE , xT , xL) which again is a sum involving

only a single potential. We can also employ such local computations when summing over xX
and it then follows that

p(xL, xE , xS , xB, xD) = ψ(xL, xS)ψ(xB, xS)ψ(xE , xL)ψ(xD, xE , xB).
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Figure 2: Left: Moral graph obtained by adding edges between common parents of each node
and then dropping directions. Right: Triangulated moralized DAG.

Next we will have to sum over either xS , xB or xE . Summing over xS gives

p(xL, xE , xB, xD) = ψ(xE , xL)ψ(xD, xE , xB)
∑
xS

ψ(xL, xS)ψ(xB, xS). (5)

This will produce a function of (xL, xB), namely ψ(xL, xB) =
∑

xS
ψ(xL, xS)ψ(xB, xS). Since

L and B are not neighbours in the moral graph there is no potential into which ψ(xL, xB)
can be absorbed. (Summing over xB or xE would also create functions of variables which are
not neighbours in the moral graph).

3.3. Triangulation

There is a simple condition under which the summations (when carried out in a suitable
order) can be made so that no new functions are created. The condition is that the moral
graph is triangulated. A graph is triangulated if and only if the graph contains no cycles of
length ≥ 4 without a chord. If a graph is not triangulated it can be made so by adding edges,
so called fill-ins. A triangulation of the moral graph for the chest clinic example is shown
in Figure 2, right (an edge between bronc and lung has been added). Moreover, when the
graph is triangulated it is possible to give an ordering in which all summations can be made
such that no new functions are created. We shall return to describing the ordering later.

Clearly, p(xV ) has interactions only among neighbours in the triangulated graph and we may
write

p(V ) = ψ(xT , xA)ψ(xL, xB, xS)ψ(xL, xT , xS)ψ(xE , xB, xL)ψ(xD, xE , xB)ψ(xX , xE). (6)
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where ψ(xL, xB, xS) = p(xS)p(xL|xS)p(xB|xS), ψ(xE , xB, xL) = 1 and all other poten-
tials are as defined in connection with (4). The representation in (6) is called a clique
potential representation. Using (6), the analogue of (5) becomes to set ψ(xE , xB, xL) ←
ψ(xE , xB, xL)

∑
xS
ψ(xL, xB, xS) so in this case there is now an existing potential ψ(xE , xB, xL)

into which
∑

xS
ψ(xL, xB, xS) can be incorporated. We then obtain

p(xL, xE , xB, xD) = ψ(xE , xL)ψ(xD, xE , xB)ψ(xE , xB, xL). (7)

3.4. Different representations of the joint distribution

The key to efficient calculations is to transform the clique potential representation (such as
the representation in (6)) into a clique marginal representation which is described below.

To do so, the following graph theoretical concepts are needed (where we refer to L&S for
additional details and for references): Let bd(vi) denote the neighbours of the vertex vi in an
undirected graph. A set of variables U in an undirected graph is complete if there are edges
between all pairs of variables in U . A numbering v1, . . . , vk of the vertices is perfect if and
only if for all i the sets {v1, . . . , vi−1} ∩ bd(vi) are complete. It can be shown that a graph is
triangulated if the vertices can be given a perfect ordering. Triangulatedness can be checked
using the maximum cardinality search (abbreviated MCS) algorithm which works as follows:
Give number 1 to any node and proceed iteratively as follows: The next node to number is a
node with a maximum of previously numbered neighbours. If the graph is triangulated then
the numbering obtained this way will be perfect. If the graph is not triangulated it can be
made so by adding additional edges, so called fill-ins. Finding an optimal triangulation of
a given graph is NP-complete. Yet, various good heuristics exist. For graph triangulation
we have in gRain used the minimum clique weight heuristic method suggested by Kjærulff
(1990).

