Journal of Statistical Software

June 2012, Volume 49, Issue 3. http:/ /www.jstatsoft.org/

Glotaran: A Java-Based Graphical User Interface for
the R Package TIMP

Joris J. Snellenburg Sergey P. Laptenok Ralf Seger
VU University Amsterdam VU University Amsterdam Augsburg University

Katharine M. Mullen Ivo H. M. van Stokkum
National Institute of VU University Amsterdam
Standards and Technology

Abstract

In this work the software application called Glotaran is introduced as a Java-based
graphical user interface to the R package TIMP, a problem solving environment for fit-
ting superposition models to multi-dimensional data. TIMP uses a command-line user
interface for the interaction with data, the specification of models and viewing of analysis
results. Instead, Glotaran provides a graphical user interface which features interactive
and dynamic data inspection, easier — assisted by the user interface — model specification
and interactive viewing of results. The interactivity component is especially helpful when
working with large, multi-dimensional datasets as often result from time-resolved spec-
troscopy measurements, allowing the user to easily pre-select and manipulate data before
analysis and to quickly zoom in to regions of interest in the analysis results. Glotaran
has been developed on top of the NetBeans rich client platform and communicates with
R through the Java-to-R interface Rserve. The background and the functionality of the
application are described here. In addition, the design, development and implementation
process of Glotaran is documented in a generic way.

Keywords: Glotaran, TIMP, global analysis, target analysis, time-resolved spectroscopy, Java.

1. Introduction

TIMP was introduced as an R package for modeling multi-way spectroscopic measurements
by Mullen and Van Stokkum (2007). It was born out of the need for an open-source, platform-
independent and extensible problem-solving environment for fitting a wide range of models to

http://www.jstatsoft.org/

2 Glotaran: A Java-Based GUI for TIMP

multi-way spectroscopy data, i.e., spectra measured as a function of one or more independent
experimental variables such as time, pH, pD, temperature, excitation wavelength or quencher
concentration. In addition it has been used in the analysis of microscopy data by Laptenok,
Mullen, Borst, Van Stokkum, Apanasovich, and Visser (2007) and Laptenok, Borst, Mullen,
Van Stokkum, Visser, and Van Amerongen (2010). TIMP has a very flexible command line
interface, typically used in a scripted manner, that enables the manipulation of data, speci-
fication of the model(s), and viewing of the results through a few user-accessible functions.
For the user the primary difficulty in operating TIMP lies in knowing the syntax of these
functions and their many options. Another difficulty is that all steps of the analysis are spec-
ified in advance: The data to be read, what preprocessing is to be done (such as averaging,
window selection or baseline-subtraction), what model to use and which traces and spectra to
plot. There is little to no (visual) feedback until the analysis has successfully completed. The
results produced then are relatively static; zooming is possible to an extent but with limited
resolution, and if a region of interest falls outside of the selection of plotted traces then the
plot command needs to be re-run with different parameters. In order to address these issues,
a graphical user interface (GUI) for TIMP, called Glotaran, was created.

1.1. Introducing Glotaran

Glotaran was designed to extend TIMP with: (1) Interactive data exploration, allowing a
user to interactively view all data rather than make a selection upfront, (2) easier (visual)
modeling, to assist the user in building complex models without making typographical mis-
takes, and (3) interactive visualization of analysis results, to quickly assess the quality of
fit. Glotaran stands for global and target analysis, the method by which these measure-
ments can effectively be modeled and analyzed as described by Van Stokkum, Larsen, and
Van Grondelle (2004). Development on Glotaran started at the physics department of the
VU University Amsterdam as a GUI for the R package TIMP as reported by Snellenburg,
Van Stokkum, and Mullen (2008). As such, TIMP still provides the required mathematical
framework and computational algorithms for modeling and data analysis. In short, Glotaran
was designed to exploit the functionality already existing in TIMP, address certain limitations
(dynamic, interactive charts rather than static plots), provide new functionality (interactive
data exploration and result viewing, and visual modeling) and simplify the overall process
of model-based data analysis by providing an easy-to-use GUI. Glotaran aims to lower the
barrier to access the advanced analysis and modeling capabilities of TIMP by eliminating the
need to learn R syntax (R Development Core Team 2012) or specific TIMP code, while at the
same time maintaining compatibility between models written in TIMP and models designed
in Glotaran.