An ordering C1, . . . , CT of the cliques of an undirected graph has the Running Intersection
Property if Sj = (C1 ∪ . . . Cj−1) ∩Cj is contained in one (but possibly several) of the cliques
C1, . . . , Cj−1. An ordering of the cliques that satisfies the Running Intersection Property is
also called a RIP ordering. We pick one of the cliques, say Ck of C1, . . . Cj−1 and call this the
parent clique of Cj while Cj is called a child of Ck. We call Sj the separator and Rj = Cj \Sj
the residual, where S1 = ∅. It can be shown that the cliques of a graph admit a RIP ordering if
and only if the graph is triangulated. A RIP ordering can be found, for example, by ordering
the cliques according to the highest number assigned to the vertices in each clique by the
maximum cardinality search algorithm.

Table 1 shows the RIP ordering of the cliques of the triangulated moral graph for the chest
clinic example as obtained in gRain.

The RIP ordering of the cliques can be represented as the DAG in Figure 3 which we call a
rooted junction tree with C1 as the root.

In a general setting we may (following the steps illustrated above) obtain a clique potential
representation of p(xV ) given in (1) as

p(xV ) =
T∏

j=1

ψCj (xCj ) (8)

where C1, C2, . . . , CT are the cliques of the triangulated moral graph.
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Clique no. Clique Separator Parent

1 tub, asia
2 either, tub, lung tub 1
3 bronc, lung, either lung, either 2
4 smoke, lung, bronc lung, bronc 3
5 dysp, bronc, either bronc, either 3
6 xray, either either 5

Table 1: RIP ordering of the cliques of the triangulated moral graph for the chest clinique
example. For example, clique number 4 has clique number 3 as its parent.

1

2

3

4 5

6

Figure 3: Rooted junction tree for the chest clinic example from L&S. The numbers refer to
the cliques given in Table 1.

Notice that (1) can be seen as a way of specifying a complex joint distribution through simpler
terms, a collection of CPTs. However, these CPTs are only used for establishing the clique
potential representation (8). Once this representation is established, the CPTs are of no
further use. It should also be noticed that the clique potentials are not uniquely defined (and
in the following we shall make use of alternative sets of clique potentials).

The LS algorithm works by turning the clique potential representation (8) into a representa-
tion in which each potential ψCj (xCj ) is replaced by the marginal distribution p(xCj ). This
representation is called a clique marginal representation. This is done by working twice
through the set of cliques and passing messages between neighbouring cliques: first from
the last clique in the RIP ordering towards the first, i.e., inwards in the junction tree, and
subsequently passing messages in the other direction.

In detail, we proceed as follows. Start with the last clique CT in the RIP ordering where CT =
ST ∪RT , ST ∩RT = ∅ (for the chest clinic example, this is C6 in Figure 3). The factorization
(8) together with the factorization criterion (3) implies that RT ⊥⊥ (C1∪ . . .∪CT−1)\ST |ST .
Marginalizing over xRT

gives

p(xC1∪...∪CT−1
) =

( T−1∏
j=1

ψCj (xCj )

)∑
xRT

ψCT
(xST

, xRT
).
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Let ψST
(xST

) =
∑

xRT
ψCT

(xST
, xRT

). Then from the expression above we have

p(xRT
|xST

) = ψCT
(xST

, xRT
)/ψST

(xST
)

and hence

p(xV ) = p(xC1∪...∪CT−1
)p(xRT

|xST
) =

{( T−1∏
j=1

ψCj (xCj )

)
ψST

(xST
)

}
ψCT

(xCT
)

ψST
(xST

)
.

The RIP ordering ensures that ST is contained in the neighbour of CT in the junction tree
(one of the cliques C1, . . . , CT−1), say Ck. (In Figure 3, S6 is contained in C5.) We can
therefore absorb ψST

into ψCk
by setting ψCk

(xCk
) ← ψCk

(xCk
)ψST

(xST
). We can think

of the clique CT passing the message ψST
to its neighbour Ck, and then changing its own

potential to ψCT
← ψCT

/ψST
. Similarly, Ck absorbes the message. After this we now have

p(xC1∪...∪CT−1
) =

∏T−1
j=1 ψCj (xCj ). We can then apply the same scheme to the part of the

junction tree which has not yet been traversed. Continuing in this way until we reach the
root of the junction tree yields

p(xV ) = p(xC1)p(xR2 |xS2)p(xR3 |xS3) . . . p(xRT
|xST

) (9)

where p(xC1) = ψC1(xC1)/
∑

xC1
ψC1(xC1). The resulting expression (9) is called a set chain

representation. Note that the root potential now yields the joint marginal distribution of its
nodes. (In Section 5 we establish the representation (9) directly from a triangulated graph
and a dataset).

Next we the other way in the set chain representation (and outwards in the rooted junction
tree): Suppose C1 is the parent of C2 in the rooted junction tree. Then we have that p(xS2) =∑

xC1\S2
p(xC1) and so

p(xV ) = p(xC1)
p(xC2)

p(xS2)
p(xR3 |xS3) . . . p(xRT

|xST
).

Thus when the clique C2 has absorbed its message by the operation

ψC2(xC2)← ψC2(xC2)p(xS2)

its potential is equal to the marginal distribution of its nodes. Proceeding this way until we
reach the leaves of the junction tree yields the clique marginal representation

p(xV ) =
T∏

j=1

p(xCj )/
T∏

j=2

p(xSj ). (10)

Based on the clique marginal representation, marginal probabilities of each node can be found
by summing out over the other variables.

3.5. Absorbing evidence and answering queries

Consider absorbing the evidence x∗E = (x∗v, v ∈ E), i.e., that nodes in E are known to have a
specific value. We note that

p(xV \E |x∗E) ∝ p(xV \E , x∗E)
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and hence evidence can be absorbed into the model by modifying the terms ψCj in the clique
potential representation (8) as follows: for every v ∈ E, we pick an arbitrary clique Cj with
v ∈ Cj . Entries in ψCj which are locally inconsistent with the evidence, i.e., entries xCj for
which xv 6= x∗v, are set to zero and all other entries are unchanged. Evidence can be entered
before or after propagation without changing final results.

To answer queries, we carry out the propagation steps above leading to a clique marginal
representation where the potentials become ψCj (xCj ) = p(xCj |x∗E). In this process we note
that processing of the root potential to find p(xC1 |x∗E) involves computation of

∑
xC1

ψ1(xC1)

which is equal to p(x∗E). Hence the probability of the evidence comes at no extra computa-
tional cost.

Suppose we want the distribution p(xU |x∗E) for a set U ⊂ V \E. If there is a clique Cj such
that U ⊂ Cj then the distribution is simple to find by summing p(xCj ) over the variables
in Cj \ U . If no such clique exists we can obtain p(xU |x∗E) by calculating p(x∗U , x

∗
E) for all

possible configurations x∗U of U and then normalize the result: this can be computationally
demanding if U has a large state space.

4. Local computations in gRain

This section illustrates how the local computation steps described in Section 3 are made in
gRain. The two main concepts are compilation and propagation; a terminology which has
been adopted from the HUGIN software (HUGIN Expert A/S 2011).

In general terms, compilation refers to a transformation of specification of a joint probability
distribution into a clique potential representation of the form (8) while propagation means
transforming a clique potential representation of the form (8) into the clique marginal repre-
sentation (10).

4.1. Specification of a network

Consider the following code fragment (which is also used in Section 2.3):

R> (plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)))

CPTspec with probabilities:

P( asia )

P( tub | asia )

P( smoke )

P( lung | smoke )

P( bronc | smoke )

P( either | lung tub )

P( xray | either )

P( dysp | bronc either )

The compileCPT() function performs the following steps: (i) Checks that specifications of
the CPTs do not specify cycles. (ii) Create the corresponding DAG. (iii) Checks that the
dimensions of the CPTs are consistent. (For example the specification of t.a gives a table
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with four entries and the variable tub is specified to be binary. Hence it is checked that the
variable asia is also binary).