1.2. Background and motivation

Development of Glotaran was fueled by the desire to provide an easy-to-use modeling and
data analysis tool for use by scientists in the field of molecular biophysics. These scientists
use state-of-the-art spectroscopy and microscopy measurement techniques to study the mech-
anisms underlying the behavior of complex bio-molecular systems, often resulting in large and
complex time-resolved spectroscopy and microscopy datasets. Because of the complexity of
the physical processes underlying these data, advanced modeling and data analysis techniques
such as global and target analysis are often necessary to analyze and derive models from these

Journal of Statistical Software 3

measurements, as explaind by Van Stokkum et al. (2004). The release of TIMP in 2007 was
the first step in the realization of an open-source, platform-independent and extensible data
analysis and modeling tool for use with such data. However, TIMP — just like R — is limited
to a command-line-interface, which means that using it requires knowledge of R syntax and
TIMP-specific function calls and their arguments. Developing a full-fledged graphical user
interface for an R package such as TIMP is no easy task, demonstrated by the wide variety of
different R GUI solutions that exist (Grosjean 2010). As introduced in this special issue by
Valero-Mora and Ledesma (2012), nowadays there are sophisticated front-ends for R such as
RKWard (Raodiger, Friedrichsmeier, Kapat, and Michalke 2012) and Deducer (Fellows 2012)
— an extension of JGR (Helbig and Theus 2005) — which feature integrated plugin support,
facilitating easier creation of GUI’s for new and existing R packages. For us the primary rea-
son to take a different approach was the lack of a mature integrated development environment
(IDE) for R such as is available for Java and the specific set of requirements that we set out
for the project.

In this paper we address various design considerations in GUI development for an R package.
In Section 2 we discuss the features of Glotaran along with an example case study and make
the comparison to working with TIMP. In addition we address the issue of the visualization
of data, model and analysis results. In Section 3 we define the specific application require-
ments we set out for the project and explain the design choices we made. In Section 4 we
have documented the resulting applications’ architecture, and discuss the complications of
interfacing with R. Finally, the availability of the application and a discussion on future work
can be found along with some concluding remarks in Section 5.

2. The application

Glotaran is a Java-based rich client platform (RCP) application that has been built on top of
the NetBeans RCP (Bock 2011). As such the application consists of a collection of modules
that each provide various aspects of the functionality of the application as a whole. In
addition to the basic functionality provided by the platform’s own modules, Glotaran comes
with various modules of its own providing the higher level functionality that turns it into
a useful application. Below is a list of the application’s core functionality. Most of these
features are illustrated in the screenshots that follow.

e Support for a well defined project structure consisting of a main project folder with sub
folders containing datasets, models, analysis schemes, results and (optionally) simulation
input files.

e Support for reading in various known data file formats, either in plain text or binary
format.

o Interactive data exploration by means of a custom designed data editor, specific to the
type of data shown.

e A visual modeling tool, or analysis scheme editor to specify a model for analysis, link it to
the datasets to which the model should be applied and specify the starting parameters
for analysis and configure the required run time parameters such as the number of
iterations the analysis should run for.

4 Glotaran: A Java-Based GUI for TIMP

¢ Functionality that connects to a running R process, translates the models to R function
calls to TIMP and retrieves the results of the computations after analysis in TIMP has
completed.

¢ Interactive results inspection by means of a custom designed editor, specific to the type
of data shown.

The modularity of the application means that in theory much of the application’s functionality
can easily be extended, replaced or stripped out, simply by removing, adding or changing the
existing modules, without breaking the application as a whole, as long as the individual
modules follow good coding practices and depend only on publicly accessible application
programming interfaces (APIs) from the NetBeans platform or Glotaran.

2.1. Interactive data exploration

Glotaran currently supports two types of data: Time-resolved spectroscopy data and time-
resolved microscopy data. Both data-types differ in the way they should be presented to
the user and therefore have two different visualization editors. Throughout this paper the
spectroscopy data editor is shown as an example.

The spectroscopy data editor currently has three tabs: The first Data tab shows the actual
data, the second SVD tab contains the tools to perform and analyze the singular value de-
composition of the data-matrix and the third Info tab shows some general properties of the
data-file when available. The data editor allows for some basic pre-processing of the data
such as window selection, averaging and sampling, baseline subtraction and outlier detection.
Because the data are directly visualized, and because the user can scroll through the data and
zoom in on interesting regions, the pre-processing becomes much easier than in TIMP where
one often needs to make an educated guess as to what region is of interest and, for instance,
whether baseline subtraction is necessary.