A network is specified using the generic grain() function. There is a grain() method for
different types of model specification. The grain() method applied to plist (as defined
above) sets up an internal structure which is subsequently used in the computations:

R> gin1 <- grain(plist)

R> summary(gin1)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

4.2. Compilation and propagation

Compilation

The compile() method performs the following steps: (i) Creates the moral graph. (ii) Detects
that the moral graph is not triangulated and therefore creates a triangulated graph by making
fill-ins. (iii) Establishes a potential representation by absorbing each CPT into an appropriate
clique potential; i.e., establish the representation in (8. (iv) Creates a junction tree of the
cliques.

R> gin1c <- compile(gin1)

R> summary(gin1c)

Independence network: Compiled: TRUE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

Number of cliques: 6

Maximal clique size: 3

Maximal state space in cliques: 8

A RIP ordering of the cliques of the triangulated undirected graph is contained in the slot
rip in the network object; see Table 1.

Propagation

Propagation means transforming a clique potential representation of the form (8) into the
clique marginal representation (10):

R> gin1cp <- propagate(gin1c)

Notice that the compile() and propagate() functions were not called explicitly in the ex-
ample in Section 2.3. The reason for this is given in Section 4.3.
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4.3. Setting findings and answering queries

Setting findings

Suppose we want to enter the finding that a person has recently been to Asia and suffers from
dyspnoea. This can be done in one of two ways:

R> gin1c.find <- setFinding(gin1c, nodes = c("asia", "dysp"),

+ states = c("yes", "yes"))

R> gin1c.find <- setFinding(gin1c,

+ flist = list(c("asia", "yes"), c("dysp", "yes")))

These findings are entered into the clique potential representation (8) as described in Sec-
tion 3.5. If the network is not already compiled then no clique potential representation exists
for the network. In this case, setFinding() will force a compilation to be made. Default is
that the network is also propagated when setFinding() is called and therefore the compile()
and propagate() functions were not called in Section 2.3. Notice that findings can be en-
tered incrementally by calling setFinding() repeatedly. If doing so, it is advantageous (in
terms of computing time) to set propagate = FALSE in setFinding() and then only call the
propagate() function at the end:

R> gin1c.find <- setFinding(gin1c, nodes = "asia", states = "yes",

+ propagate = FALSE)

R> gin1c.find <- setFinding(gin1c.find, nodes = "dysp", states = "yes",

+ propagate = FALSE)

R> gin1c.find <- propagate(gin1c.find)

The finding itself is displayed with:

R> getFinding(gin1c.find)

Finding:

variable state

[1,] asia yes

[2,] dysp yes

Pr(Finding)= 0.004501375

The probability of observing the finding is obtained with pFinding(). Findings can be
retracted (removed from the network) with

R> gin1c3 <- retractFinding(gin1c.find, nodes = "asia")

R> getFinding(gin1c3)

Finding:

variable state

[1,] dysp yes

Pr(Finding)= 0.004501375
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Omitting the nodes argument when calling retractFinding() implies that all findings are
retracted, i.e., that the network is reset to its original status.

Answering queries

As illustrated in Section 2.3, queries can be made to a network using the querygrain() func-
tion. The result is by default an array (or a list of array(s)). Setting result = "data.frame"

causes the result to be returned as a dataframe (or a list of dataframes). Calling querygrain()

on a network which is not propagated will force a propagation to be made.

For example, consider the network with the findings inserted above:

R> querygrain(gin1c.find, nodes = c("lung", "bronc"), type = "marginal",

+ result = "data.frame")

$lung

lung Freq

1 yes 0.09952515

2 no 0.90047485

$bronc

bronc Freq

1 yes 0.8114021

2 no 0.1885979

R> querygrain(gin1c.find, nodes = c("lung", "bronc"), type = "joint",

+ result = "data.frame")

lung bronc Freq

1 yes yes 0.06298076

2 no yes 0.74842132

3 yes no 0.03654439

4 no no 0.15205354

R> querygrain(gin1c.find, nodes = c("lung", "bronc"), type = "conditional",

+ result = "data.frame")

lung bronc Freq

1 yes yes 0.07761966

2 no yes 0.92238034

3 yes no 0.19376877

4 no no 0.80623123

In the first instance where type = "marginal" we get p(xL|finding) and p(xB|finding); notice
that type = "marginal" is the default. Next, setting type = "joint" gives p(xL, xB|finding).
Finally, setting type = "conditional" gives p(xL|xB,finding), i.e., the distribution of the
first variable in nodes given the remaining variables listed.
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Omitting nodes when calling querygrain() implies that all nodes are considered. Hence
omitting nodes and setting type = "joint" means that the full table will be calculated.

5. Building networks from data

The CPTs used in the previous sections have all been specified directly. However, it is clearly
possible to extract such tables from data. Below we illustrate two approaches for doing so.

5.1. From a directed acyclic graph

This section describes building a network from a given DAG and data. As an example we con-
sider the coronary artery disease data in the dataframe cad1 (see Højsgaard and Thiesson 1995
for a more detailled discussion of the data). Put briefly the coronary artery disease CAD (C)

is the response variable. Occurrence of CAD is believed to depend on smoking habits (Smoker
(S)), hereditary predispositions (Inherit (I)) and hypercholesterolamia (Hyperchol (H)).
Manifestations of the disease includes angina pectoris (AngPec (A)) and recordings of other
heart failures (Heartfail (F)). Furthermore, the ECG reading of Q-wave (QWave (Q)) is a
manifestation of CAD. We postulate the simple DAG structure in Figure 4:

R> cad.dag <- dag(~ CAD:Smoker:Inherit:Hyperchol + AngPec:CAD +

+ Heartfail:CAD + QWave:CAD)

Given a DAG and the data, it is possible to extract CPTs and create a network from these
as follows:: The CPTs extracted are relative frequencies of each node given its parents. To

CAD

Smoker Inherit Hyperchol

AngPec Heartfail QWave

Figure 4: A DAG model for coronary artery disease data.
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avoid zeros in the CPTs one can choose to add a small number, e.g., smooth = 0.1 to all
values, corresponding to a Bayesian estimate based on prior Dirichlet distributions for the
CPT entries:

R> data("cad1")

R> cad.cpt <- extractCPT(cad1, cad.dag, smooth = 0.1)

R> cad.gin <- grain(compileCPT(cad.cpt))

These steps are wrapped into a single function which takes a DAG and a table as arguments:

R> grain(cad.dag, data = cad1, smooth = 0.1)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes: chr [1:7] "CAD" "Smoker" "Inherit" "Hyperchol" ...

5.2. From a triangulated undirected graph

In this section we describe how to build a network from an triangulated undirected graph.
The situation we have in mind is where log-linear model for a contingency table has been
found, for example using a stepwise model selection procedure.

Returning to the coronary artery disease data of Section 5.1 we can start with the saturated
model for the seven variables and do a stepwise backward elimination among decomposable
models. We do so using gRim, Højsgaard (2012b) where the model search is among decom-
posable models only and where the selection criterion is AIC:

R> library("gRim")

R> cad.tab <- xtabs(~ ., data = cad1)

R> cad.sat <- dmod(~ .^., data = cad.tab, marginal = c("CAD", "Smoker",

+ "Inherit", "Hyperchol", "AngPec", "Heartfail", "QWave"))

R> (cad.sel <- stepwise(cad.sat))

Model: A dModel with 7 variables

graphical : TRUE decomposable : TRUE

-2logL : 1972.91 mdim : 31 aic : 2034.91

ideviance : 248.10 idf : 23 bic : 2142.29

deviance : 140.30 df : 160

Notice: Table is sparse

Asymptotic chi2 distribution may be questionable.

Degrees of freedom can not be trusted.