Time-resolved spectroscopy data are measured as a function of the experimental spectral
variable wavelength A and the independent experimental variable time ¢ relative to the instant
of excitation. The model underlying the data matrix W is a superposition of 1.4, components
given by the equation

N comp
T\t =Y at)ad) (1)
=1
where ¢; and ¢ are the unknown concentration profile and spectrum of component [/ respec-
tively. Figure 1 shows the time-resolved spectroscopy data-editor with an example of such
data.

In this editor the value of the measurement (fluorescence intensity, absorption, etc.) is shown
as a function of time (on the vertical axis) and wavelength (on the horizontal axis). The sliders
can be manipulated to show one specific time-trace (at a certain wavelength) or spectrum (at
a specific time) from the entire dataset as indicated by the overlaying crosshair lines. This
allows the user to scan through large datasets quickly and investigate particularly interesting
regions easily. In Figure 1 we observe both positive and negative difference absorption (color
changes) which decay over time. This indicates that an excited state is formed and decays in
less than one nanosecond. The aim of this experiment is to discover the mechanism of this
fast decay (see Hippius et al. 2007).

Journal of Statistical Software

| Zoomx ” ZoomY‘ |Average " Resample || Select | | Create Dataset | | Baseline correction ” Outlier correction Convert to absorption

9]

0.015 20
100
0.010 150

L
0.005 200
250

300

0.000

B e
EE e

= -0.005 350
i 400
= -0.010
£ 450
= -0.015 500
4
o020 || %0
500
-0.025 550

-0.030 700
750

-0.035 200

-0.040 | 830
200
Wavelength (nmj — -0.045 -0.04 -0.03 -0.02 -0.01 0.0

—}

400 450 500 550 600 650 700 750 800 850

M\‘x‘ » "

o et i 000

-0.01

-0.02

-0.03

-0.04

Figure 1: Time-resolved spectroscopy data editor; showing an example of femtosecond tran-
sient absorption spectroscopy data (from Hippius et al. 2007, Figure 5).

Singular value decomposition

The first step in modeling these data typically involves looking at the singular value decom-
position of the dataset. The singular value decomposition (SVD) is a matrix factorization
technique which can be used to explore the number of spectrally and temporally independent
components in the data matrix (Golub and Van Loan 1996), which is an important aspect of
defining an initial model. The SVD of the data-matrix is defined as:

Nmax

T\t =D un(t)wn(N)SV, (2)

n=1
where 7,42 1s the minimum of the number of rows and columns.

The singular values give an indication of the number of independent components in the
data. With n¢ymp independent components and noise-free data there would be exactly ncomp
significant singular values (different from 0), defined as: SVi > SVo > SV, > SVy 41 =
... = 0. In the case of data with a small amount of noise the significant singular values are
no longer as clearly defined but typically still stand out from the rest. This is best captured
in the form of a screeplot where the singular values are plotted on a logarithmic range axis
in decreasing order, see Figure 2 (top panel). Furthermore, the accompanying n¢omp left and
right singular vectors are clearly structured, see Figure 2 (left and right panel respectively).

6 Glotaran: A Java-Based GUI for TIMP

Singular values decomposition of the data matrix

Screeplot

10/00.2
104-0.0
104-0.2
104-0.4

% 10/-0.6
3 104-0.8
— 10A-1.0
10A-1.2
10A-1.4
10A-1.6
104-1.8
2 4 6 & 10 12 14 16 18 20
Singular Value index (n)
Left singular vectors Right singular vectors
025 0.25
020 0.20
0.15 05
_ 010 .
3 005 /I/'/N\'M“ ~ 3 oo /\
g 000 e = 005 / N\
3 g Y SN
S -0.05 T 0.00 _ i
£ -0.10 = //
= | 5 -0.05
£ -0.15 £
< 020 < -0.10
-0.25 -0.15
-0.30 -0.20
-035
-0.25
0 05 1 10 100 400 450 500 550 600 650 700 750 800
Time (ps) Wavelength (nm)

Figure 2: Singular value decomposition of the data-matrix of the dataset from Figure 1. Top:
Screeplot. Bottom: The first five left and right singular vectors are plotted respectively in
black, red, blue, green and cyan.