Model dimension adjusted for sparsity : 30

The selected model is displayed with

R> plot(cad.sel, "circo")

and is shown in Figure 5. To turn this model into a network, two observations are made:
First, the compilation step in Section 4.2 only served to get from a list of CPTs to the
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CAD

Smoker

Hyperchol

Heartfail

AngPec

Inherit

QWave

Figure 5: Decomposable log-linear model for coronary artery disease data.

clique potential representation (8) of the cliques of a triangulated undirected graph. After
the clique potential representation is obtained, the CPTs are of no further use. Secondly, the
set chain representation (9) is one such clique potential representation and obtaining this set
chain representation is straight forward given data and a triangulated graph: Given the RIP
ordering of the cliques we extract the tables for a clique Ck and a separator Sk, normalize
these to sum to one to give p(xCk

) and p(xSk
) and set ψCk

(xCk
) = p(xCk

)/p(xSk
). These

potentials are then turned into a network.

The model object cad.sel contains the generating class for the model and from this, a graph
object can be constructed:

R> cad.gc <- cad.sel$glist

R> str(cad.gc)

List of 4

$ : chr [1:4] "CAD" "Smoker" "Hyperchol" "Heartfail"

$ : chr [1:3] "CAD" "AngPec" "Heartfail"

$ : chr [1:3] "Inherit" "AngPec" "Heartfail"

$ : chr [1:2] "CAD" "QWave"
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R> (cad.ug <- ugList(cad.gc))

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 11

From the graph object cad.ug and data cad1 we may now extract the clique potentials and
turn these into a network:

R> potlist <- extractPOT(cad1, cad.ug)

R> grain(compilePOT(potlist))

Independence network: Compiled: FALSE Propagated: FALSE

Nodes: chr [1:7] "Heartfail" "CAD" "Smoker" "Hyperchol" ...

These steps are wrapped into a single function which takes an undirected (triangulated) graph
and data as arguments:

R> grain(cad.ug, data = cad1)

6. Additional features of gRain

6.1. Fast computation of a joint distribution

Suppose interest is in fast computation of a joint distribution of a set of variables U as dis-
cussed in Section 3.5. In this case one can force U to be in the same clique of the triangulated
moralized DAG as:

R> gin1c.alt <- compile(gin1, root = c("lung", "bronc", "tub"),

+ propagate = TRUE)

R> summary(gin1c.alt)

Independence network: Compiled: TRUE Propagated: TRUE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

Number of cliques: 5

Maximal clique size: 4

Maximal state space in cliques: 16

Hence this network has a larger clique size than the original network in Section 4.2. The
triangulated graph resulting from this is shown in Figure 6.

The computing time for the joint distribution of lung, bronc and tub is much smaller when
compared with the original network:

R> system.time({

+ for (i in 1:200)

+ querygrain(gin1c.alt, nodes = c("lung", "bronc", "tub"), type = "joint")

+ })
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asia

tub smoke

lung

bronc

either

xray dysp

Figure 6: Triangulation when lung, bronc and tub are forced to be contained in one clique.
This makes computation of their joint distribution faster but at the expense of a larger clique
size.

user system elapsed

0.03 0.00 0.03

R> system.time({

+ for (i in 1:200)

+ querygrain(gin1c, nodes = c("lung", "bronc", "tub"), type = "joint")

+ })

user system elapsed

4.68 0.00 4.71

6.2. Simulation

It is possible to simulate data from a network (with or without findings) using the method
of Dawid (1992), see also Cowell et al. (1999, p. 99). If a network is not propagated when
simulate() is applied, simulate() will force this to happen automatically. The algorithm
works as follows: Consider again Figure 3. First data are simulated for the variables in C1

using p(xC1). Then data for R2 = C2 \S2 are generated from p(xR2 |xS2) using the previously
simulated data for S2 = C2 ∩ C1 and so on outwards in the junction tree.
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R> sim.find <- simulate(gin1c.find, nsim = 5000)

R> head(sim.find)

asia tub smoke lung bronc either xray dysp

1 yes no no no yes no no yes

2 yes no no no yes no no yes

3 yes no yes no yes no no yes

4 yes no yes no yes no no yes

5 yes no no no yes no no yes

6 yes no yes no yes no no yes

Such a simulation may be useful, for example for finding a joint (conditional) distribution of
a set of variables without having to take the approach illustrated in Section 6.1. For example
we obtain the following approximation which is close to the exact result given in Section 4.3:

R> xtabs(~ lung + bronc, data = sim.find) / nrow(sim.find)

bronc

lung yes no

yes 0.0598 0.0374

no 0.7524 0.1504

6.3. Prediction

A predict method is available for networks for predicting a set of “responses” from a set
of “explanatory variables”. Two types of predictions can be made. The default is type =

"class" which assigns the value to the class with the highest probability:

R> mydata

bronc dysp either lung tub asia xray smoke

1 yes yes yes yes no no yes yes

2 yes yes yes yes no no yes no

3 yes yes yes no yes no yes yes

4 yes yes no no no yes yes no

R> predict(gin1c, response = c("lung", "bronc"), newdata = mydata,

+ predictors = c("smoke", "asia", "tub" , "dysp", "xray"), type = "class")

$pred

$pred$lung

[1] "yes" "no" "no" "no"

$pred$bronc

[1] "yes" "yes" "yes" "yes"

$pFinding

[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667
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The output should be read carefully: Conditional on the first observation in mydata, the most
probable value of lung is "yes" and the same is the case for bronc. This is not in general the
same as saying that the jointly most likely configuration of the two variables lung and bronc

is "yes".

Alternatively, one can obtain the entire (conditional) distribution:

R> predict(gin1c, response = c("lung", "bronc"), newdata = mydata,

+ predictors = c("smoke", "asia", "tub" , "dysp", "xray"), type = "dist")

$pred

$pred$lung

yes no

[1,] 0.7744796 0.2255204

[2,] 0.3267670 0.6732330

[3,] 0.1000000 0.9000000

[4,] 0.3267670 0.6732330

$pred$bronc

yes no

[1,] 0.7181958 0.2818042

[2,] 0.6373009 0.3626991

[3,] 0.6585366 0.3414634

[4,] 0.6373009 0.3626991

$pFinding

[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667

Above, pFinding is the probability of each configuration of the explanatory variables.

6.4. Repeated patterns

The gRain package provides a simple mechanism for producing repeated patterns. To illus-
trate this we define a homogeneous hidden Markov model

p(x, y) = p(x0)
5∏

t=1

p(xt|xt−1)p(yt|xt)

where the xts are unobserved and the yts are observed.

First we define templates for transition and emission densities for each time point:

R> yn <- c("yes", "no")

R> x.x <- cptable(~ x[i] | x[i-1], values = c(1, 99, 2, 98), levels = yn)

R> y.x <- cptable(~ y[i] | x[i], values = c(10, 90, 5, 95), levels = yn)

Next we create instances of these densities using repeatPattern():

R> inst <- repeatPattern(list(x.x, y.x), instances = 1:5)
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x0

x1

y1 x2

y2 x3

y3 x4

y4 x5

y5

Figure 7: Hidden Markov model generated with repeated patterns.

Finally we combine these instances with the initial distribution p(x0) and create the network
as shown in Figure 7:

R> x.0 <- cptable(~ x0, values = c(1, 1), levels = yn)

R> hmm <- compileCPT(c(list(x.0), inst))

R> hmm <- grain(hmm)

Højsgaard et al. (2012) shows an example where repeatPattern() is used in connection with
parameter learning in a Bayesian setting.

6.5. Plotting networks

There are two sets of methods for plotting networks: (a) The plot() methods are based
on the Rgraphviz package Gentry et al. (2012) which requires that the Graphviz program,
(AT&T Research 2009) is installed. All plots in this paper are created using these plot()

methods. (b) The iplot() methods are based on the igraph package (Csardi and Nepusz
2006) and igraph does not require external programs to be installed.