Initially only the plot of the singular values and the corresponding first left and right singular
vectors are shown. The user can then change the number of left and right singular vectors
shown in increments of one and at each step judge the quality of the structure in each of
the singular vectors. Once the singular vectors start showing too little structure or too noisy
behavior this is an indication that the number of independent component has been exceeded.

2.2. Visual modeling

After the initial pre-processing of the data is done and a dataset is created, a first attempt can
be made to model and fit these data. The best approach is often to start as simple as possible,
choosing reasonable starting values for the minimum set of parameters that is expected to
adequately describe the data. The chosen parameters should then be optimized by running
the model for a few iterations and re-adjusting the starting values based on the results. Upon
convergence of the chosen model the quality of the fit can be judged from the fitted spectra
and time traces. At this point careful inspection of the SVD of the residual matrix can justify
gradually increasing the complexity of the model to account for any misfit. This process of
posing a model, fitting, inspecting the results and re-adjusting the model is called interactive
modeling (Van Stokkum and Bal 2006). Figure 3 shows a screenshot of the analysis scheme
editor where a large part of this process takes place.

The analysis scheme editor enables the user to create and edit models (as part of the analysis
scheme). Figure 3 shows a screenshot of the editor together with the Palette and the Property
editor. The palette is used to drag various modeling parameters onto the model view which
can then be changed by selecting them and using the Property editor. For each parameter

Q@

File Edit View Tools Window Help

A

Projects &7

T s

=R Pt

J55Demo
(@ Datasets D
& [f demo_data_Hippius_get
& Models

5 Clobal Analysis.xml

i Target Analysis.xm|
Bl Results
¢ (@ Clobal Analysis

i_ Global Analysis.sun

Journal of Statistical Software

tulid

ioAl X [EA ClobalAnalysis x

Glotaran 1.0.1

46| Global Analysis_Cle [

¥ Global Analysis_dl,
¢ [@ Target Analysis
5 Target Analysis. sur

an Target Analysis_Ta [«

gﬁg Target Analysis_dl | «

Parameters

Clobal Analysis

% @ KinPar (3)

9 @ IRFPar {Caussian)
Position
Width

9 WJ Dispersion {Parhu)
03

Datasets

o |a| dataset11]

Model Differences
LinkCLF threshhold

L)
=

=] L8],

Palette

¢ Modelling

@ Kinetic Parameters

@ IRF Parameters

w Dispersion
.

@ Weight Parameters
(;.'.) Cohspec Parameters

ClobalAnalysis.xm| - Proper... _ ¥
¢ Properties

-
x

[Analysis schema

Ed Clobal&nal
B Targetana| Open
o= [&] Simulation Inp| RUN ANalysis
Cut

MName GlobalAnalysis

— o @ weightPar (2)

.
Weight parameter Extension xml

[
All Files L]

File Size

. {
Iterations EE

E . Calculate errors

Weight parameter
@& cohspecl
& CohSpecdrd o | Modification Time
Copy.

Delete

Rename... GlobalAnalysis.xml

Qutput path: |Global l:l
. .

e le] (o]

Tools

Properties

Figure 3: Screenshot of the application window under Linux with the following components:
(A) analysis scheme editor showing a model for global analysis indicating all parameters 6
that define the concentration ¢; x(t,6), (B) the corresponding palette and (C) property editor
(discussed in the text). (D) shows the project folder structure with the used datasets, models,
analysis scheme and resulting analysis files. (E) is the context menu for the analysis scheme
file from which the analysis is invoked. The entire demo project shown in this screenshot is
available from the New Project... item in the application menu.

selected only the properties that are relevant given the selected model are shown.

The analysis scheme editor provides an overview of the whole analysis process. A model
consisting of a list of parameters is applied to one or more datasets and this is then linked
to an output window. The model specification view consists of a so-called tree table view
containing a list of parameters. Most parameter nodes can be expanded to view the underlying
parameters, as indicated by the ‘o-> symbol. The model specification is directly linked to a
model specification file in the project’s model directory in which the parameters of the models
are stored. The KinPar node represents a number of kinetic rates. The IRFPar node represents
the instrument response function (IRF). The Dispersion node models dispersion of the IRF
in case it has a wavelength dependent character. WeightPar can be used to give weights to
certain regions of the data indicated by two numbers specifying the interval in one or two
dimensions, and one number specifying the weight to be applied there. Finally, the CohSpec
node holds the specification for the coherent artefact; typically modeled after the IRF.