6.6. Working with HUGIN net files

The HUGIN program (HUGIN Expert A/S 2011) is a commercial program for Bayesian
networks. A limited version of HUGIN is freely available. A network made in HUGIN can
be saved in a specific format known as a net file (which is a text file). Such a net file can
be read into R as a network using the loadHuginNet() function and a network in R can be
saved in the net format with the saveHuginNet() function.

HUGIN distinguishes between node names and node labels. Node names have to be unique;
node labels need not be so. When creating a network in HUGIN node names are generated
automatically as C1, C2 etc. The user can choose to give more informative labels or to give
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informative names. Typically one would do the former. Therefore loadHuginNet() uses node
labels (if given) from the netfile and otherwise node names.

This causes two types of problems. First, in HUGIN it is allowed to have e.g., spaces and
special characters (e.g., “?”) in variable labels. This is not permitted in gRain. If such a
name is found by loadHuginNet(), the name is converted as follows: Special characters are
removed, the first letter after a space is capitalized and then spaces are removed. Hence the
label “visit to Asia?” in a net file will be converted to “visitToAsia”. Then same convention
applies to states of the variables. Secondly, because node labels in the net file are used as
node names in gRain we may end up with two nodes having the same name which is obviously
not permitted. To resolve this issue gRain will in such cases force the node names in gRain
to be the node names rather than the node labels from the net file. For example, if nodes A

and B in a net file both have label foo, then the nodes in gRain will be denoted A and B. It
is noted that in itself this approach is not entirely foolproof: If there is a node C with label
A, then we have just moved the problem. Therefore the scheme above is applied recursively
until all ambiguities are resolved.

7. Overview of software structure

In this section we briefly summarizes the software structure.

A network can be specified in different ways: (a) From a list of CPTs, (Section 2.3) (b) From a
DAG and a dataset (Section 5.1) and (c) From a triangulated undirected graph and a dataset
(Section 5.2). The grain() function is used in this connection.

Findings are entered into a network using setFinding() and queries to a network are made
using querygrain() (see Sections 2.3 and 4.3). Findings can only be entered to a compiled
network and queries can only be asked to a compiled and propagated network. However,
compilation and propagation (using compile() and propagate()) is forced (when necessary)
by the setFinding() and querygrain() functions).

Findings can be entered sequentially and findings can be retracted (Section 4.3). Entering
findings sequentially is one example where it may be advantageous to defer propagation until
all findings have been entered.

When compiling a network it is possible to force a set of variables to be in the same clique of
the underlying undirected graph. Section 6.1 shows an example where this is used.

8. Discussion and perspectives

This paper describes a propagation algorithm for graphical independence networks (Bayesian
networks); how to set findings and how to query such networks. The paper also describes
how to establish networks from data and a statistical model.

The critical point in terms of storage is the size of the clique potentials which is determined
by the size of the cliques in the underlying triangulated graph. The critical computational
point in connection with computing time are the operations on clique potentials: multipli-
cation, division and marginalization. When the cliques become large and/or the variables
have many levels then gRain becomes slow. On the other hand, if the underlying graph is
sparse (for example a tree) then gRain is quite fast. Thereby it is feasible to use gRain in
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e.g., bioinformatic applications where the underlying graph often is sparse.

An alternative to gRain is the RHugin package, Konis (2011). RHugin provides an interface
to the HUGIN Application Programmers Interface (HUGIN Expert A/S 2011) which makes
RHugin very efficient. RHugin works with the limited version of HUGIN which is freely
available. In terms of speed and computational efficiency, RHugin is much more efficient than
gRain.

There exist faster algorithms than the one implemented in gRain, for example the algorithm
described by Jensen et al. (1990). Their algorithm is presumably faster than the LS algorithm
but also more expensive in terms of memory requirements than the LS algorithm. Their
algorithm may become available in gRain in the future.
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