The current visual modeling implementation is rather rudimentary. Another and perhaps
more intuitive way is to directly visualize the applied target scheme in the form of a visual
diagram. In principle this is supported by the NetBeans RCP and this issue is addressed in
Section 5.2 on future work.

8 Glotaran: A Java-Based GUI for TIMP

Residual Sum of Squares progression

2.0E-1

1.6E-1

Log(RSS)
—
w
m
W~

1.0E-1

7.9E-2

6.3E-2

o
(o

2 3 4 5
Iteration

Figure 4: Progression of the sum of squares of errors. The constant value of the SSE from
the 4th to the 5Hth iteration indicates convergence.

Singular value decomposition of the residuals matrix

Left singular vectors Saeeplot Right singular vectors
0.20
104-1.5
0.15
104-1.6 0.10
_10a17 0.05
&
210018 0.00
& I -0.05
- -0.10
10%-2.0 -0.15
104-2.1 -0.20
-05 0 1 10 100 5 10 15 20 450 500 550 600 650 7F00 750
Time (ps) Singular Value Index (n) Wavelength (nm)

Figure 5: The singular value decomposition of the residual matrix. The first singular vector
is shown in black; the second in red.

2.3. Parameter estimation

The above defined model for the concentration of each component [depends on all parameters
0 indicated in Figure 3. Thus Equation 1 can be represented mathematically:

M comp

\I]()‘at) = Z Cl,)\(t79)6l()‘) (3)

=1

Now that a model for the concentration of each component has been defined, the unknown
parameters € and the conditionally linear parameters €;(\) can be estimated by means of vari-
able projection (Golub and LeVeque 1979; Bates and Watts 1988; Mullen and Van Stokkum
2009). The input settings for the parameter estimation are the weight parameters and the
number of iterations (both indicated in Figure 3).

Judging the quality of the fit is now a three step process. First convergence of the fit can be
determined from the plot showing the progression of the sum of square of errors (SSE), see
Figure 4. When the SSE has not yet converged, more iterations are needed.

Once convergence has been established, the second step is to inspect the SVD of the residual
matrix. Any significant residual structure in the first two left and right singular vectors could
indicate a potential misfit and the need to model another component, or that the contribution
of different regions to the parameter estimation should be reweighted. The SVD of the residual
matrix is shown in Figure 5.

http://kenai.com/
http://kenai.com/
http://java.net/

http://www.jfree.org/jfreechart/samples.html

http://kenai.com/projects/glotaran/
http://glotaran.org/

http://www.jstatsoft.org/v49/i08/
http://www.R-project.org/GUI
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://www.jstatsoft.org/v18/i08/
http://www.jstatsoft.org/v18/i03/
http://www.jstatsoft.org/v18/i03/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v49/i09/
http://www.jstatsoft.org/v49/i09/

20 Glotaran: A Java-Based GUI for TIMP

Snellenburg JJ, Van Stokkum IHM, Mullen KM (2008). “TIMPGUI: A Graphical User
Interface for the Package TIMP.” Talk at useR! 2008, The R User Conference (Dort-
mund, Germany), URL http://www.statistik.uni-dortmund.de/useR-2008/slides/
Snellenburg+Mullen+van_Stokkum.pdf.

Urbanek S (2003). “Rserve — A Fast Way to Provide R Functionality to Applications.” In
K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003). Vienna, Austria. ISSN 1609-395X. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

Valero-Mora PM, Ledesma R (2012). “Graphical User Interfaces for R.” Journal of Statistical
Software, 49(1), 1-8. URL http://www. jstatsoft.org/v49/i01/.

Van Stokkum ITHM, Bal HE (2006). “A Problem Solving Environment for Interactive Modelling
of Multiway Data.” Concurrency and Computation: Practice and Experience, 18, 263-269.

Van Stokkum IHM, Larsen DS, Van Grondelle R (2004). “Global and Target Analysis of
Time-Resolved Spectra.” Biochimica et Biophysica Acta, 1657, 82—-104. Erratum in 1658,
p. 262.

http://www.statistik.uni-dortmund.de/useR-2008/slides/Snellenburg+Mullen+van_Stokkum.pdf
http://www.statistik.uni-dortmund.de/useR-2008/slides/Snellenburg+Mullen+van_Stokkum.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://www.jstatsoft.org/v49/i01/

Journal of Statistical Software 21

A. Extending JFreeChart

JFreeChart is an extensive library with support for a great number of different types of
plots. The project website gives a list of examples. However, one type of plot frequently
used in the visualization of time-resolved spectroscopy data, the linear-logarithmic plot, is
not included in the standard set of plots. Because this type of plot is essential for the
working of a global and target analysis tool, it was developed as part of the project. The
result is the Java class LinLogAxis and implementation of the standard JFreeChart class
org.jfree.chart.axis.ValueAxis. Because the LinLog functionality was implemented as
a ValueAxis, it integrates seamlessly with the standard JFreeChart chart library and can be
reused with any XY Plot. The improvement for certain types of data is impressive when
compared side by side; see Figure 12.

The left plot in Figure 12 uses the standard linear NumberAxis only, and the right plot uses
the new LinLog axis. Figure 13 displays the estimated concentration profiles of a sequential
model with lifetimes ranging from 1.76 till 54 ps. The additional information provided by the
LinLogAxis is obvious.

Left singular vectors Left singular vectors
0.10 0.10
0.09 0.09
0.08 0.08
0.07 0.07
0.06 0.06
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0.00 0.00
0 100 200 300 400 500 600 700 800 900 0 0.5 1 10 100
Time (hs) Time (ns)

Figure 12: Example of the use of the LinLogAxis implementation.

Concentration profiles Concentration profiles
_. 09 ~ 0.9
508 S o8
207 207
C 086 (5
< Sos
= 0.5 = 0.5
[[
= 0.4 —
E E 0.4
T 0.3 o 0.3
8 0.2 g 0.2
U o1 g 01
0.0
- 0.0
0 100 200 300 !-'.100 500 600 70O BOO 800 04 0 0.5 1 10 100
Time (ps) Time (ps)

Figure 13: Two charts showing the estimated concentration profiles of a sequential model,
the left chart uses the standard linear axis and the right charts uses the linear-logarithmic
axis. Lifetimes: 1.76 ps (black), 18.7 ps (red), and 54 ps (blue). Green represents the shape
of the coherent artifact, and is equal to the IRF.

22 Glotaran: A Java-Based GUI for TIMP

Affiliation:

Joris J. Snellenburg, Ivo H. M. van Stokkum

Department of Physics and Astronomy, Faculty of Sciences

VU University Amsterdam

De Boelelaan 1081

1081 HV Amsterdam, The Netherlands

E-mail: j.snellenburg@vu.nl, ivo@few.vu.nl

URL: http://www.few.vu.nl/"jsnel/, http://www.few.vu.nl/"ivo/

Sergey P. Laptenok

Laboratoire d’Optique et Biosciences
CNRS UMR 7645, INSERM U696

L’Ecole Polytechnique

F-91128 Palaiseau, France

E-mail: s.laptenok@vu.nl

URL: http://www.lob.polytechnique.fr

Ralf Seger

Department of Computer Oriented Statistics and Data Analysis (COSADA)
Augsburg University

D-86135 Augsburg, Germany

E-mail: ralfseger@googlemail.com

URL: http://rosuda.org/Moret/main.html

Katharine M. Mullen

Structure Determination Methods Group, Ceramics Division
National Institute of Standards and Technology (NIST)

100 Bureau Drive, M/S 8520

Gaithersburg, MD, 20899, United States of America

E-mail: mullenkate@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 49, Issue 3 Submitted: 2011-01-20

June 2012 Accepted: 2011-09-16

mailto:j.snellenburg@vu.nl
mailto:ivo@few.vu.nl
http://www.few.vu.nl/~jsnel/
http://www.few.vu.nl/~ivo/
mailto:s.laptenok@vu.nl
http://www.lob.polytechnique.fr
mailto:ralfseger@googlemail.com
http://rosuda.org/Moret/main.html
mailto:mullenkate@gmail.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Introducing Glotaran
	Background and motivation

	The application
	Interactive data exploration
	Singular value decomposition

	Visual modeling
	Parameter estimation
	Interactive results inspection
	Comparison with TIMP

	Requirements and design choices
	Application architecture
	Libraries
	JFreeChart
	Rserve

	Conclusions
	Availability
	Future work
	Visual compartmental modeling
	Reporting functionality
	Integration with databases

	Extending JFreeChart

